

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	2 Core, 32-Bit
Speed	800MHz
Co-Processors/DSP	Multimedia; NEON™ MPE
RAM Controllers	DDR3, DDR3L, LPDDR2
Graphics Acceleration	Yes
Display & Interface Controllers	HDMI, Keypad, LCD, LVDS, MIPI
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6u4avm08ac

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Two Controller Area Network (FlexCAN), 1 Mbps each
- Two Watchdog timers (WDOG)
- Audio MUX (AUDMUX)
- MLB (MediaLB) provides interface to MOST Networks (MOST25, MOST50, MOST150) with the option of DTCP cipher accelerator

The i.MX 6Solo/6DualLite processors integrate advanced power management unit and controllers:

- Provide PMU, including LDO supplies, for on-chip resources
- Use Temperature Sensor for monitoring the die temperature
- Support DVFS techniques for low power modes
- Use SW State Retention and Power Gating for ARM and MPE
- Support various levels of system power modes
- Use flexible clock gating control scheme

The i.MX 6Solo/6DualLite processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks.

The i.MX 6Solo/6DualLite processors incorporate the following hardware accelerators:

- VPU—Video Processing Unit
- IPUv3H—Image Processing Unit version 3H
- GPU3Dv5—3D Graphics Processing Unit (OpenGL ES 2.0) version 5
- GPU2Dv2—2D Graphics Processing Unit (BitBlt)
- ASRC—Asynchronous Sample Rate Converter

Security functions are enabled and accelerated by the following hardware:

- ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
- SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features.
- CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash engines, 16 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).
- SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
- CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy.
- A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.

NOTE

The actual feature set depends on the part numbers as described in Table 1, "Orderable Part Numbers," on page 3. Functions, such as video hardware acceleration, and 2D and 3D hardware graphics acceleration may not be enabled for specific part numbers.

⁴ External oscillator or a fundamental frequency crystal with internal oscillator amplifier.

The typical values shown in Table 11 are required for use with Freescale BSPs to ensure precise time

keeping and USB operation. For RTC_XTAL operation, two clock sources are available.

On-chip 40 kHz ring oscillator-this clock source has the following characteristics:

Approximately 25 µA more Idd than crystal oscillator

Approximately ±50% tolerance

No external component required

Starts up quicker than 32 kHz crystal oscillator

External crystal oscillator with on-chip support circuit:

At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically.

Higher accuracy than ring oscillator

If no external crystal is present, then the ring oscillator is utilized

The decision of choosing a clock source should be taken based on real-time clock use and precision timeout.

4.1.5 Maximal Supply Currents

The Power Virus numbers shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption.

The MMPF0100xxxx, Freescale's power management IC targeted for the i.MX 6x family, supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design is required for the increased system power dissipation.

See the i.MX 6Solo/6DualLite Power Consumption Measurement Application Note (AN4576) for more details on typical power consumption under various use case definitions.

Power Line	Conditions	Max Current	Unit		
VDDARM_IN	996 MHz ARM clock based on Power Virus operation	2200	mA		
VDDSOC_IN	996 MHz ARM clock	1260	mA		
VDDHIGH_IN		125 ¹	mA		
VDD_SNVS_IN		275 ²	μA		
USB_OTG_VBUS/USB_H1_VBUS (LDO 3P0)		25 ³	mA		
Primary Interface (IO) Supplies					

 Table 12. Maximal Supply Currents

Power Line	Conditions	Max Current	Unit
NVCC_DRAM	—	4	
NVCC_ENET	N=10	Use maximal IO equation ⁵	
NVCC_LCD	N=29	Use maximal IO equation ⁵	
NVCC_GPIO	N=24	Use maximal IO equation ⁵	
NVCC_CSI	N=20	Use maximal IO equation ⁵	
NVCC_EIM	N=53	Use maximal IO equation ⁵	
NVCC_JTAG	N=6	Use maximal IO equation ⁵	
NVCC_RGMII	N=12	Use maximal IO equation ⁵	
NVCC_SD1	N=6	Use maximal IO equation ⁵	
NVCC_SD2	N=6	Use maximal IO equation ⁵	
NVCC_SD3	N=11	Use maximal IO equation ⁵	
NVCC_NANDF	N=26	Use maximal IO equation ⁵	
	MISC		
DDR_VREF	—	1	mA

Table 12. Maximal Supply Currents (continued)

¹ The actual maximum current drawn from VDDHIGH_IN will be as shown plus any additional current drawn from the VDDHIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

² The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.

