

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M3Core Size32-Bit Single-CoreSpeed32MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternal
Core Size32-Bit Single-CoreSpeed32MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
Speed32MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
ConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I²S, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
PeripheralsBrown-out Detect/Reset, Cap Sense, DMA, I2S, POR, PWM, WDTNumber of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
Number of I/O37Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
Program Memory TypeFLASHEEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
EEPROM Size4K x 8RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
RAM Size16K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12b
Data ConvertersA/D 16x12b; D/A 2x12b
Oscillator Type Internal
Operating Temperature -40°C ~ 85°C (TA)
Mounting Type Surface Mount
Package / Case 48-LQFP
Supplier Device Package48-LQFP (7x7)
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151c6t6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 48.	I ² C characteristics	89
Table 49.	SCL frequency (f _{PCLK1} = 32 MHz, V _{DD} = VDD_I2C = 3.3 V)	90
Table 50.	SPI characteristics	
Table 51.	USB startup time	
Table 52.	USB DC electrical characteristics	
Table 53.	USB: full speed electrical characteristics	
Table 54.	ADC clock frequency	
Table 55.	ADC characteristics	
Table 56.	ADC accuracy.	97
Table 57.	Maximum source impedance R _{AIN} max	99
Table 58.	DAC characteristics	
Table 59.	Temperature sensor calibration values	02
Table 60.	Temperature sensor characteristics	02
Table 61.	Comparator 1 characteristics	03
Table 62.	Comparator 2 characteristics	04
Table 63.	LCD controller characteristics	05
Table 64.	LQPF100 14 x 14 mm, 100-pin low-profile quad flat package	
	mechanical data	07
Table 65.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data10	09
Table 66.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data 1	13
Table 67.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data1	16
Table 68.	UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array	
	package mechanical data	18
Table 69.	UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules	19
Table 70.	TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array	
	package mechanical data	21
Table 71.	TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules	22
Table 72.	Thermal characteristics	24
Table 73.	Ordering information scheme	26
Table 74.	Document revision history	27

2.1 Device overview

Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

Periph	STM32L15xCxxxA		xxxA	STM32L15xRxxxA			STM32L15xVxxxA			
Flash (Kbytes)		32	64	128	32	64	128	64	128	
Data EEPROM (Kb	oytes)		4							
RAM (Kbytes)		16	32	32	16	32	32	32	32	
General- purpose						6				
	Basic					2				
SPI						2				
Communication	l ² C					2				
interfaces	USART	3								
	USB	1								
GPIOs	37			51/50 ⁽¹⁾			83			
12-bit synchronize Number of channe	1 14 channels			1 20/19 channels ⁽¹⁾			1 24 channels			
12-bit DAC Number of channe	els	2 2								
LCD (STM32L152) COM x SEG	xxxA Only)	4x16			4x32/4x31 ⁽¹⁾ 8x28/8x27 ⁽¹⁾			4x44 8x40		
Comparator		2								
Capacitive sensing	g channels	13 20								
Max. CPU frequen	32 MHz									
Operating voltage	1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option									
Operating tempera	Ambient operating temperatures: –40 to +85 °C / –40 to + 105 °C Junction temperature: -40 to +110°C									
Packages		LQFP	48, UFQ	FPN48	LQFP64, TFBGA64			LQFP100, UFBGA100		

1. For TFBGA64 package (instead of PC3 pin there is V_{REF^+} pin).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See the application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

3.10.1 Temperature sensor

The temperature sensor T_{SENSE} generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode, see *Table 59: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode see *Table 17: Embedded internal reference voltage*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channels' independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- external triggers for conversion
- input reference voltage V_{REF+}

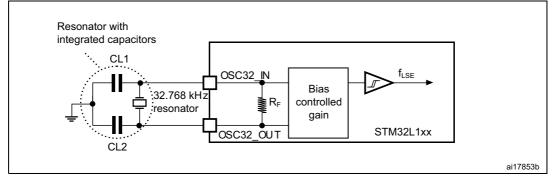
Eight DAC trigger inputs are used in the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

