



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                              |
| Core Size                  | 32-Bit Single-Core                                                           |
| Speed                      | 32MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB                         |
| Peripherals                | Brown-out Detect/Reset, Cap Sense, DMA, I <sup>2</sup> S, LCD, POR, PWM, WDT |
| Number of I/O              | 37                                                                           |
| Program Memory Size        | 32KB (32K x 8)                                                               |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | 4K x 8                                                                       |
| RAM Size                   | 16K × 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                  |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                        |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 48-LQFP                                                                      |
| Supplier Device Package    | 48-LQFP (7x7)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152c6t6a       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|   |       | 3.15.1   | General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)  | . 29       |
|---|-------|----------|-------------------------------------------------------------------|------------|
|   |       | 3.15.2   | Basic timers (TIM6 and TIM7)                                      | . 29       |
|   |       | 3.15.3   | SysTick timer                                                     | . 29       |
|   |       | 3.15.4   | Independent watchdog (IWDG)                                       | . 29       |
|   |       | 3.15.5   | Window watchdog (WWDG)                                            | . 30       |
|   | 3.16  | Commu    | unication interfaces                                              | 30         |
|   |       | 3.16.1   | I <sup>2</sup> C bus                                              | . 30       |
|   |       | 3.16.2   | Universal synchronous/asynchronous receiver transmitter (USART) . | . 30       |
|   |       | 3.16.3   | Serial peripheral interface (SPI)                                 | . 30       |
|   |       | 3.16.4   | Universal serial bus (USB)                                        | . 30       |
|   | 3.17  | CRC (c   | cyclic redundancy check) calculation unit                         | 31         |
|   | 3.18  | Develo   | pment support                                                     | 31         |
|   |       |          |                                                                   |            |
| 4 | Pin d | escripti | ions                                                              | 32         |
| 5 | Mom   | oru mar  | oping                                                             | <b>6</b> 1 |
| 5 | MEIII | ուծ արգ  | Jping                                                             | 51         |
| 6 | Elect | rical ch | aracteristics                                                     | 52         |
|   | 6.1   | Parame   | eter conditions                                                   | 52         |
|   |       | 6.1.1    | Minimum and maximum values                                        | . 52       |
|   |       | 6.1.2    | Typical values                                                    | . 52       |
|   |       | 6.1.3    | Typical curves                                                    | . 52       |
|   |       | 6.1.4    | Loading capacitor                                                 | . 52       |
|   |       | 6.1.5    | Pin input voltage                                                 | . 52       |
|   |       | 6.1.6    | Power supply scheme                                               | . 53       |
|   |       | 6.1.7    | Optional LCD power supply scheme                                  | . 54       |
|   |       | 6.1.8    | Current consumption measurement                                   | . 54       |
|   | 6.2   | Absolut  | te maximum ratings                                                | 55         |
|   | 6.3   | Operati  | ing conditions                                                    | 56         |
|   |       | 6.3.1    | General operating conditions                                      | . 56       |
|   |       | 6.3.2    | Embedded reset and power control block characteristics            | . 57       |
|   |       | 6.3.3    | Embedded internal reference voltage                               | . 59       |
|   |       | 6.3.4    | Supply current characteristics                                    | . 60       |
|   |       | 6.3.5    | Wakeup time from Low-power mode                                   | . 70       |
|   |       | 6.3.6    | External clock source characteristics                             | . 72       |
|   |       | 6.3.7    | Internal clock source characteristics                             | . 77       |
|   |       | 6.3.8    | PLL characteristics                                               | . 79       |
|   |       |          |                                                                   |            |



