

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151r6h6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

Periph	eral	STM32L15xCxxxA			STM32L15xRxxxA			STM32L15xVxxxA			
Flash (Kbytes)		32	64	128	32	64	128	64	128		
Data EEPROM (Kb	oytes)					4					
RAM (Kbytes)		16	32	32	16	32	32	32	32		
Timers	General- purpose					6					
	Basic					2					
	SPI					2					
Communication	l ² C		2								
interfaces	USART		3								
	USB	1									
GPIOs		37			51/50 ⁽¹⁾			83			
12-bit synchronize Number of channe	ed ADC els	1 14 channels			1 20/19 channels ⁽¹⁾			1 24 channels			
12-bit DAC Number of channe	els	2 2									
LCD (STM32L152x COM x SEG	xxxA Only)		4x16		4x32/4x31 ⁽¹⁾ 8x28/8x27 ⁽¹⁾			4x44 8x40			
Comparator						2					
Capacitive sensing	g channels		13				20)			
Max. CPU frequen	су					32 MHz					
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option									
Operating tempera	atures	Ambient operating temperatures: -40 to +85 °C / -40 to + 105 °C Junction temperature: -40 to +110°C									
Packages		LQFP	48, UFQI	FPN48	LQFF	964, TFB	GA64	LQFP100,	UFBGA100		

1. For TFBGA64 package (instead of PC3 pin there is V_{REF^+} pin).

line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

Stop mode consumption: refer to *Table 23*.

• Standby mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• **Standby** mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Standby mode consumption: refer to *Table 24*.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode.

	Functionalities depending on the operating power supply range							
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation				
V _{DD} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance				
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance				
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance				

Table 3. Functionalities depending on the operating power supply range

	Functionalities depending on the operating power supply range							
Operating power supply range	DAC and ADC operation	USB	Dynamic voltage scaling range	I/O operation				
V _{DD} = 2.0 to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. Should be USB-compliant from I/O voltage standpoint, the minimum V_{DD} is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Figure 2. Clock tree

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode
- V_{LCD} rail decoupling capability

		Bias	Din			
	1/2	1/3	1/4	FIII		
V _{LCDrail1}	1/2 V _{LCD}	2/3 V _{LCD}	1/2 V _{LCD}	PB2		
V _{LCDrail2}	NA	1/3 V _{LCD}	1/4 V _{LCD}	PB12	PE11	
V _{LCDrail3}	NA	NA	3/4 V _{LCD}	PB0	PE12	

Table 6. V_{LCD} rail decoupling

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B-A and STM32L152x6/8/B-A devices with up to 24 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.15.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit down-counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.16 Communication interfaces

3.16.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.16.2 Universal synchronous/asynchronous receiver transmitter (USART)

All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS and RTS signals and are ISO 7816 compliant. They support IrDA SIR ENDEC and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

3.16.3 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

Both SPIs can be served by the DMA controller.

3.16.4 Universal serial bus (USB)

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices embed a USB device peripheral compatible with the USB full speed 12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

3.17 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.18 Development support

Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151x6/8/B-A and STM32L152x6/8/B-A device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

	1	2	3	4	5	6	7	8
A	,PC14-, 0\\$C32_lN	,PC13-, WKUP2	(PB9)	, PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	,ÉC15-, OSC32_OUT	(VLCD)	(PB8)	BOOTO	(PD2)	(PC11)	(PC10)	(PA12)
С	,∕₽́Ĥõ`∖ OSC_IN∳	Vss_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	'VDD_4'	(PB6)	(V _{SS_3})	VSS_2	'Vss_1,	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'VDD_3'	'V _{DD_2} '	'V _{DD_1} '	(PC7)	(PC8)
F	VSSA	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	VREF+ F	240-WKUP1	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	VDDA,	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	// (PB11)	(PB12)
	L							AI16

