

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151c6u6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Low-power modes

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply:

- In Range 1 (V_{DD} range limited to 1.71-3.6 V), the CPU runs at up to 32 MHz (refer to Table 18 for consumption).
- In Range 2 (full V_{DD} range), the CPU runs at up to 16 MHz (refer to *Table 18* for consumption)
- In Range 3 (full V_{DD} range), the CPU runs at up to 4 MHz (generated only with the multispeed internal RC oscillator clock source). Refer to *Table 18* for consumption.

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Sleep mode power consumption: refer to Table 20.

Low-power Run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the minimum clock (less than 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In the low-power Run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power Run mode consumption: refer to Table 21.

• Low-power Sleep mode

This mode is achieved by entering the Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In the low-power Sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.

Low-power Sleep mode consumption: refer to *Table 22*.

• Stop mode with RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.

• Stop mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI

DocID024330 Rev 4

line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

Stop mode consumption: refer to *Table 23*.

• Standby mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• **Standby** mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Standby mode consumption: refer to *Table 24*.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode.

	Functionalitie	Functionalities depending on the operating power supply range									
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation							
V _{DD} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance							
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance							
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance							

Table 3. Functionalities depending on the operating power supply range

			Low-	Low-		Stop	5	Standby	
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability	
DAC	Y	Y	Y	Y	Y	-	-	-	
Temperature sensor	Y	Y	Y	Y	Y	-	-	-	
Comparators	Y	Y	Y	Y	Y	Y	-	-	
16-bit Timers	Y	Y	Y	Y	-	-	-	-	
IWDG	Y	Y	Y	Y	Y	Y	Y	Y	
WWDG	Y	Y	Y	Y	-	-	-	-	
Touch sensing	Y	-	-	-	-	-	-	-	
Systick Timer	Y	Y	Y	Y	-	-	-	-	
GPIOs	Y	Y	Y	Y	Y	Y	-	3 pins	
Wakeup time to Run mode	0 µs	0.4 µs	3 µs	46 µs		< 8 µs		58 µs	
						l3 μΑ (No) V _{DD} =1.8 V		27 μΑ (No) V _{DD} =1.8 V	
Consumption	Down to	Down to	Down to	Down to		3 µA (with) V _{DD} =1.8 V		0.87 μA (with RTC) V _{DD} =1.8 V	
V _{DD} =1.8V to 3.6V (Typ)	185 µA/MHz (from Flash)	36.9 µA/MHz (from Flash)	10.9 µA	5.5 µA		l4 μΑ (No) V _{DD} =3.0 V		0.28 μA (No RTC) V _{DD} =3.0 V	
						8 µA (with) V _{DD} =3.0 V		1 μΑ (with) V _{DD} =3.0 V	

Table 5. Working mode-dependent functionalities (fro	rom Run/active down to standby) (continued)
--	---

1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.

3.2 ARM[®] Cortex[®]-M3 core with MPU

The ARM[®] Cortex[®]-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.

Owing to its embedded ARM core, the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices are compatible with all ARM tools and software.

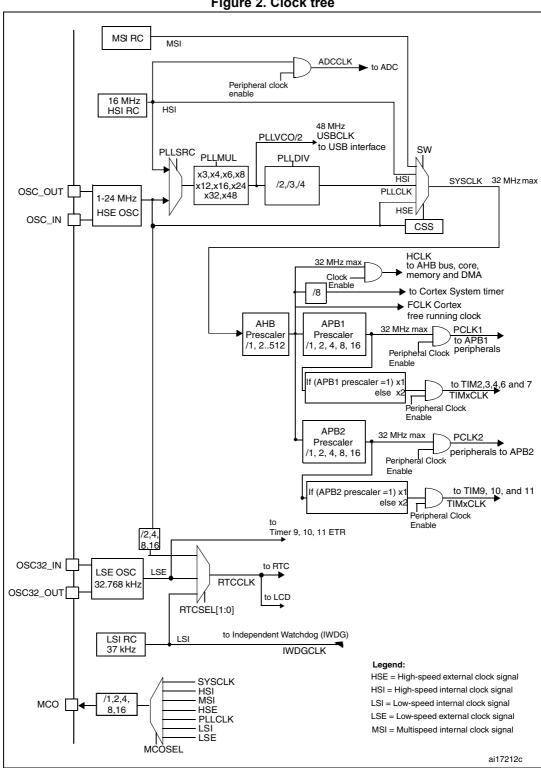


Figure 2. Clock tree

3.15.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit down-counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16 Communication interfaces

