

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151rbt6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A block diagram 13
Figure 2.	Clock tree
Figure 3.	STM32L15xVxxxA UFBGA100 ballout
Figure 4.	STM32L15xVxxxA LQFP100 pinout
Figure 5.	STM32L15xRxxxA TFBGA64 ballout
Figure 6.	STM32L15xRxxxA LQFP64 pinout
Figure 7.	STM32L15xCxxxA LQFP48 pinout
Figure 8.	STM32L15xCxxxA UFQFPN48 pinout
Figure 9.	Memory map
Figure 10.	Pin loading conditions
Figure 11.	Pin input voltage
Figure 12.	Power supply scheme
Figure 13.	Optional LCD power supply scheme
Figure 14.	Current consumption measurement scheme
Figure 15.	High-speed external clock source AC timing diagram
Figure 16.	Low-speed external clock source AC timing diagram
Figure 17.	HSE oscillator circuit diagram
Figure 18.	Typical application with a 32.768 kHz crystal
Figure 19.	I/O AC characteristics definition 87
Figure 20.	Recommended NRST pin protection 88
Figure 21.	I^2C bus AC waveforms and measurement circuit . 90
Figure 22.	SPI timing diagram - slave mode and CPHA = 0. 92
Figure 23	SPI timing diagram - slave mode and CPHA = $1^{(1)}$ 92
Figure 24	SPI timing diagram - master mode ⁽¹⁾
Figure 25	USB timings: definition of data signal rise and fall time 94
Figure 26	ADC accuracy characteristics
Figure 27	Typical connection diagram using the ADC 98
Figure 28	Maximum dynamic current consumption on Vpcc, supply pin during ADC
	conversion 99
Figure 29	12-bit buffered /non-buffered DAC 102
Figure 30	I QEP100 14 x 14 mm 100-pin low-profile guad flat package outline 106
Figure 31	I QPF100 14 x 14 mm 100-pin low-profile guad flat package recommended footprint 108
Figure 32	LOEP100 14 x 14 mm 100-pin package top view example 108
Figure 33	LOEP64 10 x 10 mm 64-nin low-profile guad flat package outline 109
Figure 34	LOEP64 10 x 10 mm, 64-pin low-profile guad flat package recommended footprint 110
Figure 35	I OEP64 10 x 10 mm, 64-pin low-profile guad flat package too view example
Figure 36	I OEP48 7 x 7 mm 48-nin low-profile guad flat nackage outline
Figure 37	I OEP48 7 x 7 mm, 48 pin low-profile guad flat package recommended footprint 114
Figure 38	I OEP48 7 x 7 mm, 48-pin low-profile guad flat package too view example
Figure 30	LEGEPN48 7 x 7 mm, 45 pm nitch, package outline
Figure 40	UECEPN/48.7 x 7 mm, 0.5 mm pitch, package recommended footprint 116
Figure 41	UECEPN/48.7 x 7 mm, 0.5 mm pitch, package top view example
Figure 42	UEBGA100.7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch hall grid array
rigule 4 2.	package outline 118
Figure 43	UERGΔ100.7 v 7 mm 0.5 mm nitch ultra thin fine nitch hall grid array
i iyui e 43.	nackage recommended footnrint 110
Figure 11	$IIERGA100.7 \times 7 \text{ mm} 0.5 \text{ mm} \text{ nitch} nackage ton view example $
Figure 45	TERGA64.5 v.5 mm 0.5 mm nitch thin fine-nitch hall arid array
i iguie 40.	n bonor o'r o'r o ninn, o'o ninn pilon, tinn nne-pilon bail gnu anay

2 Description

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 32 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices contain standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs and a USB. The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any application.

They also include a real-time clock with sub-second counting and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151x6/8/B-A devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105°C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications.