³ This is the maximum current per active USB physical interface.

⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.

⁵ General equation for estimated, maximal power consumption of an IO power supply:

 $Imax = N \times C \times V \times (0.5 \times F)$

Where:

N—Number of IO pins supplied by the power line

C—Equivalent external capacitive load

V—IO voltage

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

- VDDARM_IN supply must be turned ON together with VDDSOC_IN supply or not delayed more than 1 ms
- VDDARM_CAP must not exceed VDDSOC_CAP by more than 50 mV.

NOTE

The POR_B input (if used) must be immediately asserted at power-up and remain asserted until after the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. See the *i.MX 6Solo/6DualLite Reference Manual* for further details and to ensure that all necessary requirements are being met.

NOTE

Need to ensure that there is no back voltage (leakage) from any supply on the board towards the 3.3 V supply (for example, from the external components that use both the 1.8 V and 3.3 V supplies).

NOTE

USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply sequence and may be powered at any time.

4.2.2 Power-Down Sequence

No special restrictions for i.MX 6Solo/6DualLite IC.

4.2.3 **Power Supplies Usage**

All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see "Power Rail" columns in pin list tables of Section 6, "Package Information and Contact Assignments."

4.3 Integrated LDO Voltage Regulator Parameters

Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* for details on the power tree scheme.

NOTE

The *_CAP signals should not be powered externally. These signals are intended for internal LDO or LDO bypass operation only.

4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)

There are three digital LDO regulators ("Digital", because of the logic loads that they drive, not because of their construction). The advantages of the regulators are to reduce the input supply variation because of

4.4.3 Ethernet PLL

Parameter	Value	
Clock output range	500 MHz	
Reference clock	24 MHz	
Lock time	<11250 reference cycles	

Table 19. Ethernet PLL's Electrical Parameters

4.4.4 480 MHz PLL

Table 20. 480 MHz PLL's Electrical Parameters

Parameter	Value	
Clock output range	480 MHz PLL output	
Reference clock	24 MHz	
Lock time	<383 reference cycles	

4.4.5 MLB PLL

The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and external clock edges, effectively tuning out the delay of the differential clock receiver and is also responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is not 1:1.

Table 21. MLB PLL's Electrical Parameters

Parameter	Value
Lock time	<1 ms

4.4.6 ARM PLL

Table 22. ARM PLL's Electrical Parameters

Parameter	Value	
Clock output range	650 MHz ~ 1.3 GHz	
Reference clock	24 MHz	
Lock time	<2250 reference cycles	

Table 33 shows the AC parameters for LVDS I/O.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Differential pulse skew ¹	t _{SKD}		_	_	0.25	
Transition Low to High Time ²	t _{TLH}	Rload = 100 Ω, Cload = 2 pF	—	—	0.5	ns
Transition High to Low Time ²	t _{THL}		—	—	0.5	
Operating Frequency	f	—	—	600	800	MHz
Offset voltage imbalance	Vos	—	_	—	150	mV

t_{SKD} = | t_{PHLD} - t_{PLHD} |, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

² Measurement levels are 20-80% from output voltage.

4.7.4 MLB I/O AC Parameters

The differential output transition time waveform is shown in Figure 7.

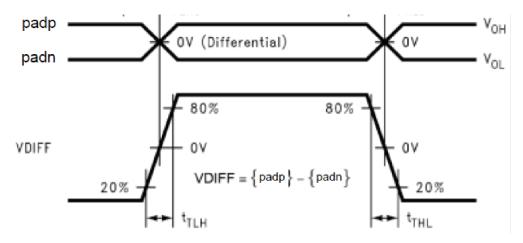


Figure 7. Differential MLB Driver Transition Time Waveform

A 4-stage pipeline is utilized in the MLB 6-pin implementation in order to facilitate design, maximize throughput, and allow for reasonable PCB trace lengths. Each cycle is one ipp_clk_in* (internal clock from MLB PLL) clock period. Cycles 2, 3, and 4 are MLB PHY related. Cycle 2 includes clock-to-output delay of Signal/Data sampling flip-flop and Transmitter, Cycle 3 includes clock-to-output delay of Signal/Data clocked receiver, Cycle 4 includes clock-to-output delay of Signal/Data sampling flip-flop.

MLB 6-pin pipeline diagram is shown in Figure 8.

4.8.1 GPIO Output Buffer Impedance

Table 35 shows the GPIO output buffer impedance (OVDD 1.8 V).

