E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151v8t6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	package outline	21
Figure 46.	TFBGA64, 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array	
	package recommended footprint1	22
Figure 47.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example 1	23
Figure 48.	Thermal resistance suffix 61	25
Figure 49.	Thermal resistance suffix 71	25

57

2.1 Device overview

Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

Periph	eral	STM	32L15xC	xxxA	STM	32L15xR	хххА	STM32L1	5xVxxxA	
Flash (Kbytes)		32	64	128	32	64	128	64	128	
Data EEPROM (Kb	oytes)					4				
RAM (Kbytes)		16	32	32	16	32	32	32	32	
Timers	General- purpose					6				
	Basic					2				
	SPI					2				
Communication	l ² C	2								
interfaces	USART					3				
	USB					1				
GPIOs		37			51/50 ⁽¹⁾			83		
12-bit synchronize Number of channe		1 14 channels			20/1	1 9 channe	els ⁽¹⁾	1 24 channels		
12-bit DAC Number of channe	els	2 2								
LCD (STM32L152) COM x SEG	xxxA Only)		4x16			x32/4x31 x28/8x27			44 40	
Comparator					L	2				
Capacitive sensing	g channels		13				20)		
Max. CPU frequen	су				<u>.</u>	32 MHz				
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option								
Operating tempera	atures	Ambient operating temperatures: –40 to +85 °C / –40 to + 105 °C Junction temperature: -40 to +110°C								
Packages		LQFP48, UFQFPN48			LQFP64, TFBGA64			LQFP100, UFBGA100		

1. For TFBGA64 package (instead of PC3 pin there is V_{REF^+} pin).

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From a proprietary 8bit core up to the Cortex-M3, including the Cortex-M0+, the STM8Lx and STM32Lx series offer the best range of choices to meet your requirements in terms of ultra-low-power features. The STM32 Ultra-low-power series is an ideal fit for applications like gas/water meters, keyboard/mouse, or wearable devices for fitness and healthcare. Numerous built-in features like LCD drivers, dual-bank memory, low-power Run mode, op-amp, AES-128bit, DAC, crystal-less USB and many others, allow to build highly cost-optimized applications by reducing the BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lx and STM32Lx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your existing applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-Low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy

To offer flexibility and optimize performance, the STM8L15xxx and STM32L1xxxx families use a common architecture:

- Common power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for STM8L15xxx devices)
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultra-safe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector.

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 512 Kbytes

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See the application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

3.12 Ultra-low-power comparators and reference voltage

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- one comparator with fixed threshold
- one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or V_{REFINT} submultiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical).

3.13 Routing interface

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.14 Touch sensing

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 20 capacitive sensing channels distributed over 10 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.13: Routing interface).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.15 Timers and watchdogs

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices include six general-purpose timers, two basic timers and two watchdog timers.

Table 7 compares the features of the general-purpose and basic timers.