2.1 Device overview

Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

Periph	STM32L15xCxxxA			STM32L15xRxxxA			STM32L15xVxxxA		
Flash (Kbytes)		32	64	128	32	64	128	64	128
Data EEPROM (Kb	oytes)					4			
RAM (Kbytes)		16	32	32	16	32	32	32	32
Timers	General- purpose		6						
	Basic					2			
	SPI					2			
Communication	l ² C					2			
interfaces	USART		3						
	USB	1							
GPIOs	37			51/50 ⁽¹⁾			83		
12-bit synchronized ADC Number of channels		1 14 channels			1 20/19 channels ⁽¹⁾			1 24 channels	
12-bit DAC Number of channe	els	2 2							
LCD (STM32L152x COM x SEG	xxxA Only)	4x16			4x32/4x31 ⁽¹⁾ 8x28/8x27 ⁽¹⁾			4x44 8x40	
Comparator		2							
Capacitive sensing	g channels	13 20							
Max. CPU frequen	су	32 MHz							
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option							
Operating tempera	atures	Ambient operating temperatures: –40 to +85 °C / –40 to + 105 °C Junction temperature: -40 to +110°C					05 °C		
Packages		LQFP	48, UFQI	FPN48	LQFP64, TFBGA64			LQFP100,	UFBGA100

1. For TFBGA64 package (instead of PC3 pin there is V_{REF^+} pin).

3.7 Memories

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices have the following features:

- Up to 32 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 32, 64 or 128 Kbyte of embedded Flash program memory
 - 4 Kbytes of data EEPROM
 - Options bytes

The options bytes are used to write-protect or read-out-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex-M3 JTAG and serial wire) and boot in RAM selection disabled (JTAG fuse)

The whole non-volatile memory embeds the error correction code (ECC) feature. The user area of the Flash memory can be protected against Dbus read access by the PCROP feature (see RM0038 for details).

3.8 DMA (direct memory access)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I^2C , USART, general-purpose timers and ADC.

Na	me	Abbreviation	Abbreviation Definition			
Pin r	name	Unless otherwis during and after	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
I/O str	ruoturo	TC	TC Standard 3.3 V I/O			
1/O Su	uciure	В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
No	ites	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset				
	Alternate functions	Functions select	ted through GPIOx_AFR registers			
Pin functions	Additional functions	Functions direct	ly selected/enabled through peripheral registers			

Table 8	Legend/abbreviations	used in the	ninout table
Table 0.	Legenu/appreviations	useu ili ille	pillout table

		Pins	;						Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
51	33	H8	L12	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/ LCD_SEG12/ TIM10_CH1	ADC_IN18/ COMP1_INP /VLCDRAIL2
52	34	G8	K12	26	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS/ LCD_SEG13/TIM9_CH1	ADC_IN19/ COMP1_INP
53	35	F8	K11	27	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS/ LCD_SEG14/TIM9_CH2	ADC_IN20/ COMP1_INP
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/ LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN
55	-	-	K9	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-
56	-	-	K8	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-
57	-	-	J12	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
59	-	-	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

DocID024330 Rev 4

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

Please refer to device ErrataSheet for possible latest changes of electrical characteristics.

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.0$ V (for the 1.65 V $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V(2)	Input voltage on five-volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
VIN ⁽⁻⁾	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
$ V_{SSX} - V_{SS} $	Variations between all different ground pins ⁽³⁾	-	50	IIIV
$V_{REF+} - V_{DDA}$	Allowed voltage difference for $V_{REF^+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6	.3.11	-

Table 11. Voltage characteristics	Table	cteristics	charact	Voltage
-----------------------------------	-------	------------	---------	---------

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 12* for maximum allowed injected current values.

3. Include VREF- pin.

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	100	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	100	
I _{VDD(PIN)}	Maximum current into each V_{DD_x} power pin (source) ⁽¹⁾	70	
I _{VSS(PIN)}	Maximum current out of each V_{SS_x} ground pin (sink) ⁽¹⁾	-70	mA
1	Output current sunk by any I/O and control pin	25	
IIO	Output current sourced by any I/O and control pin	- 25	
51	Total output current sunk by sum of all IOs and control pins ⁽²⁾	60	
∠IO(PIN)	Total output current sourced by sum of all IOs and control pins ⁽²⁾		
(3)	Injected current on five-volt tolerant I/O ⁽⁴⁾ RST and B pins	-5/+0	
'INJ(PIN)`´	Injected current on any other pin ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3.	1 MHz	185	255	
I _{DD (Run} from RAM)			V _{CORE} =1.2 V	2 MHz	345	435	μA
		fuer = fueur	VOS[1:0] = 11	4 MHz	645	930	
		up to 16 MHz,	Range 2	4 MHz	0.755	1.5	
		included $f_{\rm Her} = f_{\rm Her} / 2$ above	V _{CORE} =1.5 V	8 MHz	1.5	2.2	
	Supply current in Run mode, code executed from RAM, Flash switched off	16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	3.0	3.6	-
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	1.8	2.9	
				16 MHz	3.6	4.3	
				32 MHz	7.15	8.5	mA
		HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	2.95	3.7	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	7.15	8.7	
		MSI clock, 65 kHz	Range 3	65 kHz	39	115	
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	110	205	μA
	-	MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	690	870	

