

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rbh6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9	Revi	sion his	tory
8	Orde	ering inf	ormation
		7.7.1	Reference document
	7.7	Therma	al characteristics
	7.6	TFBGA array p	A64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid ackage information
	7.5	UFBGA grid arr	A100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball and package information
	7.4	UFQFF	PN48 7 x 7 mm, 0.5 mm pitch, package information
	7.3	LQFP4	8 7 x 7 mm, 48-pin low-profile quad flat package information112
	7.2	LQFP6	4 10 x 10 mm, 64-pin low-profile quad flat package information . 109
	7.1	LQFP1 informa	00 14 x 14 mm, 100-pin low-profile quad flat package ation
7	Pack	kage info	ormation
		6.3.21	LCD controller (STM32L152x6/8/B-A devices only) 105
		6.3.20	Comparator
		6.3.19	Temperature sensor characteristics
		6.3.18	DAC electrical specifications
		6.3.17	12-bit ADC characteristics
		6.3.16	Communication interfaces
		6 3 15	TIM timer characteristics 88
		6.3.14	NRST nin characteristics
		6313	I/O port characteristics
		0.3.11	Electrical sensitivity characteristics
		6.3.10	EMC characteristics
		6.3.9	Memory characteristics
		620	Mamany abaractoristica 90

List of figures

Figure 1.	Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A block diagram 13
Figure 2.	Clock tree
Figure 3.	STM32L15xVxxxA UFBGA100 ballout
Figure 4.	STM32L15xVxxxA LQFP100 pinout
Figure 5.	STM32L15xRxxxA TFBGA64 ballout
Figure 6.	STM32L15xRxxxA LQFP64 pinout
Figure 7.	STM32L15xCxxxA LQFP48 pinout
Figure 8.	STM32L15xCxxxA UFQFPN48 pinout
Figure 9.	Memory map
Figure 10.	Pin loading conditions
Figure 11.	Pin input voltage
Figure 12.	Power supply scheme
Figure 13.	Optional LCD power supply scheme
Figure 14.	Current consumption measurement scheme
Figure 15.	High-speed external clock source AC timing diagram
Figure 16.	Low-speed external clock source AC timing diagram
Figure 17.	HSE oscillator circuit diagram
Figure 18.	Typical application with a 32.768 kHz crystal
Figure 19.	I/O AC characteristics definition 87
Figure 20.	Recommended NRST pin protection 88
Figure 21.	I^2C bus AC waveforms and measurement circuit . 90
Figure 22.	SPI timing diagram - slave mode and CPHA = 0. 92
Figure 23	SPI timing diagram - slave mode and CPHA = $1^{(1)}$ 92
Figure 24	SPI timing diagram - master mode ⁽¹⁾
Figure 25	USB timings: definition of data signal rise and fall time 94
Figure 26	ADC accuracy characteristics
Figure 27	Typical connection diagram using the ADC 98
Figure 28	Maximum dynamic current consumption on Vpcc, supply pin during ADC
	conversion 99
Figure 29	12-bit buffered /non-buffered DAC 102
Figure 30	I QEP100 14 x 14 mm 100-pin low-profile guad flat package outline 106
Figure 31	I QPF100 14 x 14 mm 100-pin low-profile guad flat package recommended footprint 108
Figure 32	LOEP100 14 x 14 mm 100-pin package top view example 108
Figure 33	LOEP64 10 x 10 mm 64-nin low-profile guad flat package outline 109
Figure 34	LOEP64 10 x 10 mm, 64-pin low-profile guad flat package recommended footprint 110
Figure 35	I OEP64 10 x 10 mm, 64-pin low-profile guad flat package too view example
Figure 36	I OEP48 7 x 7 mm 48-nin low-profile guad flat nackage outline
Figure 37	I OEP48 7 x 7 mm, 48 pin low-profile guad flat package recommended footprint 114
Figure 38	I OEP48 7 x 7 mm, 48-pin low-profile guad flat package too view example
Figure 30	LEGEPN48 7 x 7 mm, 45 pm nitch, package outline
Figure 40	UECEPN/48.7 x 7 mm, 0.5 mm pitch, package recommended footprint 116
Figure 41	UECEPN/48.7 x 7 mm, 0.5 mm pitch, package top view example
Figure 42	UEBGA100.7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch hall grid array
rigule 4 2.	package outline 118
Figure 43	UERGΔ100.7 v 7 mm 0.5 mm nitch ultra thin fine nitch hall grid array
i iyui e 43.	nackage recommended footnrint 110
Figure 11	$IIERGA100.7 \times 7 \text{ mm} 0.5 \text{ mm} \text{ nitch} nackage ton view example $
Figure 45	TERGA64.5 v.5 mm 0.5 mm nitch thin fine-nitch hall arid array
i iguie 40.	n bonor o'r o'r o ninn, o'o ninn pilon, tinn nne-pilon bail gnu anay