## 2.1 Device overview

## Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

| Peripheral                             |                                                                                                     | STM                                                                                                    | 32L15xC | xxxA  | STM32L15xRxxxA                                       |     |                   | STM32L15xVxxxA   |    |
|----------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------|-------|------------------------------------------------------|-----|-------------------|------------------|----|
| Flash (Kbytes)                         | 32                                                                                                  | 64                                                                                                     | 128     | 32    | 64                                                   | 128 | 64                | 128              |    |
| Data EEPROM (Kb                        | oytes)                                                                                              |                                                                                                        |         |       |                                                      | 4   |                   |                  |    |
| RAM (Kbytes)                           |                                                                                                     | 16                                                                                                     | 32      | 32    | 16                                                   | 32  | 32                | 32               | 32 |
| Timers                                 | General-<br>purpose                                                                                 |                                                                                                        | 6       |       |                                                      |     |                   |                  |    |
|                                        | Basic                                                                                               |                                                                                                        |         |       |                                                      | 2   |                   |                  |    |
|                                        | SPI                                                                                                 |                                                                                                        |         |       |                                                      | 2   |                   |                  |    |
| Communication                          | l <sup>2</sup> C                                                                                    |                                                                                                        |         |       |                                                      | 2   |                   |                  |    |
| interfaces                             | USART                                                                                               | 3                                                                                                      |         |       |                                                      |     |                   |                  |    |
|                                        | USB                                                                                                 | 1                                                                                                      |         |       |                                                      |     |                   |                  |    |
| GPIOs                                  |                                                                                                     | 37                                                                                                     |         |       | 51/50 <sup>(1)</sup>                                 |     |                   | 83               |    |
| 12-bit synchronize<br>Number of channe |                                                                                                     | 1<br>14 channels                                                                                       |         |       | 1<br>20/19 channels <sup>(1)</sup>                   |     |                   | 1<br>24 channels |    |
| 12-bit DAC<br>Number of channe         | els                                                                                                 | 2 2                                                                                                    |         |       |                                                      |     |                   |                  |    |
| LCD (STM32L152)<br>COM x SEG           | xxxA Only)                                                                                          | 4x16                                                                                                   |         |       | 4x32/4x31 <sup>(1)</sup><br>8x28/8x27 <sup>(1)</sup> |     |                   | 4x44<br>8x40     |    |
| Comparator                             |                                                                                                     | 2                                                                                                      |         |       |                                                      |     |                   |                  |    |
| Capacitive sensing                     | g channels                                                                                          |                                                                                                        | 13      |       | 20                                                   |     |                   |                  |    |
| Max. CPU frequen                       | су                                                                                                  | 32 MHz                                                                                                 |         |       |                                                      |     |                   |                  |    |
| Operating voltage                      | 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option<br>1.65 V to 3.6 V without BOR option |                                                                                                        |         |       |                                                      |     |                   |                  |    |
| Operating tempera                      | atures                                                                                              | Ambient operating temperatures: –40 to +85 °C / –40 to + 105 °C<br>Junction temperature: -40 to +110°C |         |       |                                                      |     | 05 °C             |                  |    |
| Packages                               |                                                                                                     | LQFP                                                                                                   | 48, UFQ | FPN48 | LQFP64, TFBGA64                                      |     | LQFP100, UFBGA100 |                  |    |

1. For TFBGA64 package (instead of PC3 pin there is  $V_{\mathsf{REF}^+}$  pin).



|                                        |                            |                             | Low-         | Low-           |                                                                                            | Stop                                   | 5                                          | Standby                                      |
|----------------------------------------|----------------------------|-----------------------------|--------------|----------------|--------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------------|
| lps                                    | Run/Active                 | Sleep                       | power<br>Run | power<br>Sleep |                                                                                            | Wakeup<br>capability                   |                                            | Wakeup<br>capability                         |
| DAC                                    | Y                          | Y                           | Y            | Y              | Y                                                                                          | -                                      | -                                          | -                                            |
| Temperature<br>sensor                  | Y                          | Y                           | Y            | Y              | Y                                                                                          | -                                      | -                                          | -                                            |
| Comparators                            | Y                          | Y                           | Y            | Y              | Y                                                                                          | Y                                      | -                                          | -                                            |
| 16-bit Timers                          | Y                          | Y                           | Y            | Y              | -                                                                                          | -                                      | -                                          | -                                            |
| IWDG                                   | Y                          | Y                           | Y            | Y              | Y                                                                                          | Y                                      | Y                                          | Y                                            |
| WWDG                                   | Y                          | Y                           | Y            | Y              | -                                                                                          | -                                      | -                                          | -                                            |
| Touch sensing                          | Y                          | -                           | -            | -              | -                                                                                          | -                                      | -                                          | -                                            |
| Systick Timer                          | Y                          | Y                           | Y            | Y              | -                                                                                          | -                                      | -                                          | -                                            |
| GPIOs                                  | Y                          | Y                           | Y            | Y              | Y                                                                                          | Y                                      | -                                          | 3 pins                                       |
| Wakeup time to<br>Run mode             | 0 µs                       | 0.4 µs                      | 3 µs         | 46 µs          |                                                                                            | < 8 µs                                 |                                            | 58 µs                                        |
|                                        |                            |                             |              |                | 0.43 μA (No<br>RTC) V <sub>DD</sub> =1.8 V<br>1.13 μA (with<br>RTC) V <sub>DD</sub> =1.8 V |                                        | 0.27 μA (No<br>RTC) V <sub>DD</sub> =1.8 V |                                              |
| Consumption                            | Down to                    | Down to                     | Down to      | Down to        |                                                                                            |                                        |                                            | 0.87 μA (with<br>RTC) V <sub>DD</sub> =1.8 V |
| V <sub>DD</sub> =1.8V to 3.6V<br>(Typ) | 185 µA/MHz<br>(from Flash) | 36.9 µA/MHz<br>(from Flash) | 10.9 µA      | 5.5 µA         | 0.44 μA (No<br>RTC) V <sub>DD</sub> =3.0 V                                                 |                                        | 0.28 μA (No<br>RTC) V <sub>DD</sub> =3.0 V |                                              |
|                                        |                            |                             |              |                |                                                                                            | 8 µA (with<br>) V <sub>DD</sub> =3.0 V |                                            | 1 μΑ (with<br>) V <sub>DD</sub> =3.0 V       |