3.16.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.16.2 Universal synchronous/asynchronous receiver transmitter (USART)

All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. They support IrDA SIR ENDEC and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

3.16.3 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

3.16.4 Universal serial bus (USB)

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices embed a USB device peripheral compatible with the USB full speed 12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

				1 11/32		14 31	INISZL	152X0/0/D-A	x6/8/B-A pin definitions (continue						
	1	Pins	;	1					Pins functio	ns					
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions					
51	33	H8	L12	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/ LCD_SEG12/ TIM10_CH1	ADC_IN18/ COMP1_INP /VLCDRAIL2					
52	34	G8	K12	26	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS/ LCD_SEG13/TIM9_CH1	ADC_IN19/ COMP1_INP					
53	35	F8	K11	27	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS/ LCD_SEG14/TIM9_CH2	ADC_IN20/ COMP1_INP					
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/ LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN					
55	-	-	K9	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-					
56	-	-	K8	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-					
57	-	-	J12	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-					
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-					
59	-	-	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-					
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-					
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-					
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-					
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-					
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-					
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-					
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-					

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

DocID024330 Rev 4

		Pins	;						Pins functio	ns	
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
67	41	D7	D11	29	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-	
68	42	C7	D10	30	PA9	I/O	FT	PA9	USART1_TX/ LCD_COM1	-	
69	43	C6	C12	31	PA10	I/O	FT	PA10	USART1_RX/ LCD_COM2	-	
70	44	C8	B12	32	PA11	I/O	FT	PA11	USART1_CTS/ SPI1_MISO	USB_DM	
71	45	B8	A12	33	PA12	I/O	FT	PA12	USART1_RTS/ SPI1_MOSI	USB_DP	
72	46	A8	A11	34	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	-	
73	-	-	C11	-	PH2	I/O	FT	PH2	-	-	
74	47	D5	F11	35	V _{SS_2}	S	-	V _{SS_2}	-	-	
75	48	E5	G11	36	V _{DD_2}	S	-	V _{DD_2}	-	-	
76	49	A7	A10	37	PA14	I/O	FT	JTCK- SWCLK	JCTK-SWCLK	-	
77	50	A6	A9	38	PA15	I/O	FT	JTDI	TIM2_CH1_ETR/PA15/ SPI1_NSS/ LCD_SEG17	-	
78	51	B7	B11	-	PC10	I/O	FT	PC10	USART3_TX/ LCD_SEG28/ LCD_SEG40/ LCD_COM4	-	
79	52	B6	C10	-	PC11	I/O	FT	PC11	USART3_RX/ LCD_SEG29/ LCD_SEG41/ LCD_COM5	-	
80	53	C5	B10	-	PC12	I/O	FT	PC12	USART3_CK/ LCD_SEG30/ LCD_SEG42/ LCD_COM6	-	
81	-	-	C9	-	PD0	I/O	FT	PD0	SPI2_NSS/TIM9_CH1	-	

		Pins	;						Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-
83	54	В5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31 /LCD_SEG43/ LCD_COM7	-
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/ TIM9_CH2	-
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/ LCD_SEG7/JTDO	COMP2_INM
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8 /NJTRST	COMP2_INP
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	_
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN
94	60	B4	A4	44	BOOT0	Ι	В	BOOT0	-	-
95	61	В3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/ TIM10_CH1	-
96	62	A3	В3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/ TIM11_CH1	-
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36 / TIM10_CH1	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)	