Table 19. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.865	-	
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.11	1.9	
I _{DD} (Standby with RTC)		independent watchdog)	T _A = 55 °C	1.15	2.2	
			T _A = 85 °C	1.35	4	
	Supply current in Standby		T _A = 105 °C	1.93	8.3 ⁽³⁾	
	mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.97	-	
		RTC clocked by LSE (no independent watchdog) ⁽⁴⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.28	-	_
			T _A = 55 °C	1.4	-	μA
			T _A = 85 °C	1.7	-	
			T _A = 105 °C	2.34	-	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.0	1.7	
	Supply current in Standby		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.277	0.6	1
(Standby)	mode with RTC disabled	Independent watchdog	T _A = 55 °C	0.31	0.9	
		and LSI OFF	T _A = 85 °C	0.52	2.75	
			T _A = 105 °C	1.09	7 ⁽³⁾	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	mA

Table 24.	Typical and m	aximum curren	t consumptions	in Standb	v mode
	Typioal alla lli		c oonouniptione		y 1110000

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. Guaranteed by test in production.

4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

6.3.6 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 15.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fun	User external clock source	CSS is on or PLL is used	1	8	32	MH-7
^I HSE_ext	frequency	CSS is off, PLL not used	0	0	52	
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}		$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF

Table 27. High-s	speed external	user clock	characteristics ⁽¹⁾
------------------	----------------	------------	--------------------------------

1. Guaranteed by design.

Figure 15. High-speed external clock source AC timing diagram

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA
1	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	m۵
'DD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	mA
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	1	-	ms

Table 29. HSE os	cillator characteristics	(⁽¹⁾⁽²⁾ (continued)

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

				Max vs			
Symbol	Parameter	Conditions	Monitored frequency band	4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
		V _{DD} = 3.3 V,	0.1 to 30 MHz	-16	-7	-3	
c	Peak level $T_A = 25 \degree C$, LQFP100 package compliant with IEC	30 to 130 MHz	-12	2	12	dBµV	
SEMI		compliant with IEC	130 MHz to 1GHz	-11	0	8	
		61967-2	SAE EMI Level	1	1.5	2	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C, conforming to ANSI/ESD STM5.3.1	All	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Figure 20. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 46. Otherwise the reset will not be taken into account by the device.

6.3.15 TIM timer characteristics

The parameters given in *Table 47* are guaranteed by design.

Refer to *Section 6.3.13: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t			1	-	t _{TIMxCLK}
۲es(TIM)		f _{TIMxCLK} = 32 MHz	31.25	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock	-	1	65536	t _{TIMxCLK}
^t COUNTER	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs
t	Maximum possible count	_	-	65536 × 65536	t _{TIMxCLK}
'MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	S

Table 47. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

Figure 22. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

6.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 55* are guaranteed by design.

Symbol	Parameter		Conditions	Min	Max	Unit	
				$V_{REF+} = V_{DDA}$		16	
		Voltage	2.4 V ≤V _{DDA} ≤3.6 V	$V_{REF+} < V_{DDA}$ $V_{REF+} > 2.4 V$		8	
f _{ADC}	ADC clock frequency	Range 1 & 2		V _{REF+} < V _{DDA} V _{REF+} ≤2.4 V	0.480	4	MHz
			18/0/01/	$V_{REF+} = V_{DDA}$		8	
			1.0 V SVDDA S.4 V	$V_{REF+} < V_{DDA}$		4	
		Voltage Range 3			4		