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs					
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No					
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No					
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No					
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No					

Table 7. Timer feature comparison

3.17 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.18 Development support

Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151x6/8/B-A and STM32L152x6/8/B-A device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

Na	me	Abbreviation	Definition			
Pin r	name	Unless otherwis during and after	e specified in brackets below the pin name, the pin function reset is the same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
I/O str	ruoturo	TC	TC Standard 3.3 V I/O			
1/O Su	uciure	B Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
No	ites	Unless otherwis and after reset	e specified by a note, all I/Os are set as floating inputs during			
	Alternate functions	Functions select	ted through GPIOx_AFR registers			
Pin functions	Additional functions	Functions direct	ly selected/enabled through peripheral registers			

Table 8	Legend/abbreviations	used in the	ninout table
Table 0.	Legenu/appreviations	useu ili ille	pillout table

		Pins	;						Pins functio	ons
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
20	-	-	K1	-	V _{REF-}	S	-	V _{REF-}	-	-
21	-	G1 (6)	L1	-	V _{REF+}	S	-	V _{REF+}	-	-
22	13	H1	M1	9	V _{DDA}	S	-	V _{DDA}	-	-
23	14	G2	L2	10	PA0-WKUP1	I/O	FT	PA0	USART2_CTS/ TIM2_CH1_ETR	WKUP1/ ADC_IN0/ COMP1_INP /RTC_TAMP2
24	15	H2	M2	11	PA1	I/O	FT	PA1	USART2_RTS/ TIM2_CH2/LCD_SEG0	ADC_IN1/ COMP1_INP
25	16	F3	КЗ	12	PA2	I/O	FT	PA2	USART2_TX/ TIM2_CH3/ TIM9_CH1/ LCD_SEG1	ADC_IN2/ COMP1_INP
26	17	G3	L3	13	PA3	I/O	тс	PA3	USART2_RX/ TIM2_CH4/ TIM9_CH2/ LCD_SEG2	ADC_IN3/ COMP1_INP
27	18	C2	E3	-	V _{SS_4}	S	-	V _{SS_4}	-	-
28	19	D2	H3	-	V _{DD_4}	S	-	V _{DD_4}	-	-
29	20	H3	М3	14	PA4	I/O	тс	PA4	SPI1_NSS/ USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP
30	21	F4	K4	15	PA5	I/O	тс	PA5	SPI1_SCK/ TIM2_CH1_ETR	ADC_IN5/ DAC_OUT2/ COMP1_INP
31	22	G4	L4	16	PA6	I/O	FT	PA6	SPI1_MISO/TIM3_CH1/ LCD_SEG3/TIM10_CH1	ADC_IN6/ COMP1_INP
32	23	H4	M4	17	PA7	I/O	FT	PA7	SPI1_MOSI/TIM3_CH2/ LCD_SEG4/TIM11_CH1	ADC_IN7/ COMP1_INP
33	24	H5	K5	-	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
34	25	H6	L5	-	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

48/129

			٦	Table 10. A	Iternate	function i	nput/ou	tput (contin	ued)						
						Digital alterna	te functior	n number							
Port name	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Forthame						Altern	ate functio	'n							
-	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PC10	-	-	-	-	-	-	-	USART3_TX	-	-	COM4 / SEG28 / SEG40	-	-	TIMx_IC3	EVENTOL
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVENTOL
PC12	-	-	-	-	-	-	-	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVENTOL
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOU
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTO
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTO
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVENTO
PD1	-	-	-	-	-	SPI2_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTO
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31 / SEG43	-	-	TIMx_IC3	EVENTOL
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	-	-	-	-	TIMx_IC4	EVENTOL
PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS	-	-	-	-	-	TIMx_IC1	EVENTO
PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	-	TIMx_IC2	EVENTO
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	-	TIMx_IC3	EVENTO
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	-	-	-	-	TIMx_IC4	EVENTO
PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	-	TIMx_IC1	EVENTO
PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	-	TIMx_IC2	EVENTO

Pin descriptions

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
$ V_{SSX} - V_{SS} $	Variations between all different ground pins ⁽³⁾	-	50	mv
$V_{REF+} - V_{DDA}$	Allowed voltage difference for $V_{REF^+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6	.3.11	-

Table 11. Voltage characteristics	Table	cteristics	charact	Voltage
-----------------------------------	-------	------------	---------	---------

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 12* for maximum allowed injected current values.