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	260	
		010	130	
Output Driver	Rdrv	011	90	
Impedance		100	60	Ω
		101	50	
		110	40	
		111	33	

Table 35. GPIO Output Buffer Average Impedance (OVDD 1.8 V)

Table 36 shows the GPIO output buffer impedance (OVDD 3.3 V).

Parameter	Symbol	Drive Strength (DSE)	Typ Value	Unit
		001	150	
		010	75	
Output Driver	Rdrv	011	50	
Impedance		100	37	Ω
		101	30	
		110	25	
		111	20	

4.8.2 DDR I/O Output Buffer Impedance

The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.

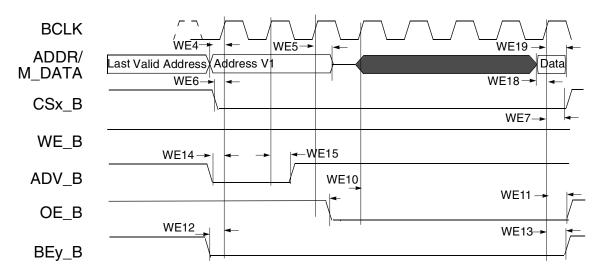
Table 37 shows DDR I/O output buffer impedance of i.MX 6Solo/6DualLite processors.

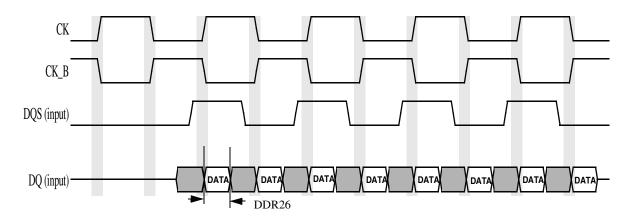
Table 37. DDR I/O Output	t Buffer Impedance

			Тур		
Parameter	Symbol	Test Conditions DSE(Drive Strength)	NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11	NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10	Unit
Output Driver Impedance	Rdrv	000 001 010 011 100 101 110 111	Hi-Z 240 120 80 60 48 40 34	Hi-Z 240 120 80 60 48 40 34	Ω

Note:

1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.




Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0

4.9.3.5 General EIM Timing-Asynchronous Mode

Figure 18 through Figure 22, and Table 44 help you determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above.

Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN & CSN is configured differently. See the *i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM)* for the EIM programming model.

Figure 26 shows the read DDR3/DDR3L timing parameters. The timing parameters for this diagram appear in Table 47.

Figure 26. DDR3/DDR3L Read Cycle

Table 47. DDR3/DDR3L Read Cycle

ID Parameter		Symbol	CK = 4	Unit	
	i arameter		Min	Max	onne
DDR26	Minimum required DQ valid window width		450	—	ps

¹ To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle of DQ window.

² All measurements are in reference to Vref level.

 $^3\,$ Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.

4.10.3.2 Read and Write Timing

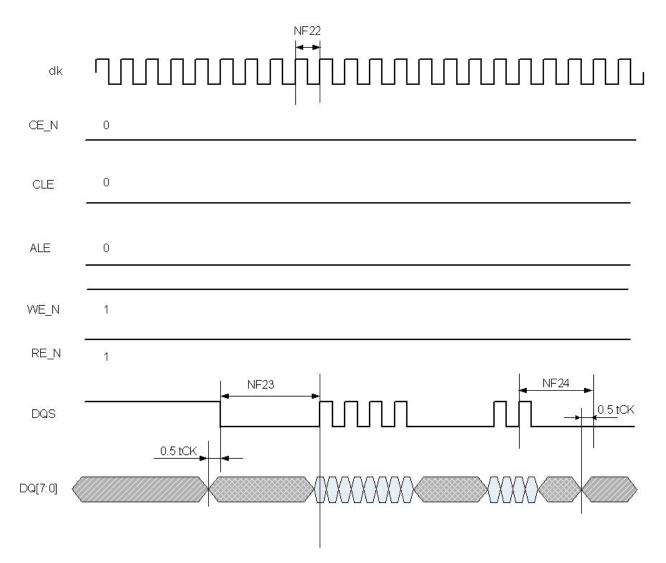


Figure 38. Samsung Toggle Mode Data Write Timing

Figure 47 shows MII receive signal timings. Table 60 describes the timing parameters (M1–M4) shown in the figure.