Figure 5. STM32L15xRxxxA TFBGA64 ballout

1. This figure shows the package top view.

Figure 7. STM32L15xCxxxA LQFP48 pinout

1. This figure shows the package top view.

		Pins	;						Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
51	33	H8	L12	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/ LCD_SEG12/ TIM10_CH1	ADC_IN18/ COMP1_INP /VLCDRAIL2
52	34	G8	K12	26	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS/ LCD_SEG13/TIM9_CH1	ADC_IN19/ COMP1_INP
53	35	F8	K11	27	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS/ LCD_SEG14/TIM9_CH2	ADC_IN20/ COMP1_INP
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/ LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN
55	-	-	K9	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-
56	-	-	K8	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-
57	-	-	J12	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
59	-	-	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

DocID024330 Rev 4

		Pins	;						Pins functio	ons
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/ TIM11_CH1	-
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-
100	64	E4	C4	48	V _{DD_3}	S	-	V _{DD_3}	-	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xxxxA devices only. In STM32L151xxxxA devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

Symbol	Parameter	Conditions	Min	Max	Unit			
		UFBGA100 package	-	339				
		LQFP100 package	FP100 package - 43					
Б	Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix $7^{(4)}$	TFBGA64 package	-	308				
PD		LQFP64 package	-	444	TIIVV			
		LQFP48 package	-	364				
		UFQFPN48 package	-	606				
т	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C			
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	C			
т.	Junction temperature range	6 suffix version	-40	105	°C			
IJ	Junction temperature range	7 suffix version	-40	110	ĴĊ			

 Table 14. General operating conditions (continued)

1. When the ADC is used, refer to *Table 55: ADC characteristics*.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

3. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 13: Thermal characteristics on page 56).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 13: Thermal characteristics on page 56*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in the following table.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	V rise time rate	BOR detector enabled	0	-	∞		
t _{VDD} ⁽¹⁾	V _{DD} lise time late	BOR detector disabled	0	-	1000		
	V fall time rate	BOR detector enabled	20	-	8	μ5/ν	
		BOR detector disabled	0	-	1000	1	
т (1)	Popot tomporization	V _{DD} rising, BOR enabled	-	2	3.3	ma	
'RSTTEMPO` '		V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms	
M	Power on/power down reset	Falling edge	1	1.5	1.65	V	
VPOR/PDR	threshold	Rising edge 1.3		1.5	1.65	v	

Table 15. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions			Max (1)(2)	Unit
I _{DD (Stop)}		Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.80	2.2	
	Supply current in Stop mode (RTC disabled)		$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.434	1	μA
		Regulator in LP mode, LSI, HSI and HSE OFF (no independent watchdog)	T _A = 55°C	0.735	3	
			T _A = 85°C	2.350	9	
			T _A = 105°C	6.84	22 ⁽⁶⁾	
	RMS (root mean	MSI = 4.2 MHz		2	-	
וואי סס	square) supply current during	MSI = 1.05 MHz	V _{DD} = 3.0 V	1.45	-	
from Stop)	wakeup time when exiting from Stop mode	MSI = 65 kHz ⁽⁷⁾	$T_A = -40^{\circ}C$ to 25°C	1.45	-	ΜA

Table 23. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.

4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

6. Guaranteed by test in production.

When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time
of the wakeup period, the current is similar to the Run mode current.

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions		Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
(1)(2)	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = 0 to 55 °C		-	1.5	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_A = -10 to 70 °C		-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32	. LSI	oscillator	characteristics
----------	-------	------------	-----------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
$D_{LSI}^{(2)}$	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 45*, respectively.