Figure 5. STM32L15xRxxxA TFBGA64 ballout									
	1	2	3	4	5	6	7	8	
A	, PC14-, 0\\$C32_lN	, PC13-, WKUP2	(PB9)	, PB4)	(PB3)	(PA15)	(PA14)	(PA13)	
В	/PC15-\ O\$C32_OUT	- (VLCD)	(PB8)	BOOTO	(PD2)	(PC11)	(PC10)	(PA12)	
С	, ∕₽́ĤÒ`, OSC_IN;	Vss_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)	
D	OSC_OUT	'V _{DD_4} '	(PB6)	VSS_3	VSS_2	,V _{SS_1} ,	(PA8)	(PC9)	
E	(NRST)	(PC1)	(PC0)	'V _{DD_3} '	'V _{DD_2} '	,V _{DD_1} ,	(PC7)	(PC8)	
F	VSSA	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)	
G	VREF+	PAO-WKUP1	(PA3)	(PA6)	// PB1)	(PB2)	(PB10)	(PB13)	
н	VDDA;	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	// ((PB11)	(PB12)	
								Al1609	

Figure 5. STM32L15xRxxxA TFBGA64 ballout

1. This figure shows the package top view.

		Pins	;						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-	
83	54	В5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31 /LCD_SEG43/ LCD_COM7	-	
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-	
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-	
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-	
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-	
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/ TIM9_CH2	-	
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/ LCD_SEG7/JTDO	COMP2_INM	
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8 /NJTRST	COMP2_INP	
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP	
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	_	
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN	
94	60	B4	A4	44	BOOT0	Ι	В	BOOT0	-	-	
95	61	В3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/ TIM10_CH1	-	
96	62	A3	В3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/ TIM11_CH1	-	
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36 / TIM10_CH1	-	


Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)	

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
ACC _{HSI} ⁽²⁾		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V_{DDA} = 3.0 V, T _A = 0 to 55 °C		-	1.5	%
		he $V_{DDA} = 3.0 \text{ V}, \text{ T}_{A} = -10 \text{ to } 70 ^{\circ}\text{C}$		-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32. LSI oscillator	r characteristics
--------------------------	-------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift 0°C ≤T _A ≤85°C	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

6.3.9 Memory characteristics

The characteristics are given at T_{A} = -40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

RAM memory

Table	35.	RAM	and	hardware	reaisters
10010	•••		ana	naranaro	regiotore

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
	t _{prog} Programming / erasing time for byte / word / double word / half- page	Erasing	-	3.28	3.94	
t _{prog}		Programming	-	3.28	3.94	ms
	Average current during whole program/erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	300	-	μA
I _{DD}	Maximum current (peak) during program/erase operation	Γ _A = 25° C, V _{DD} = 3.0 V	-	1.5	2.5	mA

Table 36. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 37. Flash memory, data EEPROM endurance and data retention

Symbol	Parameter	Conditions	Value			Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Мах	onit
NCYC ⁽²⁾	Cycling (erase / write) Program memory	$T_A = -40^{\circ}C$ to	10	-	-	kovolos
NOTO: 7	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	kcycles
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	TRET = +85 °C	30	-	-	
t _{RET} ⁽²⁾	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	TRET - +05 C	30	-	-	voare
Dat	Data retention (program memory) after 10 kcycles at T _A = 105 °C	TRET = +105 °C	10	-	-	years
	Data retention (EEPROM data memory) after 300 kcycles at T_A = 105 °C	III.ET = 1103 C	10	_	-	

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

DocID024330 Rev 4

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 45*, respectively.

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kHz
00	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400	KIIZ
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ns
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625	115
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	MHz
01	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1	
01	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ns
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	250	
	F _{max(IO)out}	F _{max(IO)out} Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	- MHz
10			C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2	
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	ns
	E	Maximum fraguanay ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz
11	F _{max(IO)out}	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	8	
	t _{f(IO)out}	Output rise and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5	
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns

Table 45. I/O AC characteristi

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

6.3.16 Communication interfaces

I²C interface characteristics

The STM32L151x6/8/B-A and STM32L152x6/8/B-A product line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 48*. Refer also to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standaı I ² C ⁽	d mode 1)(2)	Fast mod	Unit		
		Min	Max	Min	Max		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns	

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above $t_{SP(max)}$.

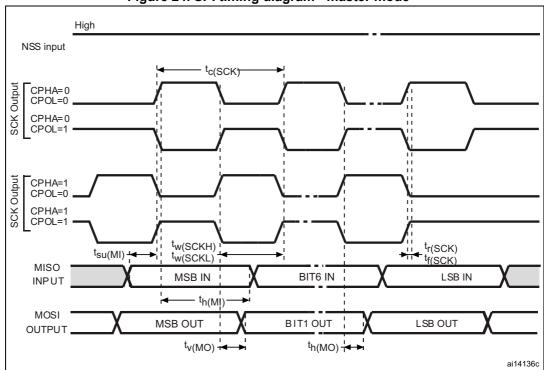


Figure 24. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

USB characteristics

The USB interface is USB-IF certified (full speed).