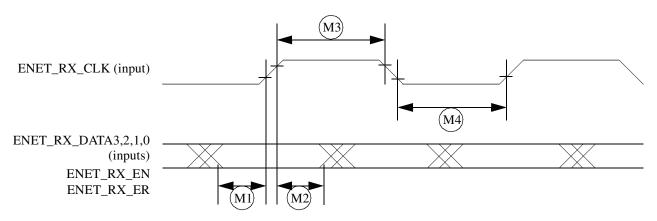
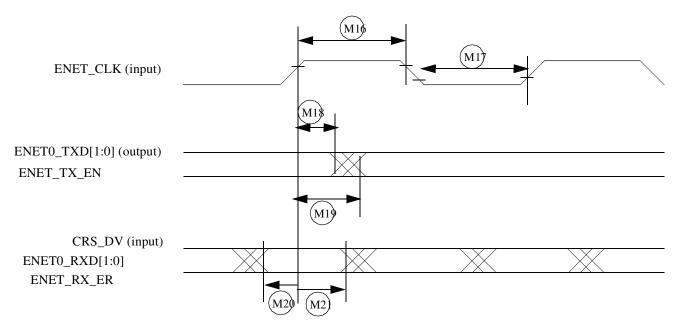


Figure 47. MII Receive Signal Timing Diagram

Table 60. MII Receive Signal Timing


ID	Characteristic ¹	Min.	Max.	Unit
M1	ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup	5	_	ns
M2	ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold	5	_	ns
М3	ENET_RX_CLK pulse width high	35%	65%	ENET_RX_CLK period
M4	ENET_RX_CLK pulse width low	35%	65%	ENET_RX_CLK period

¹ ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.

4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)

The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency.

Figure 51 shows RMII mode timings. Table 64 describes the timing parameters (M16–M21) shown in the figure.

Figure 51. RMII Mode Signal Timing Diagram

Table 64. RMII Signal Timing

ID	Characteristic	Min.	Max.	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid	4	_	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid	_	15	ns
M20	ENET0_RXD[1:0], CRS_DV(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup	4	_	ns
M21	ENET_CLK to ENET0_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold	2	_	ns

4.11.5.3 RGMII Signal Switching Specifications

The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices.

Table 65. RGMII Signa	I Switching Specifications ¹
-----------------------	---

Symbol	Description		Max.	Unit
T _{cyc} ²	Clock cycle duration	7.2	8.8	ns
T _{skewT} ³	Data to clock output skew at transmitter	-100	900	ps

Table 72 shows timing characteristics of signals presented in Figure 68 and Figure 69.

ID	Parameter	Symbol	Value	Description	Unit
IP5	Display interface clock period	Tdicp	(1)	Display interface clock. IPP_DISP_CLK	ns
IP6	Display pixel clock period	Tdpcp	DISP_CLK_PER_PIXEL × Tdicp	Time of translation of one pixel to display, DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1.n). The DISP_CLK_PER_PIXEL is virtual parameter to define Display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to n components.	ns
IP7	Screen width time	Tsw	(SCREEN_WIDTH) × Tdicp	SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI's counter ² .	ns
IP8	HSYNC width time	Thsw	(HSYNC_WIDTH)	HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter.	ns
IP9	Horizontal blank interval 1	Thbi1	BGXP × Tdicp	BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI's counter.	ns
IP10	Horizontal blank interval 2	Thbi2	(SCREEN_WIDTH - BGXP - FW) × Tdicp	Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI's counter.	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT) X Tsw	SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI's counter.	ns
IP13	VSYNC width	Tvsw	VSYNC_WIDTH	VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP × Tsw	BGYP—width of first Vertical blanking interval in line. The BGYP should be built by suitable DI's counter.	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT - BGYP - FH) × Tsw	Width of second Vertical blanking interval in line. The FH should be built by suitable DI's counter.	ns

Table 72. Synchronous Display Interface Timing Characteristics (Pixel Level)

V _{IDTL}	Differential input low voltage threshold	-70		mV			
V _{IHHS}	Single ended input high voltage		460	mV			
V _{ILHS}	Single ended input low voltage	-40		mV			
V _{CMRXDC}	Input common mode voltage	70	330	mV			
Z _{ID}	Differential input impedance	80	125	Ω			
	LP Lin	eceiver DC Specifications					
V _{IL}	Input low voltage		550	mV			
V _{IH}	Input high voltage	920		mV			
V _{HYST}	Input hysteresis	25		mV			
Contention Line Receiver DC Specifications							
V _{ILF}	Input low fault threshold	200	450	mV			

Table 75. Electrical and Timing Information (continued)