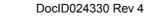
5

						Digital alterna	te functior	n number							
Destaura	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Port name		Alternate function													
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MISO	-	-	-	-	[SEG8]	-	-	-	EVENTOL
PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1_MOSI	-	-	-	-	[SEG9]	-	-	-	EVENTOL
PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	-	-	-	-	-	EVENTO
PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	-	-	-	-	EVENTO
PB8	-	-	TIM4_CH3	TIM10_CH1*	I2C1_SCL	-	-	-	-	-	SEG16	-	-	-	EVENTOU
PB9	-	-	TIM4_CH4	TIM11_CH1*	I2C1_SDA	-	-	-	-	-	[COM3]	-	-	-	EVENTOL
PB10	-	TIM2_CH3	-	-	I2C2_SCL	-	-	USART3_TX	-	-	SEG10	-	-	-	EVENTO
PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	SEG11	-	-	-	EVENTO
PB12	-	-	-	TIM10_CH1	I2C2_ SMBA	SPI2_NSS	-	USART3_CK	-	-	SEG12	-	-	-	EVENTOL
PB13	-	-	-	TIM9_CH1	-	SPI2_SCK	-	USART3_CTS	-	-	SEG13	-	-	-	EVENTOU
PB14	-	-	-	TIM9_CH2	-	SPI2_MISO	-	USART3_RTS	-	-	SEG14	-	-	-	EVENTO
PB15	-	-	-	TIM11_CH1	-	SPI2_MOSI	-	-	-	-	SEG15	-	-	-	EVENTOU
PC0	-	-	-	-	-	-	-	-	-	-	SEG18	-	-	TIMx_IC1	EVENTO
PC1	-	-	-	-	-	-	-	-	-	-	SEG19	-	-	TIMx_IC2	EVENTO
PC2	-	-	-	-	-	-	-	-	-	-	SEG20	-	-	TIMx_IC3	EVENTOL
PC3	-	-	-	-	-	-	-	-	-	-	SEG21	-	-	TIMx_IC4	EVENTO
PC4	-	-	-	-	-	-	-	-	-	-	SEG22	-	-	TIMx_IC1	EVENTO
PC5	-	-	-	-	-	-	-	-	-	-	SEG23	-	-	TIMx_IC2	EVENTO
PC6	-	-	TIM3_CH1	-	-	-	-	-	-	-	SEG24	-	-	TIMx_IC3	EVENTOL
PC7	-	-	TIM3_CH2	-	-	-	-	-	-	-	SEG25	-	-	TIMx_IC4	EVENTO
PC8	-	-	TIM3_CH3	-	-	-	-	-	-	-	SEG26	-	-	TIMx_IC1	EVENTO
PC9	-	-	TIM3_CH4	-	-	-	-	-	-	-	SEG27	-	-	TIMx_IC2	EVENTO

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	50	155	
			V _{CORE} =1.2 V	2 MHz	78.5	235	
			VOS[1:0] = 11	4 MHz	140	370 ⁽³⁾	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	165	375	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	310	530	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	590	1000	
	Quanta		Range 1,	8 MHz	350	615	
	Supply current in		V _{CORE} =1.8 V	16 MHz	680	1200	
	Sleep		VOS[1:0] = 01	32 MHz	1600	2350	μA
	mode, Flash OFF	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	640	970	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2350	
		MSI clock, 65 kHz	Range 3,	65 kHz	19	60	
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	33	90	
I _{DD}		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	145	210	
(Sleep)			Range 3,	1 MHz	60.5	145	
			V_{CORE} =1.2 V	2 MHz	89.5	225	
			VOS[1:0] = 11	4 MHz	150	360	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	180	370	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	320	490	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	605	895	
	Supply		Range 1,	8 MHz	380	565	
	current in		V _{CORE} =1.8 V	16 MHz	695	1070	
	Sleep		VOS[1:0] = 01	32 MHz	1600	2200	μA
	mode, Flash ON	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	650	970	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2320	
		MSI clock, 65 kHz	Range 3,	65 kHz	29.5	65	
		MSI clock, 524 kHz	V _{CORE} =1.2V	524 kHz	44	80	
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	155	220	

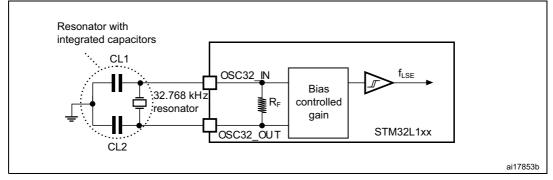
Table 20. Current consumption in Sleep mode