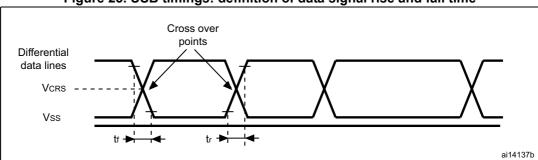
Table 51. USB startup time

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit	
Input leve	ls					
V_{DD}	USB operating voltage ⁽²⁾	-	3.0	3.6	V	
$V_{DI}^{(3)}$	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-		
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V	
$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	2.0		
Output le	vels					
$V_{OL}^{(4)}$	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	v	
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}^{(5)}$	2.8	3.6		

Table 52. USB DC electrical characteristics


1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Guaranteed by test in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time

Table 53. USB: full speed electrical characteristics

	Driver characteristics ⁽¹⁾						
Symbol	Parameter	Conditions	Min	Max	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V		

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification section 7 (version 2.0).

Symbol	Parameter	Conditions	Min	, Тур	Мах	Unit	
		Direct channels 2.4 V ≤V _{DDA} ≤3.6 V	0.25	-	-		
		Multiplexed channels 2.4 V ≤V _{DDA} ≤3.6 V	0.56	-	-		
t _S	Sampling time ⁽⁵⁾	Direct channels 1.8 V ≤V _{DDA} ⊴2.4 V	0.56	-	-	μs	
		Multiplexed channels 1.8 V ≤V _{DDA} ≤2.4 V	1	-	-		
		-	4	-	384	1/f _{ADC}	
		f _{ADC} = 16 MHz	1	-	24.75	μs	
t _{CONV}	Total conversion time (including sampling time)	-	4 to 384 (sampling phase) +12 (successive approximation)			1/f _{ADC}	
C	Internal sample and hold	Direct channels	-	16	-	pF	
C _{ADC}	capacitor	Multiplexed channels	-	10	-	μ	
f	External trigger frequency	12-bit conversions	-	-	Tconv+1	1/f _{ADC}	
f _{TRIG}	Regular sequencer	6/8/10-bit conversions	-	-	Tconv	1/f _{ADC}	
f	External trigger frequency	12-bit conversions	-	-	Tconv+2	1/f _{ADC}	
f _{TRIG}	Injected sequencer	6/8/10-bit conversions	-	-	Tconv+1	1/f _{ADC}	
R _{AIN}	Signal source impedance ⁽⁵⁾	-	-	-	50	кΩ	
t _{lat}	Injection trigger conversion	f _{ADC} = 16 MHz	219	-	281	ns	
	latency	-	3.5	-	4.5	1/f _{ADC}	
4	Regular trigger conversion	f _{ADC} = 16 MHz	156	-	219	ns	
t _{latr}	latency	-	2.5	-	3.5	1/f _{ADC}	
t _{STAB}	Power-up time	-	-	-	3.5	μs	

Table 55. ADC characteristics (continued)

1. The V_{REF+} input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage reference).

2. The current consumption through $\mathsf{V}_{\mathsf{REF}}$ is composed of two parameters:

- one constant (max 300 µA)

- one variable (max 400 μ A), only during sampling time + 2 first conversion pulses.

So, peak consumption is 300+400 = 700 μA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 μA at 1Msps

3. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pin descriptions for further details.

4. V_{SSA} or V_{REF-} must be tied to ground.

5. See Table 57: Maximum source impedance RAIN max for $\mathsf{R}_{\mathsf{AIN}}$ limitations

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-		1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must V _{DDA}	always be below	1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-			V_{SSA}		V
(4)	Current consumption on	No load, mid	dle code (0x800)	-	130	220	μA
I _{DDVREF+} (1)	V _{REF+} supply V _{REF+} = 3.3 V	No load, wor	st code (0x000)	-	220	350	μA
(1)	Current consumption on	No load, mid	ldle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, wor	st code (0xF1C)	-	320	520	μA
D	Resistive load	DAC output	Connected to V_{SSA}	5	-	-	kΩ
R _L	Resistive load	buffer ON	Connected to V _{DDA}	25	-	-	K52
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output buffer OFF		12	16	20	kΩ
V	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V
V _{DAC_OUT}	output	DAC output	buffer OFF	0.5	-	V _{REF+} 1LSB	mV
DNL ⁽¹⁾	Differential non linearity ⁽²⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	1.5	3	
Ditt		No R_L , $C_L \le DAC$ output		-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF, F}$ DAC output	-	-	2	4	
	Integral nor linearity ·	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	2	4	LSB
· · (1)	Offset error at code 0x800 ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	±10	±25	
Offset ⁽¹⁾		No R _L , C _L ≤50 pF DAC output buffer OFF		-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R _L , C _L \leq DAC output		-	±1.5	±5	