Table 54. ADC clock frequency

Table 55. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Power supply	-	1.8	-	3.6	V	
V _{REF+}	Positive reference voltage	$2.4 \text{ V} \leq V_{DDA} \leq 3.6 \text{ V}$ V_{REF^+} must be below or equal to V_{DDA}	1.8 ⁽¹⁾	-	V _{DDA}	V	
V_{REF}	Negative reference voltage	-	-	$V_{\rm SSA}$	-	V	
I _{VDDA}	Current on the V_{DDA} input pin	-	-	1000	1450	μA	
ı (2)	Current on the V _{REF} input	Peak	-	400	700	μA	
VREF ⁽⁻⁾	pin	Average	-	400	450	μA	
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 ⁽⁴⁾	-	V_{REF^+}	V	
	12 hit compling rate	Direct channels	-	-	1	Mene	
	12-bit sampling rate	Multiplexed channels	-	-	0.76	IVISPS	
	10 bit compling rate	Direct channels	-	-	1.07	Mono	
£	TO-bit sampling rate	Multiplexed channels	-	-	0.8	ivisps	
IS	9 hit compling rate	Direct channels	-	-	1.23	Mana	
	o-bit sampling rate	Multiplexed channels	-	-	0.89	Msps	
	6 bit compling rate	Direct channels	-	-	1.45	Mone	
	o-bit sampling fate	Multiplexed channels	_	-	1	ivisps	

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage		-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must V _{DDA}	always be below	1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-			V_{SSA}		V
(1)	Current consumption on	No load, mid	dle code (0x800)	-	130	220	μA
I _{DDVREF+} ⁽¹⁾	V _{REF+} supply V _{REF+} = 3.3 V	No load, wor	st code (0x000)	-	220	350	μA
. (1)	Current consumption on	No load, mid	dle code (0x800)	-	210	320	μA
I _{DDA} (1)	V _{DDA} supply V _{DDA} = 3.3 V	No load, wor	st code (0xF1C)	-	320	520	μA
D	Posistivo load	DAC output	Connected to $\mathrm{V}_{\mathrm{SSA}}$	5	-	-	kO
ΓL	Resistive load	buffer ON	Connected to V_{DDA}	25	-	-	K22
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ
V	Voltage on DAC_OUT output	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V
VDAC_OUT		DAC output	buffer OFF	0.5	-	V _{REF+} 1LSB	mV
DNI ⁽¹⁾	Differential non linearity ⁽²⁾	C _L ≤ 50 pF, F DAC output	$R_L \ge 5 \ k\Omega$ buffer ON	-	1.5	3	
		No R_L , $C_L \leq C_L$	50 pF buffer OFF	-	1.5	3	
INI (1)	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF, F}$ DAC output	$R_L \ge 5 \ k\Omega$ buffer ON	-	2	4	
		No R_L , $C_L \leq C_L$	50 pF buffer OFF	-	2	4	LSB
Offset ⁽¹⁾	Offect error at code 0x800 ⁽⁴⁾	$C_L \le 50 \text{ pF, F}$ DAC output	$R_L \ge 5 k\Omega$ buffer ON	-	±10	±25	
Cliser, ,	Unset error at code 0x800 (*)	No R_L , $C_L \leq C_L$	50 pF buffer OFF	-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R_L , $C_L \le 0$ DAC output	50 pF buffer OFF	-	±1.5	±5	

Table	58.	DAC	characteristics
TUNIC	vv .	DAO	onaraotoristios

Table 65. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical
data (continued)

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Max	Тур	Min	Мах	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
ccc	-	-	0.080	-	-	0.0031	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

7.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit	
ΘjA	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm	59		
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W	
	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm	65		
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45		
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55		
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch	33		

Table 72. Thermal characteristics

8 Ordering information

Table 73. Ordering information scheme							
Example:	STM32	L 152	RВ	T 6	А	D TR	
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
L = Low-power		-					
Device subfamily							
151: Devices without LCD							
152: Devices with LCD							
Pin count							
C = 48 pins			-				
R = 64 pins							
V = 100 pins							
Flash memory size							
6 = 32 Kbytes of Flash memory							
8 = 64 Kbytes of Flash memory							
B = 128 Kbytes of Flash memory							
Package							
H = BGA							
T = LQFP							
U = UFQFPN							
Temperature range							
6 = Industrial temperature range, -40 to 85 °C							
7 = Industrial temperature range, -40 to 105 °C							
Options							
A = device generation A							
No character = VDD range: 1.8 to 3.6 V and BOR enabled							
D = VDD range: 1.65 to 3.6 V and BOR disabled							
,							
Packing							
TR = tape and reel							

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