3. Include VREF- pin.

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	100	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	100	
I _{VDD(PIN)}	Maximum current into each V_{DD_x} power pin (source) ⁽¹⁾	70	
I _{VSS(PIN)}	Maximum current out of each V_{SS_x} ground pin (sink) ⁽¹⁾	-70	mA
I _{IO}	Output current sunk by any I/O and control pin	25	
	Output current sourced by any I/O and control pin	- 25	
51	Total output current sunk by sum of all IOs and control pins ⁽²⁾	60	
∠IO(PIN)	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-60	
(3)	Injected current on five-volt tolerant I/O ⁽⁴⁾ RST and B pins	-5/+0	
'INJ(PIN)`´	Injected current on any other pin ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max (1)(2)	Unit	
I _{DD (Stop)}		Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.80	2.2	
	Supply current in Stop mode ($T_A = -40^{\circ}C$ to $25^{\circ}C$	0.434	1	μА
	RTC disabled)	Regulator in LP mode, LSI, HSI and HSE OFF (no independent watchdog)	T _A = 55°C	0.735	3	
			T _A = 85°C	2.350	9	
			T _A = 105°C	6.84	22 ⁽⁶⁾	
	RMS (root mean	MSI = 4.2 MHz		2	-	
וואי סס	square) supply current during	MSI = 1.05 MHz	V _{DD} = 3.0 V	1.45	-	
'DD (WU from Stop)	wakeup time when exiting from Stop mode	MSI = 65 kHz ⁽⁷⁾	$T_A = -40^{\circ}C$ to 25°C	1.45	-	ΜA

Table 23. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.

4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

6. Guaranteed by test in production.

When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time
of the wakeup period, the current is similar to the Run mode current.

6.3.6 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 15.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fun	User external clock source	CSS is on or PLL is used	1	8	32	MH-7
^T HSE_ext	frequency	CSS is off, PLL not used	0	0	52	
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}		$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF

Table 27. High-s	speed external	user clock	characteristics ⁽¹⁾
------------------	----------------	------------	--------------------------------

1. Guaranteed by design.

Figure 15. High-speed external clock source AC timing diagram

Multi-speed internal (MSI) RC oscillator

Symbol	Parameter	Condition	Тур	Мах	Unit	
		MSI range 0	65.5	-		
		MSI range 1	131	-	k∏-	
		MSI range 2	262	-	KI IZ	
f _{MSI}	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 3	524	-		
		MSI range 4	1.05	-		
		MSI range 5	2.1	-	MHz	
		MSI range 6	4.2	-		
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%	
D _{TEMP(MSI)} ⁽¹⁾	MSI oscillator frequency drift 0 °C ≤T _A ≤105 °C	-	ţţ	-	%	
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V ≤V _{DD} ≤3.6 V, T _A = 25 °C	-	-	2.5	%/V	
		MSI range 0	0.75	-		
	MSI oscillator power consumption	MSI range 1	1	-	μΑ	
		MSI range 2	1.5	-		
I _{DD(MSI)} ⁽²⁾		MSI range 3	2.5	-		
		MSI range 4	4.5	-		
		MSI range 5	8	-		
		MSI range 6	15	-		
		MSI range 0	30	-		
		MSI range 1	20	-		
		MSI range 2	15	-		
		MSI range 3	10	-		
+.	MSL oscillator startup timo	MSI range 4	6	-		
^I SU(MSI)		MSI range 5	5	-	μο	
		MSI range 6, Voltage range 1 and 2	3.5	-		
		MSI range 6, Voltage range 3	5	-		

Table 33. MSI oscillator characteristics

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

				Max vs	range		
Symbol	Parameter	Conditions	Monitored frequency band	4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
		V _{DD} = 3.3 V,	0.1 to 30 MHz	-16	-7	-3	
c	Poak lovel	$T_A = 25 ^{\circ}C$,	30 to 130 MHz	-12	2	12	dBµV
SEMI	Compliant with IEC	compliant with IEC	130 MHz to 1GHz	-11	0	8	
		61967-2	SAE EMI Level	1	1.5	2	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C, conforming to ANSI/ESD STM5.3.1	All	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Figure 20. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 46. Otherwise the reset will not be taken into account by the device.

6.3.15 TIM timer characteristics

The parameters given in *Table 47* are guaranteed by design.