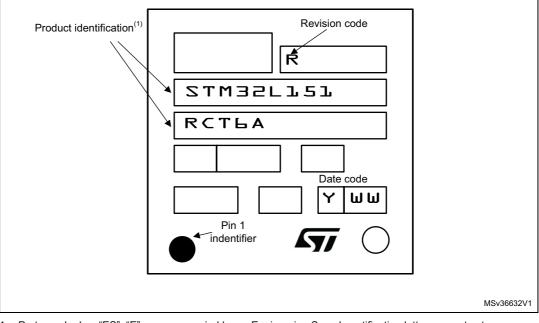
Table	58.	DAC	characteristics
TUDIC	vv .	DAO	onunuotoristios

6.3.20 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit		
V _{DDA}	Analog supply voltage	-	1.65		3.6	V		
R _{400K}	R _{400K} value	-	-	400	-	kΩ		
R _{10K}	R _{10K} value	-	-	10	-			
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V		
t _{START}	Comparator startup time	-	-	7	10	μs		
td	Propagation delay ⁽²⁾	-	-	3	10			
Voffset	Comparator offset	-	-	±3	±10	mV		
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 ° C$	0	1.5	10	mV/1000 h		
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA		

Table 61. Comparator 1 characteristics

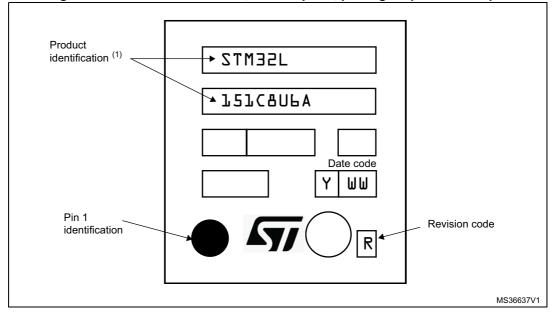
1. Guaranteed by characterization results.

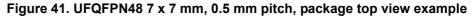

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.


Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

TFBGA64 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

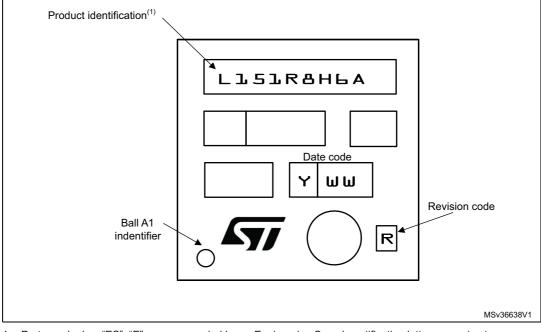


Figure 47. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes		
Date	Revision	ChangesUpdated Section 7: Package information structure: Paragraph titlesand paragraph heading level.Updated Section 7: Package information for all package devicemarkings, adding text for device orientation versus pin 1/ ball A1identifier.Updated Section 7: Package information for all package devicemarkings, adding text for device orientation versus pin 1/ ball A1identifier.Updated Figure 32: LQFP100 14 x 14 mm, 100-pin package topview example removing gate mark.Updated Table 65: LQFP64 10 x 10 mm, 64-pin low-profile quad flatpackage mechanical data.Updated Section 7.5: UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thinfine-pitch ball grid array package information adding Table 69:UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thinfine-pitch ball grid array package recommended PCB designrules and Figure 43: UFBGA100 7 x 7 mm, 0.5 mm pitch, thin fine-pitch ball grid array package recommended footprint.Updated Section 7.6: TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array package recommended footprint.Updated Table 17: Embedded internal reference voltagetemperature coefficient at 100ppm/°C and table note 3: "guaranteedby design" changed by "guaranteed by characterization results".Updated Table 62: Comparator 2 characteristics new maximumthreshold volt		