4.11.12.4 Possible $\triangle VCMTX$ and $\triangle VOD$ Distortions of the Single-ended HS Signals

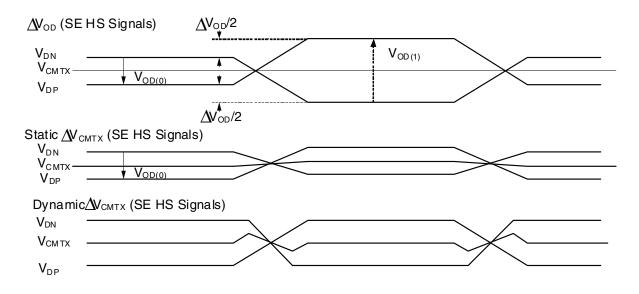


Figure 73. Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

4.11.12.5 MIPI D-PHY Switching Characteristics

Symbol	Parameters	Test Conditions	MIN	ТҮР	MAX	Unit
	HS Line D	rivers AC Specifications	I	1		
_	Maximum serial data rate (forward direction)	On DATAP/N outputs. 80 Ω <= RL <= 125 Ω	80	_	1000	Mbps
F _{DDRCLK}	DDR CLK frequency	On DATAP/N outputs.	40	—	500	MHz
P _{DDRCLK}	DDR CLK period	80 Ω<= RL< = 125 Ω	2	—	25	ns
t _{CDC}	DDR CLK duty cycle	$t_{CDC} = t_{CPH} / P_{DDRCLK}$	—	50	—	%
t _{CPH}	DDR CLK high time		—	1	—	UI
t _{CPL}	DDR CLK low time		—	1	—	UI
_	DDR CLK / DATA Jitter		—	75	—	ps pk–pk
t _{SKEW[PN]}	Intra-Pair (Pulse) skew			0.075		UI
t _{SKEW[TX]}	Data to Clock Skew		0.350		0.650	UI
t _{SETUP[RX]}	Data to Clock Receiver Setup time		0.15			UI
t _{HOLD[RX]}	Clock to Data Receiver Hold time		0.15			UI
t _r	Differential output signal rise time	20% to 80%, RL = 50 Ω	150		0.3UI	ps
t _f	Differential output signal fall time	20% to 80%, RL = 50 Ω	150		0.3UI	ps
ΔV _{CMTX(HF)}	Common level variation above 450 MHz	80 Ω<= RL< = 125 Ω			15	mV _{rms}

Table 76. Electrical and Timing Information

Parameter	Symbol	Min	Мах	Unit	Comment
MLBSIG/MLBDAT output high impedance from MLBCLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLBCLK low	t _{mdzh}	2	—	ns	_
MLBSIG/MLBDAT output valid from transition of MLBCLK (low to high)	t _{delay}	_	7	ns	_

Table 81. MLB 1024 Fs Timing Parameters (continued)

The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLBCLK.

² MLBCLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Table 82 lists the MediaLB 6-pin interface timing characteristics, and Figure 87 shows the MLB 6-pin delay, setup, and hold times.

Parameter	Symbol	Min	Max	Unit	Comment
Cycle-to-cycle system jitter	t _{jitter}	—	600	ps	—
Transmitter MLBSP/N (MLBDP/N) output valid from transition of MLBCP/N (low-to-high) ¹	t _{delay}	0.6	1.3	ns	
Disable turnaround time from transition of MLBCP/N (low-to-high)	t _{phz}	0.6	3.5	ns	
Enable turnaround time from transition of MLBCP/N (low-to-high)	t _{plz}	0.6	5.6	ns	
MLBSP/N (MLBDP/N) valid to transition of MLBCP/N (low-to-high)	t _{su}	0.05	—	ns	
MLBSP/N (MLBDP/N) hold from transition of MLBCP/N (low-to-high) ²	t _{hd}	0.6			

Table 82. MLB 6-Pin Interface Timing Parameters

t_{delay}, t_{phz}, t_{plz}, t_{su}, and t_{hd} may also be referenced from a low-to-high transition of the recovered clock for 2:1 and 4:1 recovered-to-external clock ratios.

² The transmitting device must ensure valid data on MLBSP/N (MLBDP/N) for at least t_{hd(min)} following the rising edge of ML-BCP/N; receivers must latch MLBSP/N (MLBDP/N) data within t_{hd(min)} of the rising edge of MLBCP/N.

