

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151cbt6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151x6/8/B-A and STM32L152x6/8/B-A ultra-low-power ARM[®] Cortex[®]-M3 based microcontrollers product line.

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A microcontroller family includes devices in 3 different package types: from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, Wired and wireless sensors, Video intercom
- Utility metering

This STM32L151x6/8/B-A and STM32L152x6/8/B-A datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The document "Getting started with STM32L1xxxx hardware development" AN3216 gives a hardware implementation overview.

Both documents are available from the STMicroelectronics website www.st.com.

For information on the ARM[®] Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the ARM website.

Figure 1 shows the general block diagram of the device family.

Caution: This datasheet does not apply to:

STM32L15xx6/8/B

covered by a separate datasheet.

2.1 Device overview

Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

Periph	eral	STM	32L15xC	xxxA	STM:	32L15xR	хххА	STM32L1	5xVxxxA			
Flash (Kbytes)	Iash (Kbytes) 32 64 128 32 64 128 64						128					
Data EEPROM (Kb	oytes)) 4										
RAM (Kbytes)		16	32	32	16	32	32	32	32			
Timers	General- purpose		6									
	Basic	2										
	SPI					2						
Communication	l ² C					2						
interfaces	USART					3						
	USB	1										
GPIOs		37			51/50 ⁽¹⁾			83				
12-bit synchronize Number of channe	ed ADC els	11114 channels20/19 channels24 channels					annels					
12-bit DAC Number of channe	els	2 2										
LCD (STM32L152x COM x SEG	xxxA Only)		4x16		4) 8)	(32/4x31 ⁽ (28/8x27 ⁽	(1) (1)	4x 8x	44 40			
Comparator						2						
Capacitive sensing	g channels		13				20)				
Max. CPU frequen	су	32 MHz										
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option										
Operating tempera	atures	Ambient operating temperatures: -40 to +85 °C / -40 to + 105 °C Junction temperature: -40 to +110°C					05 °C					
Packages		LQFP	48, UFQI	FPN48	LQFP64, TFBGA64			LQFP100, UFBGA100				

1. For TFBGA64 package (instead of PC3 pin there is V_{REF^+} pin).

3 Functional overview

Figure 1 shows the block diagram.

1. AF = alternate function on I/O port pin.

			Low-	Low-		Stop	Standby		
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability	
DAC	Y	Y	Y	Y	Y	-	-	-	
Temperature sensor	Y	Y	Y	Y	Y	-	-	-	
Comparators	Y	Y	Y	Y	Y	Y	-	-	
16-bit Timers	Y	Y	Y	Y	-	-	-	-	
IWDG	Y	Y	Y	Y	Y	Y	Y	Y	
WWDG	Y	Y	Y	Y	-	-	-	-	
Touch sensing	Y	-	-	-	-	-	-	-	
Systick Timer	Y	Y	Y	Y	-	-	-	-	
GPIOs	Y	Y	Y	Y	Y	Y	-	3 pins	
Wakeup time to Run mode	0 µs	0.4 µs	3 µs	46 µs		< 8 µs	58 µs		
					0.4 RTC	43 μΑ (No) V _{DD} =1.8 V	0.2 RTC	0.27 μA (No RTC) V _{DD} =1.8 V	
Consumption	Down to	Down to	Down to	Down to	1.13 μA (with RTC) V _{DD} =1.8 V		0.87 µA (with RTC) V _{DD} =1.8 V		
(Typ)	(from Flash)	(from Flash)	10.9 µA	5.5 µA	0.4 RTC	4 μΑ (No) V _{DD} =3.0 V	0.2 RTC	0.28 μA (No RTC) V _{DD} =3.0 V	
					1.3 RTC	8 µA (with) V _{DD} =3.0 V	1.1 RTC	1 μΑ (with) V _{DD} =3.0 V	

Table 5. Working mode-dependent functionalities	(from Run/active down to standby) (continued)
---	---

1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.

3.2 ARM[®] Cortex[®]-M3 core with MPU

The ARM[®] Cortex[®]-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.

Owing to its embedded ARM core, the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices are compatible with all ARM tools and software.

		Pins	;						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-	
83	54	B5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31 /LCD_SEG43/ LCD_COM7	-	
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-	
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-	
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-	
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-	
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/ TIM9_CH2	-	
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/ LCD_SEG7/JTDO	COMP2_INM	
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8 /NJTRST	COMP2_INP	
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP	
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	-	
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN	
94	60	B4	A4	44	BOOT0	I	В	BOOT0	-	-	
95	61	В3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/ TIM10_CH1	-	
96	62	A3	В3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/ TIM11_CH1	-	
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36 / TIM10_CH1	-	

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)
Tuble 5. Of moze to txolob A and Of moze to zxolob A pin deminions (continued)

48/129

			٦	Table 10. A	Iternate	function i	nput/ou	tput (contin	ued)						
	Digital alternate function number														
Port name	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Forthame		Alternate function													
-	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PC10	-	-	-	-	-	-	-	USART3_TX	-	-	COM4 / SEG28 / SEG40	-	-	TIMx_IC3	EVENTOL
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVENTOL
PC12	-	-	-	-	-	-	-	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVENTOL
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOU
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTO
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTO
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVENTO
PD1	-	-	-	-	-	SPI2_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTO
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31 / SEG43	-	-	TIMx_IC3	EVENTOL
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	-	-	-	-	TIMx_IC4	EVENTOL
PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS	-	-	-	-	-	TIMx_IC1	EVENTO
PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	-	TIMx_IC2	EVENTO
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	-	TIMx_IC3	EVENTO
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	-	-	-	-	TIMx_IC4	EVENTO
PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	-	TIMx_IC1	EVENTO
PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	-	TIMx_IC2	EVENTO

Pin descriptions

5 Memory mapping

The memory map is shown in the following figure.