Refer to *Section 6.3.13: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
۲es(TIM)		f _{TIMxCLK} = 32 MHz	31.25	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock	-	1	65536	t _{TIMxCLK}
^t COUNTER	is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs
t	Maximum possible count	_	-	65536 × 65536	t _{TIMxCLK}
'MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	S

Table 47. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	ls				
V _{DD}	USB operating voltage ⁽²⁾ -		3.0	3.6	V
V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽³⁾	Single ended receiver threshold	-	1.3	2.0	
Output lev	vels				
V _{OL} ⁽⁴⁾	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 $k\Omega$ to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6	v

Table 52. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Guaranteed by test in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time

Table 53. USB: full speed electrical characteristics

	Driver ch	naracteristics ⁽¹⁾			
Symbol	Parameter	Conditions	Min	Max	Unit
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification section 7 (version 2.0).

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 55* are guaranteed by design.

Symbol	Parameter		Conditions	Min	Max	Unit	
				$V_{REF+} = V_{DDA}$		16	
		Voltage 2.4 V ≤V _{DDA} ≤3.6 V		$V_{REF+} < V_{DDA}$ $V_{REF+} > 2.4 V$		8	
f _{ADC}	ADC clock frequency	Range 1 & 2		V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V	0.480	4	MHz
			18/0/01/	$V_{REF+} = V_{DDA}$		8	
			1.0 V SVDDA S.4 V	$V_{REF+} < V_{DDA}$		4	
			Voltage Range 3			4	

Table 54. ADC clock frequency

Table 55. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Power supply	-	1.8	-	3.6	V	
V _{REF+}	Positive reference voltage	$2.4 \text{ V} \leq V_{DDA} \leq 3.6 \text{ V}$ V_{REF^+} must be below or equal to V_{DDA}	1.8 ⁽¹⁾	-	V _{DDA}	V	
V_{REF}	Negative reference voltage	-	-	$V_{\rm SSA}$	-	V	
I _{VDDA}	Current on the V_{DDA} input pin	1000		1000	1450	μA	
ı (2)	Current on the V _{REF} input	Peak	-	400	700	μA	
VREF '	pin	Average	-	400	450	μA	
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V_{REF^+}	V	
	12 hit compling rate	Direct channels	-	-	1	Mene	
	12-bit sampling rate	Multiplexed channels	-	-	0.76	IVISPS	
	10 bit compling rate	Direct channels	-	-	1.07	Mono	
£	TO-bit sampling rate	Multiplexed channels	-	-	0.8	ivisps	
IS	9 hit compling rate	Direct channels	-	-	1.23	Mana	
	o-bit sampling rate	Multiplexed channels	-	-	0.89	wsps	
	6 bit compling rate	Direct channels	-	-	1.45	Mone	
	o-bit sampling fate	Multiplexed channels	_	-	1	- Msps	

Cumhal		millimeters			inches ⁽¹⁾			
Зутвої	Min	Тур	Мах	Min	Тур	Max		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
с	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	-	12.000	-	-	0.4724	-		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	-	12.000	-	-	0.4724	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
CCC	-	-	0.080	-	-	0.0031		

Table 64. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 31. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP100 device Marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 32. LQFP100 14 x 14 mm, 100-pin package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Package information

7.6 TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array package information

Figure 45. TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 70. TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array
package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.200	-	-	0.0472
A1	0.150	-	-	0.0059	-	-
A2	-	0.200	-	-	0.0079	-
A4	-	-	0.600	-	-	0.0236
b	0.250	0.300	0.350	0.0098	0.0118	0.0138
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	-	3.500	-	-	0.1378	-
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	-	3.500	-	-	0.1378	-
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-

9 Revision history

Date	Revision	Changes	
04-Feb-2014	1	Initial release.	
12-Mar-2014	2	Updated Section 3.5: Low-power real-time clock and backup registers, Section 6.1.2: Typical values and Section 6.3.4: Supply current characteristics. Updated General PCB design guidelines. Updated Table 5: Working mode-dependent functionalities (from Run/active down to standby), Table 14: General operating conditions, Table 21: Current consumption in Low-power run mode, Table 22: Current consumption in Low-power sleep mode, Table 23: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Standby mode, Table 25: Peripheral current consumption, Table 42: I/O current injection susceptibility, Table 66: I/O static characteristics and Table 46: NRST pin characteristics. Updated Figure 14: Current consumption measurement scheme.	
04-Feb-2015	3	Updated DMIPS features in cover page and Section 2: Description. Updated max temperature at 105°C instead of 85°C in the whole datasheet. Updated current consumption in Table 20: Current consumption in Sleep mode. Updated Table 25: Peripheral current consumption with new measured values. Updated Table 57: Maximum source impedance RAIN max adding note 2. Updated Section 7: Package information with new package device marking. Updated Figure 9: Memory map.	

Table 74. Document revision history