ID	Parameter	Min	Мах	Unit
SS39	S39 (Tx) CK high to STXD high impedance		15.0	ns
Synchronous External Clock Operation				
SS44	SRXD setup before (Tx) CK falling	10.0	_	ns
SS45	SRXD hold after (Tx) CK falling	2.0	—	ns
SS46	SRXD rise/fall time	—	6.0	ns

Table 89. SSI Transmitter Timing with External Clock (continued)

NOTE

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on Audiomux Pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
- For internal Frame Sync operation using external clock, the FS timing is same as that of Tx Data (for example, during AC97 mode of operation).

4.11.20.2.1 UART Transmitter

Figure 99 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 92 lists the UART RS-232 serial mode transmit timing characteristics.

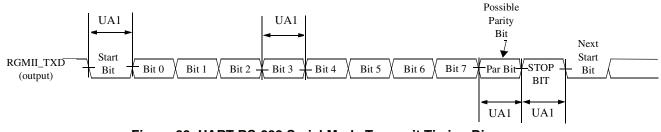


Figure 99. UART RS-232 Serial Mode Transmit Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	1/F _{baud_rate} 1 - T _{ref_clk} 2	1/F _{baud_rate} + T _{ref_clk}	—

Table 92. RS-232 Serial Mode Transmit Timing Parameters

¹ F_{baud_rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.11.20.2.2 UART Receiver

Figure 100 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 93 lists serial mode receive timing characteristics.

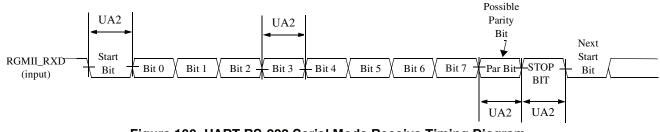


Figure 100. UART RS-232 Serial Mode Receive Timing Diagram

Table 93. RS-232 Serial Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² - 1/(16 x F _{baud_rate})	1/F _{baud_rate} + 1/(16 x F _{baud_rate})	—

¹ The UART receiver can tolerate 1/(16 x F_{baud_rate}) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x F_{baud_rate}).

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

6 Package Information and Contact Assignments

This section includes the contact assignment information and mechanical package drawing.

6.1 21x21 mm Package Information

6.1.1 Case 2240, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix

Figure 105 shows the top, bottom, and side views of the 21×21 mm BGA package.

Package Information and Contact Assignments

6.1.2 21 x 21 mm Supplies Contact Assignments and Functional Contact Assignments

Table 100 shows supplies contact assignments for the 21 x 21 mm package.

Table 100. 21 x 21	mm Supplies Contact	Assignments
--------------------	---------------------	-------------

Supply Rail Name	Ball(s) Position(s)	Remark
CSI_REXT	D4	
DRAM_VREF	AC2	
DSI_REXT	G4	
GND	A4, A8, A13, A25, B4, C1, C4, C6, C10, D3, D6, D8, E5, E6, E7, F5, F6, F7, F8, G3, G10, G19, H8, H12, H15, H18, J2, J8, J12, J15, J18, K8, K10, K12, K15, K18, L2, L5, L8, L10, L12, L15, L18, M8, M10, M12, M15, M18, N8, N10, N15, N18, P8, P10, P12, P15, P18, R8, R12, R15, R17, T8, T11, T12, T15, T17, T19, U8, U11, U12, U15, U17, U19, V8, V19, W3, W7, W8, W9, W10, W11, W12, W13, W15, W16, W17, W18, W19, Y5, Y24, AA7, AA10, AA13, AA16, AA19, AA22, AB3, AB24, AD4, AD7, AD10, AD13, AD16, AD19, AD22, AE1, AE25	
HDMI_REF	J1	
HDMI_VP	L7	
HDMI_VPH	M7	
NVCC_CSI	N7	Supply of the camera sensor interface
NVCC_DRAM	R18, T18, U18, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18	Supply of the DDR interface
NVCC_EIM	K19, L19, M19	Supply of the EIM interface
NVCC_ENET	R19	Supply of the ENET interface
NVCC_GPIO	P7	Supply of the GPIO interface
NVCC_JTAG	J7	Supply of the JTAG tap controller interface
NVCC_LCD	P19	Supply of the LCD interface
NVCC_LVDS2P5	V7	Supply of the LVDS display interface and DDR pre-drivers
NVCC_MIPI	К7	Supply of the MIPI interface
NVCC_NANDF	G15	Supply of the raw NAND Flash memories interface
NVCC_PLL_OUT	E8	
NVCC_RGMII	G18	Supply of the ENET interface
NVCC_SD1	G16	Supply of the SD card interface
NVCC_SD2	G17	Supply of the SD card interface
NVCC_SD3	G14	Supply of the SD card interface