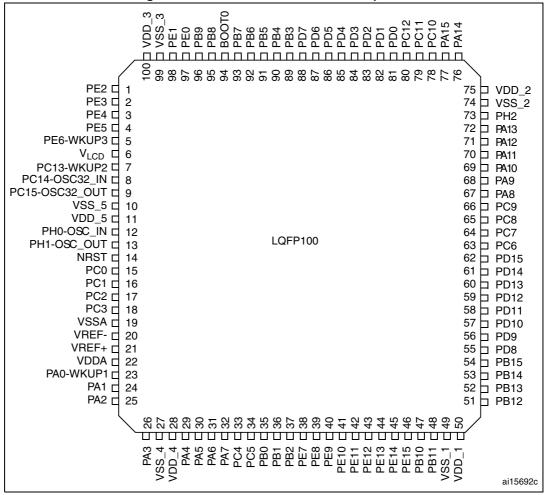


Figure 4. STM32L15xVxxxA LQFP100 pinout

1. This figure shows the package top view.

		Pins	;						Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
67	41	D7	D11	29	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-
68	42	C7	D10	30	PA9	I/O	FT	PA9	USART1_TX/ LCD_COM1	-
69	43	C6	C12	31	PA10	I/O	FT	PA10	USART1_RX/ LCD_COM2	-
70	44	C8	B12	32	PA11	I/O	FT	PA11	USART1_CTS/ SPI1_MISO	USB_DM
71	45	B8	A12	33	PA12	I/O	FT	PA12	USART1_RTS/ SPI1_MOSI	USB_DP
72	46	A8	A11	34	PA13	I/O	FT	JTMS- SWDIO	JTMS-SWDIO	-
73	-	-	C11	-	PH2	I/O	FT	PH2	-	-
74	47	D5	F11	35	V _{SS_2}	S	-	V _{SS_2}	-	-
75	48	E5	G11	36	V _{DD_2}	S	-	V _{DD_2}	-	-
76	49	A7	A10	37	PA14	I/O	FT	JTCK- SWCLK	JCTK-SWCLK	-
77	50	A6	A9	38	PA15	I/O	FT	JTDI	TIM2_CH1_ETR/PA15/ SPI1_NSS/ LCD_SEG17	-
78	51	B7	B11	-	PC10	I/O	FT	PC10	USART3_TX/ LCD_SEG28/ LCD_SEG40/ LCD_COM4	-
79	52	B6	C10	-	PC11	I/O	FT	PC11	USART3_RX/ LCD_SEG29/ LCD_SEG41/ LCD_COM5	-
80	53	C5	B10	-	PC12	I/O	FT	PC12	USART3_CK/ LCD_SEG30/ LCD_SEG42/ LCD_COM6	-
81	-	-	C9	-	PD0	I/O	FT	PD0	SPI2_NSS/TIM9_CH1	-

		Pins	;						Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/ TIM11_CH1	-
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-
100	64	E4	C4	48	V _{DD_3}	S	-	V _{DD_3}	-	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

1. I = input, O = output, S = supply.

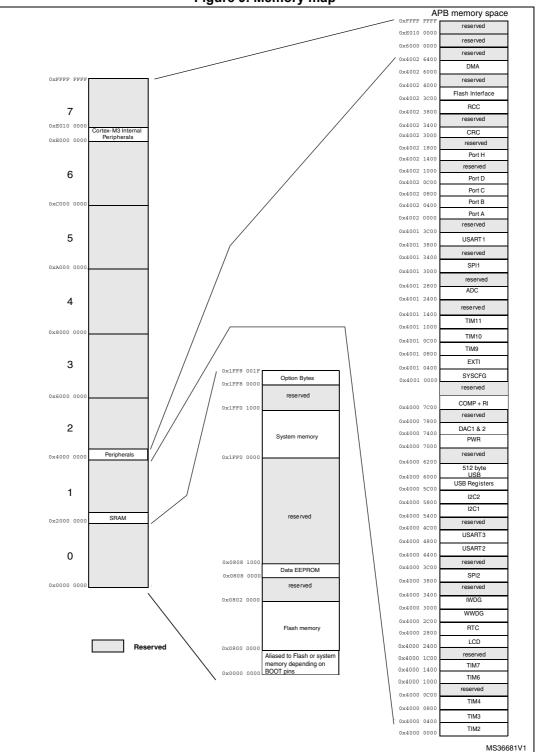
 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xxxxA devices only. In STM32L151xxxxA devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.



						Digital alterna	te functior	n number							
Dertheme	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Port name	·					Altern	ate functio	'n							
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PC10	-	-	-	-	-	-	-	USART3_TX	-	-	COM4 / SEG28 / SEG40	-	-	TIMx_IC3	EVENTOU
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVENTOL
PC12	-	-	-	-	-	-	-	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVENTOL
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOL
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOL
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOL
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVENTOL
PD1	-	-	-	-	-	SPI2_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTOL
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31 / SEG43	-	-	TIMx_IC3	EVENTOL
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	-	-	-	-	TIMx_IC4	EVENTOL
PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS	-	-	-	-	-	TIMx_IC1	EVENTOL
PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	-	TIMx_IC2	EVENTOL
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-		TIMx_IC3	EVENTOL
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	-	-	-	-	TIMx_IC4	EVENTOL
PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	-	TIMx_IC1	EVENTOL
PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	-	TIMx_IC2	EVENTOL

Pin descriptions

5 Memory mapping

The memory map is shown in the following figure.