1. Guaranteed by characterization results, unless otherwise specified.


2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

3. Guaranteed by test in production.

Symbol	Parameter	C		Typ ⁽¹⁾	Max (1)(2)	Unit	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.13	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.38	4	
			LCD OFF	T _A = 55°C	1.70	(1)(2) U - 4 6 10 23 6 7 12 27 10 11 16 44 - - -	
				T _A = 85°C	3.30	10	
		RTC clocked by LSI,		T _A = 105°C	7.80	23	
		regulator in LP mode, HSI		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	6	
		and HSE OFF (no independent	LCD ON (static	T _A = 55°C	1.80	7	
		watchdog)	duty) ⁽³⁾	T _A = 85°C	3.45	12	
				T _A = 105°C	8.02	27	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.80	10	
			LCD ON (1/8 duty) ⁽⁴⁾	T _A = 55°C	4.30	11	-
				T _A = 85°C	6.10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
				T _A = 105°C	10.8	44	
	Supply ourront in	LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
I _{DD (Stop}	Supply current in Stop mode with		LCD OFF	T _A = 55°C	1.90	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A
with RTC)	RTC enabled			T _A = 85°C	3.65		
				T _A = 105°C	8.25	-	
		RTC clocked by LSE		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.60	-	
		external clock (32.768 kHz), regulator in LP	LCD ON (static duty) ⁽³⁾	T _A = 55°C	2.05	-	
		mode, HSI and HSE OFF (no independent		T _A = 85°C	3.75	-	
		watchdog)		T _A = 105°C	8.40	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.90	-	
			LCD ON	T _A = 55°C	4.55	-	1
		(1/8) duty) ⁽⁴⁾ $T_A = 85^{\circ}C$	T _A = 85°C	6.35	(1)(2) U - 4 6 10 23 6 7 12 27 10 11 16 44 - - - - - - - - - - - - -	1	
				T _A = 105°C	11.10	-	-
				T _A = -40°C to 25°C V _{DD} = 1.8 V	1.23	-	
		RTC clocked by LSE (no independent watchdog) ⁽⁵⁾	LCD OFF	T _A = -40°C to 25°C V _{DD} = 3.0 V	1.50	6 10 23 6 7 12 27 10 11 16 44 - - μΑ - - - - - - - - - - -	
		macpendent watchdog)		$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6 \text{ V}$	1.75	-	


Table 23. Typical and maximum current consumptions in Stop mode

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V_{DDA} = 3.0 V, T_A = 0 to 55 °C		-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C		-	2	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_A = -10 to 85 °C		-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C		-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32. LSI oscillator	r characteristics
--------------------------	-------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift 0°C ≤T _A ≤85°C	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

6.3.9 Memory characteristics

The characteristics are given at T_{A} = -40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

RAM memory

Table	35.	RAM	and	hardware	reaisters
10010	•••		ana	naranaro	regiotore

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
t _{prog} Programming / erasing time fo byte / word / double word / hal page	Programming / erasing time for	Erasing	-	3.28	3.94	
	•	Programming	-	3.28	3.94	ms
	Average current during whole program/erase operation		-	300	-	μA
I _{DD}	Maximum current (peak) during program/erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

Table 36. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 37. Flash memory, data EEPROM endurance and data retention

Symbol	Parameter	Conditions	\ \	/alue		Unit	
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Мах	Unit	
NCYC ⁽²⁾	Cycling (erase / write) Program memory	T _A = -40°C to 105 °C	10	-	-		
INCTO: /	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	kcycles	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	TRET = +85 °C	30	-	-		
t _{RET} ⁽²⁾	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	TRET - +05 C	30	30 30	-		
'RET`	Data retention (program memory) after 10 kcycles at T _A = 105 °C	TRET = +105 °C	10	-	-	years	
	Data retention (EEPROM data memory) after 300 kcycles at T_A = 105 °C	III.ET = 1103 C	10	_	-		

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

DocID024330 Rev 4

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with the non-standard V_{OL}/V_{OH} specifications given in *Table 44*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 12*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾⁽²⁾	Output low level voltage for an I/O pin	I _{IO} = 8 mA	-	0.4	
V _{OH} ⁽³⁾⁽²⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 4 mA	-	0.45	v
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	1.65 V < V _{DD} < 2.7 V	V _{DD} -0.45	-	v
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = 15 mA	-	1.3	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	

Table 44. Output voltage characteristics

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. Guaranteed by test in production.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results.