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kH-7	
00	'max(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400	KI IZ	
00	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ne	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625	ns	
	f	Maximum froquency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2		
01	'max(IO)out	Maximum frequency.	C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1	WHZ	
01	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ne	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	250	115	
	E .	out Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10		
10	' max(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2	1011 12	
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	ne	
	t _{r(IO)out}	Output fise and fail time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	115	
	F _{max(IO)out} Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	50			
11		t Maximum frequency(*)	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	8	IVINZ	
11	t _{f(IO)out}	t _{f(IO)out}	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5		
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns	

Table 45. I/O A	C characteristics ⁽¹⁾
-----------------	----------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
_		Master mode	-	16		
f _{SCK} 1/t _{o(SCK)}	SPI clock frequency	Slave mode	-	16	MHz	
		Slave transmitter	-	12 ⁽³⁾		
$t_{r(SCK)}^{(2)}_{t_{f(SCK)}^{(2)}}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-		
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2– 5	t _{SCK} /2+ 3		
t _{su(MI)} ⁽²⁾	Data input sotup timo	Master mode	5	-		
t _{su(SI)} ⁽²⁾		Slave mode	6	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns	
t _{h(SI)} ⁽²⁾		Slave mode	5	-		
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}		
t _{v(SO)} ⁽²⁾	Data output valid time	Slave mode	-	33		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5		
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-		
t _{h(MO)} ⁽²⁾		Master mode	0.5	-		

Table 50. SPI characteristics	(1)
-------------------------------	----	---

1. The characteristics above are given for voltage Range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

6.3.21 LCD controller (STM32L152x6/8/B-A devices only)

The STM32L152xx-A devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Max	Unit
V_{LCD}	LCD external voltage	-	-	3.6	
V_{LCD0}	LCD internal reference voltage 0	-	2.6	-	
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-	
V_{LCD2}	LCD internal reference voltage 2	-	2.86	-	
V_{LCD3}	LCD internal reference voltage 3	-	2.98	-	V
V_{LCD4}	LCD internal reference voltage 4	-	3.12	-	
V_{LCD5}	LCD internal reference voltage 5	-	3.26	-	
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-	
V _{LCD7}	LCD internal reference voltage 7	-	3.55	-	
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF
ı (1)	Supply current at V _{DD} = 2.2 V	-	3.3	-	
LCD,	Supply current at V _{DD} = 3.0 V	-	3.1	-	μΑ
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ
V ₄₄	Segment/Common highest level voltage	-	-	V _{LCD}	V
V ₃₄	Segment/Common 3/4 level voltage	-	$3/4 V_{LCD}$	-	
V ₂₃	Segment/Common 2/3 level voltage	-	$2/3 V_{LCD}$	-	
V ₁₂	Segment/Common 1/2 level voltage	-	$1/2 V_{LCD}$	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	-	v
V ₁₄	Segment/Common 1/4 level voltage	-	$1/4 V_{LCD}$	-	
V ₀	Segment/Common lowest level voltage	0	-	-	
ΔVxx ⁽²⁾	Segment/Common level voltage error T _A = -40 to 105 $^{\circ}$ C	-	-	±50	mV

Table 63. LCD controller characteristics

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected

2. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 14 x 14 mm, 100-pin low-profile quad flat package information

Figure 30. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

7.5 UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information

1. Drawing is not to scale.

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Зушрог	Min	Тур	Мах	Min	Тур	Max
А	-	-	0.6	-	-	0.0236
A1	0.05	0.08	0.11	0.002	0.0031	0.0043
A2	0.4	0.45	0.5	0.0157	0.0177	0.0197
A3	0.08	0.13	0.18	0.0031	0.0051	0.0071
A4	0.27	0.32	0.37	0.0106	0.0126	0.0146
b	0.2	0.25	0.3	0.0079	0.0098	0.0118
D	6.95	7	7.05	0.2736	0.2756	0.2776
D1	5.45	5.5	5.55	0.2146	0.2165	0.2185
E	6.95	7	7.05	0.2736	0.2756	0.2776
E1	5.45	5.5	5.55	0.2146	0.2165	0.2185
е	-	0.5	-	-	0.0197	-

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
F	0.7	0.75	0.8	0.0276	0.0295	0.0315
ddd	-	-	0.1	-	-	0.0039
eee	-	-	0.15	-	-	0.0059
fff	-	-	0.05	-	-	0.002

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package recommended footprint

Table 69. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values		
Pitch	0.5		
Dpad	0.280 mm		
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)		
Stencil opening	0.280 mm		
Stencil thickness	Between 0.100 mm and 0.125 mm		