- 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C
T _{LEAD}	Maximum lead temperature during soldering	see note ⁽¹⁾	°C

Table 13. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

6.3 Operating conditions

6.3.1 General operating conditions

Table 14.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit			
f _{HCLK}	Internal AHB clock frequency	-	0	32				
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz			
f _{PCLK2}	Internal APB2 clock frequency	-	0	32				
		BOR detector disabled	1.65	3.6				
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	v			
	BOR detector dis power of		1.65	3.6				
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V			
VDDA` ′	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	32 32 32 32 3.6 3.6 3.6				
		FT pins: 2.0 V ≤V _{DD}	-0.3	5.5 ⁽³⁾				
V	I/O input voltage	FT pins: V _{DD} < 2.0 V	-0.3	5.25 ⁽³⁾	V			
V _{IN}		BOOT0	0	5.5	v			
		Any other pin	-0.3	V _{DD} +0.3				

Symbol	Parameter	Conditions	Min	Max	Unit		
		UFBGA100 package	-	339			
		LQFP100 package	-	435			
Р	Power dissipation at TA = 85 °C for	TFBGA64 package	-	308			
P _D	suffix 6 or TA = 105 °C for suffix 7 ⁽⁴⁾ LQFP64 package LQFP48 package UFQFPN48 package	LQFP64 package	-	444	mW		
		LQFP48 package	-	364			
		-	606				
Та	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C		
IA	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105	C		
т.	Junction temperature range	6 suffix version	-40	105	ŝ		
TJ	Junction temperature range	7 suffix version	-40	110	°C		

 Table 14. General operating conditions (continued)

1. When the ADC is used, refer to *Table 55: ADC characteristics*.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

3. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 13: Thermal characteristics on page 56).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 13: Thermal characteristics on page 56*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in the following table.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
	V _{DD} rise time rate	BOR detector enabled	0	-	∞	×			
+ (1)	V _{DD} lise time late	BOR detector disabled	0	-	1000				
^t VDD ^(*)	V fall time rate	BOR detector enabled	20	-	~	µs/V			
	V _{DD} fall time rate	BOR detector disabled	0	-	1000				
T (1)	Deast temperization	V _{DD} rising, BOR enabled	-	2	3.3	ms			
t _{VDD} ⁽¹⁾ T _{RSTTEMPO} ⁽¹⁾ V _{POR/PDR}	Reset temporization	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6				
V	Power on/power down reset	Falling edge	1	1.5	1.65	V			
V POR/PDR	threshold	Rising edge	1.3	1.5	1.65	V			

Table 15. Embedded reset and power control block characteristics

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
				1 MHz	215	285	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	490	μA
				4 MHz	725	285 490 1000 5 1.3 5 2.15 4 2.9 5.2 5 9.6 4.4 10.2 1	
		$f_{HSE} = f_{HCLK}$ up to 16 MHz, included		4 MHz	0.915	1.3	
		f _{HSE} = f _{HCLK} /2 above	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.15	
	Supply	16 MHz (PLL ON) ⁽²⁾		16 MHz	3.4	5 285 0 490 5 1000 15 1.3 75 2.15 4 4 1 2.9 2 5.2 9.6 5 4.4 2 10.2 41 0.085 25 0.180	-
	Supply current in	(,		8 MHz	2.1	2.9	
I _{DD (Run}	Run mode, code		VOS[1:0] = 01 32 Mł	16 MHz	4.2	5.2	
from Flash)	executed			32 MHz	8.25	9.6	
	from Flash	HSI clock source (16		16 MHz	3.5	4.4	mA
		MHz) Range 1, V _{CORE} =1.8 V VOS[1:0] = 01 32 MHz	32 MHz	8.2	10.2		
		MSI clock, 65 kHz		65 kHz	0.041	0.085	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	0.125	0.180	
		MSI clock, 4.2 MHz		4.2 MHz	0.775	0.935	

Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	50	155	
			V _{CORE} =1.2 V	2 MHz	78.5	235	
			VOS[1:0] = 11	4 MHz	140	370 ⁽³⁾	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	165	375	
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	310	530	
		above 16 MHz (PLL ON) ⁽²⁾		16 MHz	590	1000	
	Quanta		Range 1,	8 MHz	350	615	
	Supply current in		V _{CORE} =1.8 V	16 MHz	680	1200	
	Sleep		VOS[1:0] = 01	32 MHz	1600	2350	μA
	mode, Flash OFF	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	640	970	
		V _{CO}	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2350	
		MSI clock, 65 kHz	Range 3,	65 kHz	19	60	
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	33	90	
I _{DD}		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	145	210	
(Sleep)		f _{HSE} = f _{HCLK} up to 16 MHz included, f _{HSE} = f _{HCLK} /2	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	1 MHz	60.5	145	
				2 MHz	89.5	225	
				4 MHz	150	360	
			ded, Range 2, 2 V _{CORE} =1.5 V	4 MHz	180	370	
				8 MHz	320	490	
		above 16 MHz (PLL ON) ⁽²⁾		16 MHz	605	895	
	Supply	,	Range 1,	8 MHz	380	565	
	current in		V _{CORE} =1.8 V	16 MHz	695	1070	
	Sleep		VOS[1:0] = 01	32 MHz	1600	2200	μA
	mode, Flash ON	lash ON HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	650	970	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2320	
		MSI clock, 65 kHz	Range 3,	65 kHz	29.5	65	
		MSI clock, 524 kHz	V _{CORE} =1.2V	524 kHz	44	80	
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	155	220	

Table 20. Current consumption in Sleep mode

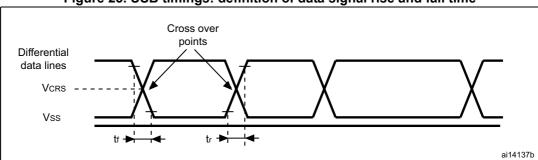
1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

3. Guaranteed by test in production.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	ls				
V_{DD}	USB operating voltage ⁽²⁾	-	3.0	3.6	V
$V_{DI}^{(3)}$	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	2.0	
Output le	vels				
$V_{OL}^{(4)}$	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	v
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}^{(5)}$	2.8	3.6	

Table 52. USB DC electrical characteristics


1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Guaranteed by test in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time

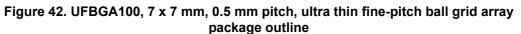
Table 53. USB: full speed electrical characteristics

Driver characteristics ⁽¹⁾							
Symbol	Parameter	Conditions	Min	Max	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V		

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification section 7 (version 2.0).

6.3.18 DAC electrical specifications


Data guaranteed by design, unless otherwise specified.