6.3.16 Communication interfaces

I²C interface characteristics

The STM32L151x6/8/B-A and STM32L152x6/8/B-A product line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 48*. Refer also to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾ Fast mode I ² C ⁽¹⁾⁽²⁾		Unit		
		Min	Мах	Min	Мах	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above $t_{SP(max)}$.

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤ V _{REF+} ≤ 3.6 V f _{ADC} = 8 MHz, R _{AIN} = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	59	62	-	
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	1
ENOB	Effective number of bits	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ $f_{ADC} = 8 MHz \text{ or } 4 MHz,$	59	62	-	
SNR	Signal-to-noise ratio	— R _{AIN} = 50 Ω _ T _A = -40 to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1.5	3.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	3.5	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2.5	3.5	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	1
EL	Integral linearity error		-	2	3	

Table 56. ADC accuracy⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

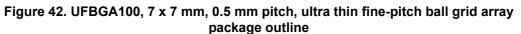
 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

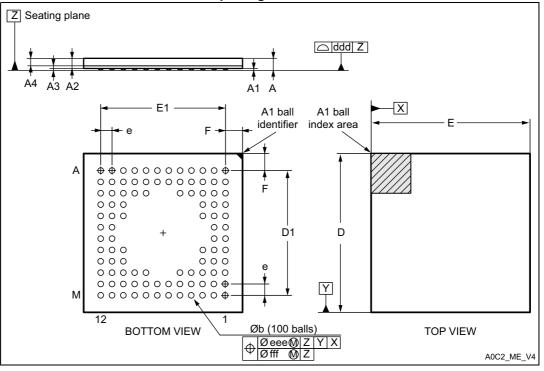
3. Guaranteed by characterization results.

6.3.20 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage - 1.65 3.6		V				
R _{400K}	R _{400K} value	-	-	400	-	kO	
R _{10K}	R _{10K} value	-	-	10	-	- kΩ	
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	A V	
t _{START}	Comparator startup time	-	-	7	10	-	
td	Propagation delay ⁽²⁾	-	-	3	10	μs	
Voffset	Comparator offset	-	-	±3	±10	mV	
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 ° C$	0	1.5	10	mV/1000 h	
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA	

Table 61. Comparator 1 characteristics


1. Guaranteed by characterization results.


2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

7.5 UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information

1. Drawing is not to scale.

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
package mechanical data

Cumhal	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	0.6	-	-	0.0236	
A1	0.05	0.08	0.11	0.002	0.0031	0.0043	
A2	0.4	0.45	0.5	0.0157	0.0177	0.0197	
A3	0.08	0.13	0.18	0.0031	0.0051	0.0071	
A4	0.27	0.32	0.37	0.0106	0.0126	0.0146	
b	0.2	0.25	0.3	0.0079	0.0098	0.0118	
D	6.95	7	7.05	0.2736	0.2756	0.2776	
D1	5.45	5.5	5.55	0.2146	0.2165	0.2185	
Е	6.95	7	7.05	0.2736	0.2756	0.2776	
E1	5.45	5.5	5.55	0.2146	0.2165	0.2185	
е	-	0.5	-	-	0.0197	-	

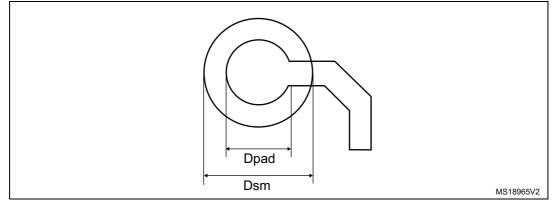


Table 70. TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array	
package mechanical data (continued)	

millimeters		inches ⁽¹⁾				
Symbol	Min	Тур	Мах	Min	Тур	Мах
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.15	-	-	0.0059
fff	-	-	0.05	-	-	0.002

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. TFBGA64, 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array package recommended footprint

Table 71. TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