DocID024330 Rev 4

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
M	Drown out report throughold O	Falling edge	1.67	1.7	1.74	
VBOR0	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
M	Drown out report throughold 4	Falling edge	1.87	1.93	1.97	
VBOR1	Brown-out reset threshold T	Rising edge	1.96	2.03	2.07	
M	Brown out report throughold 2	Falling edge	2.22	2.30	2.35	V
VBOR2	Brown-out reset threshold 2	Rising edge	2.31	2.41	2.44	V
M	Drawn aut react threaded 2	Falling edge	2.45	2.55	2.60	
VBOR3	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
M	Duraum aut man at them also let 4	Falling edge	2.68	2.8	2.85	
VBOR4	Brown-out reset threshold 4	Rising edge	2.78	2.9	2.95	
N	Programmable voltage detector	Falling edge	1.8	1.85	1.88	
VPVD0	threshold 0	Rising edge	1.88	1.94	1.99	
N	DVD threehold 1	Falling edge	1.98	2.04	2.09	
VPVD1	PVD Infestional I	Rising edge	2.08	2.14	2.18	
N	DVD threehold 2	Falling edge	2.20	2.24	2.28	
VPVD2	PVD (meshoid 2	Rising edge	2.28	2.34	2.38	
N	DVD throohold 2	Falling edge	2.39	2.44	2.48	V
VPVD3	PVD Infestion 3	Rising edge	2.47	2.54	2.58	V
M	D)/D throohold 4	Falling edge	2.57	2.64	2.69	
VPVD4	PVD Inteshold 4	Rising edge	2.68	2.74	2.79	
N	D)/D throohold 5	Falling edge	2.77	2.83	2.88	
VPVD5	PVD Inteshold 5	Rising edge	2.87	2.94	2.99	
N	D)/D throohold 6	Falling edge	2.97	3.05	3.09	
VPVD6	PVD Inteshold 6	Rising edge	3.08	3.15	3.20	
		BOR0 threshold	-	40	-	
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 15. Embedded reset and power control block characteristi	cs (continued)

1. Guaranteed by characterization.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in the following table are based on characterization results, unless otherwise specified.

Table 16	. Embedded	internal	reference	voltage	calibration values
----------	------------	----------	-----------	---------	--------------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C ±5 °C, V _{DDA} = 3 V ±10 mV	0x1FF8 0078-0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +110 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μA
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REF} value $^{(2)}$	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +110 °C	-	25	100	ppm/°C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾	ADC sampling time when reading the internal reference voltage	-	4	-	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current ⁽⁵⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	

Table 17. Embedded internal reference voltage

1. Guaranteed by test in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. Shortest sampling time can be determined in the application by multiple interactions.

5. To guarantee less than 1% VREF_OUT deviation.

Symbol	Parameter	Conditions			Max (1)(2)	Unit	
	Regulator in LP mode, HSI an OFF, independent watchdog enabled		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.80	2.2		
	Supply current in Stop mode (RTC disabled) HSE OFF (no independent watchdog)	$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.434	1	μА		
RT		Regulator in LP mode, LSI, HSI and HSE OFF (no independent watchdog)	T _A = 55°C	0.735	3	- p	
			T _A = 85°C	2.350	9		
			T _A = 105°C	6.84	22 ⁽⁶⁾		
	RMS (root mean	MSI = 4.2 MHz		2	-		
	square) supply current during wakeup time when exiting from Stop mode	MSI = 1.05 MHz	V _{DD} = 3.0 V	1.45	-		
from Stop)		MSI = 65 kHz ⁽⁷⁾	$T_A = -40^{\circ}C$ to 25°C	1.45	-	ΜA	

Table 23. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.

4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

6. Guaranteed by test in production.

When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time
of the wakeup period, the current is similar to the Run mode current.

Figure 17. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 14*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter Conditions I		Min	Тур	Max	Unit	
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz	
R _F	Feedback resistor	-	-	1.2	-	MΩ	
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF	
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA	
		V _{DD} = 1.8 V	-	450	-		
I _{DD (LSE)}	LSE oscillator current	V _{DD} = 3.0 V	-	600	- nA		
		V _{DD} = 3.6V	- 750		-		
9 _m	Oscillator transconductance	-	3	-	-	μA/V	
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	S	

Table JU. LOL USCHIAIOT CHATACLETISTICS (I) SE $=$ JZ.700 KHZ) ²

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input levels					
V _{DD}	USB operating voltage ⁽²⁾	-	3.0	3.6	V
V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽³⁾	Single ended receiver threshold -		1.3	2.0	
Output lev	vels				
V _{OL} ⁽⁴⁾	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 $k\Omega$ to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6	v

Table 52. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Guaranteed by test in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time

Table 53. USB: full speed electrical characteristics

	Driver ch	naracteristics ⁽¹⁾			
Symbol	Parameter	Conditions	Min	Max	Unit
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification section 7 (version 2.0).