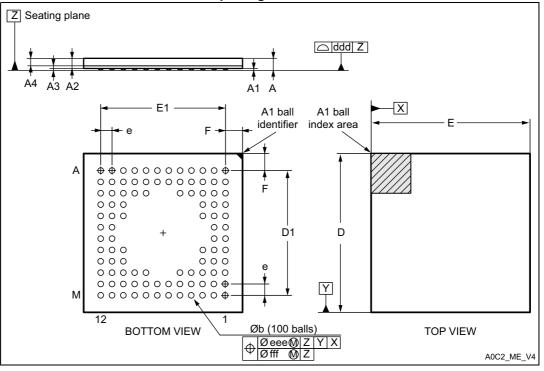

Symbol	Parameter	C	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-		-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must always be below V _{DDA}		1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-			V_{SSA}		V
(4)	Current consumption on	No load, mid	dle code (0x800)	-	130	220	μA
I _{DDVREF+} (1)	V _{REF+} supply V _{REF+} = 3.3 V	No load, wor	st code (0x000)	-	220	350	μA
	Current consumption on	No load, mid	ldle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, worst code (0xF1C)		-	320	520	μA
D	Resistive load	DAC output	Connected to V_{SSA}	5	-	-	kΩ
R _L	Resistive load	buffer ON Connected to V _{DDA}		25	-	-	K52
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ
	Voltage on DAC_OUT	DAC output	buffer ON	0.2	-	V _{DDA} – 0.2	V
V _{DAC_OUT}	output	DAC output	buffer OFF	0.5	-	V _{REF+} 1LSB	mV
DNL ⁽¹⁾	Differential non linearity ⁽²⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	1.5	3	
Ditt		No R_L , $C_L \le DAC$ output		- 1.5		3	
INL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF, F}$ DAC output	-	-	2	4	
	Integral nor linearity ·	No R_L , $C_L \le DAC$ output		-	2	4	LSB
Offset ⁽¹⁾	Offset error at code 0x800 ⁽⁴⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	±10	±25	
		No R_L , $C_L \le DAC$ output	-	-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R_L , $C_L \le DAC$ output		-	±1.5	±5	

Table	58.	DAC	characteristics
TUDIC	vv .	DAO	onunuotoristios

7.5 UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information

1. Drawing is not to scale.

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
package mechanical data

puolitigo moonaniour auta										
Cumhal		millimeters		inches ⁽¹⁾						
Symbol	Min	Тур	Мах	Min	Тур	Мах				
А	-	-	0.6	-	-	0.0236				
A1	0.05	0.08	0.11	0.002	0.0031	0.0043				
A2	0.4	0.45	0.5	0.0157	0.0177	0.0197				
A3	0.08	0.13	0.18	0.0031	0.0051	0.0071				
A4	0.27	0.32	0.37	0.0106	0.0126	0.0146				
b	0.2	0.25	0.3	0.0079	0.0098	0.0118				
D	6.95	7	7.05	0.2736	0.2756	0.2776				
D1	5.45	5.5	5.55	0.2146	0.2165	0.2185				
Е	6.95	7	7.05	0.2736	0.2756	0.2776				
E1	5.45	5.5	5.55	0.2146	0.2165	0.2185				
е	-	0.5	-	-	0.0197	-				

TFBGA64 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

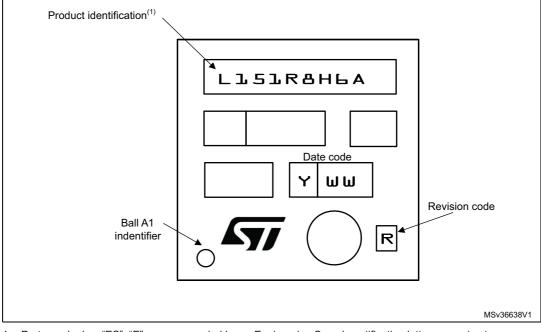


Figure 47. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Ordering information

Table 73. Ordering info	ormation	schem	е			
Example:	STM32	L 152	RB	Т 6	А	D TR
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
L = Low-power		_				
Device subfamily						
151: Devices without LCD						
152: Devices with LCD						
Pin count						
C = 48 pins						
R = 64 pins						
V = 100 pins						
Flash memory size						
6 = 32 Kbytes of Flash memory						
8 = 64 Kbytes of Flash memory						
B = 128 Kbytes of Flash memory						
Package						
H = BGA						
T = LQFP						
U = UFQFPN						
Temperature range						
6 = Industrial temperature range, -40 to 85 °C				· · ·		
7 = Industrial temperature range, -40 to 105 °C						
Options						
A = device generation A						
No character = VDD range: 1.8 to 3.6 V and BOR enabled						
D = VDD range: 1.65 to 3.6 V and BOR disabled						
,						
Packing						
TR = tape and reel						

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