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 55* are guaranteed by design.

Symbol	Parameter		Conditions	Min	Max	Unit	
				$V_{REF+} = V_{DDA}$		16	
		Voltage	2.4 V ≤V _{DDA} ≤3.6 V	$V_{REF+} < V_{DDA}$ $V_{REF+} > 2.4 V$		8	MHz
f _{ADC} ADC clock Rang	Range 1 & 2	V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V		0.480	4		
			1.8 V ⊴V _{DDA} ⊴2.4 V	$V_{REF+} = V_{DDA}$		8	
				$V_{REF+} < V_{DDA}$		4	
			Voltage Range 3			4	

Table 54. ADC clock frequency

Table 55. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Power supply	-	1.8	-	3.6	V	
V _{REF+}	Positive reference voltage	$2.4 \text{ V} \leq V_{DDA} \leq 3.6 \text{ V}$ V_{REF^+} must be below or equal to V_{DDA}	1.8 ⁽¹⁾	-	V _{DDA}	V	
V_{REF}	Negative reference voltage	-	-	- V _{SSA}		V	
I _{VDDA}	Current on the V_{DDA} input pin	-	-	1000	1450	μA	
ı (2)	Current on the V _{REF} input	Peak	-	400	700	μA	
VREF '	pin	Average	-	400	450	μA	
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V_{REF^+}	V	
	12 hit compling rate	Direct channels	-	-	1	Mono	
	12-bit sampling rate	Multiplexed channels	-	-	0.76	IVISPS	
	10 bit compling rate	Direct channels	-	-	1.07	Mono	
£	TO-bit sampling rate	Multiplexed channels	-	-	0.8	ivisps	
IS	9 hit compling rate	Direct channels	-	-	1.23	Mana	
	o-bit sampling rate	Multiplexed channels	-	-	0.89	ivisps	
	6 bit compling rate	Direct channels	-	-	1.45	Mone	
	o-bit sampling fate	Multiplexed channels	_	-	1	ivisps	

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	$-2.4 V \le V_{\text{REF}+} \le 3.6 V$	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio $V_{DDA} = V_{REF+}$ $f_{ADC} = 16 \text{ MHz}$. $R_{ADA} = 50 \Omega$	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	59	62	-	
SNR	Signal-to-noise ratio	T _A = -40 to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ENOB	Effective number of bits	1.8 V ≤ V _{DDA} ≤ 2.4 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratioVDDA = VREF+ fADC = 8 MHz or 4	$V_{DDA} = V_{REF+}$ $f_{ADC} = 8 MHz \text{ or } 4 MHz,$	59	62	-	dB
SNR	Signal-to-noise ratio	$-R_{AIN} = 50.02$ $T_{\Delta} = -40$ to 105 °C	60	62	-	
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1.5	3.5	LSB
EG	Gain error	$1.8 V \le V_{\text{REF}+} \le 2.4 V$	-	3.5	6	
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2.5	3.5	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	$1.8 \text{ V} \le \text{V}_{\text{REF+}} \le 2.4 \text{ V}$ face = 4 MHz Rain = 50 O	-	1.5	2.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2]
EL	Integral linearity error		-	2	3	

Table 56. ADC accuracy⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Figure 26. ADC accuracy characteristics

Figure 27. Typical connection diagram using the ADC

- 1. Refer to Table 57: Maximum source impedance RAIN max for the value of RAIN and Table 55: ADC characteristics for the value of CADC
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V	
V _{IN}	Comparator 2 input voltage range	-	0	-	V_{DDA}	V	
+.	Comparator startup timo	Fast mode	-	15	20		
START		Slow mode	-	20	25		
+	Propagation dolay ⁽²⁾ in alow mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	1.8	3.5		
^L d slow	Fropagation delay 7 in slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs	
+	Propagation dolay ⁽²⁾ in fact mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	0.8	2		
^L d fast	Fropagation delay 7 in last mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4		
V _{offset}	Comparator offset error	-	-	±4	±20	mV	
dThreshold/ dt	Threshold voltage temperature coefficient	$V_{DDA} = 3.3V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ $V_{-} = V_{REFINT},$ $3/4 V_{REFINT},$ $1/2 V_{REFINT},$ $1/4 V_{REFINT}$	-	15	100	ppm /°C	
1	Current concumption ⁽³⁾	Fast mode	-	3.5	5		
ICOMP2		Slow mode	-	0.5 2		μΑ	

|--|

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

Cumhal		millimeters		inches ⁽¹⁾			
Зутрої	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
CCC	-	-	0.080	-	-	0.0031	

Table 64. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID024330 Rev 4