| Table 5. Working mode-dependent functionalities (fro | rom Run/active down to standby) (continued) |
|------------------------------------------------------|---------------------------------------------|
|------------------------------------------------------|---------------------------------------------|

1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.

## 3.2 ARM<sup>®</sup> Cortex<sup>®</sup>-M3 core with MPU

The ARM<sup>®</sup> Cortex<sup>®</sup>-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM<sup>®</sup> Cortex<sup>®</sup>-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.

Owing to its embedded ARM core, the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices are compatible with all ARM tools and software.



## Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

## 3.3 Reset and supply management

## 3.3.1 Power supply schemes

- V<sub>DD</sub> = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V<sub>DD</sub> pins.
- $V_{SSA}$ ,  $V_{DDA}$  = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to  $V_{DDA}$  is 1.8 V when the ADC is used).  $V_{DDA}$  and  $V_{SSA}$  must be connected to  $V_{DD}$  and  $V_{SS}$ , respectively.

## 3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the  $V_{DD}$  threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the  $V_{DD}$  min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on  $V_{DD}$  at least 1 ms after it exits the POR area.



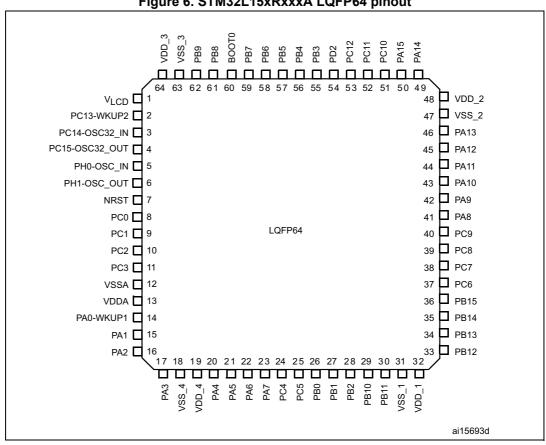



Figure 6. STM32L15xRxxxA LQFP64 pinout

1. This figure shows the package top view.



|         |        |         |          |                    |          | 14 31                   | INISZL        | 152X0/0/D-A                                      | pin definitions (contin                                      | •                                    |
|---------|--------|---------|----------|--------------------|----------|-------------------------|---------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------|
|         | 1      | Pins    | ;        | 1                  |          |                         |               |                                                  | Pins functio                                                 | ns                                   |
| LQFP100 | LQFP64 | TFBGA64 | UFBGA100 | LQFP48 or UFQFPN48 | Pin name | Pin type <sup>(1)</sup> | I/O structure | Main<br>function <sup>(2)</sup><br>(after reset) | Alternate functions                                          | Additional<br>functions              |
| 51      | 33     | H8      | L12      | 25                 | PB12     | I/O                     | FT            | PB12                                             | SPI2_NSS/I2C2_SMBA/<br>USART3_CK/<br>LCD_SEG12/<br>TIM10_CH1 | ADC_IN18/<br>COMP1_INP<br>/VLCDRAIL2 |
| 52      | 34     | G8      | K12      | 26                 | PB13     | I/O                     | FT            | PB13                                             | SPI2_SCK/<br>USART3_CTS/<br>LCD_SEG13/TIM9_CH1               | ADC_IN19/<br>COMP1_INP               |
| 53      | 35     | F8      | K11      | 27                 | PB14     | I/O                     | FT            | PB14                                             | SPI2_MISO/<br>USART3_RTS/<br>LCD_SEG14/TIM9_CH2              | ADC_IN20/<br>COMP1_INP               |
| 54      | 36     | F7      | K10      | 28                 | PB15     | I/O                     | FT            | PB15                                             | SPI2_MOSI/<br>LCD_SEG15/<br>TIM11_CH1                        | ADC_IN21/<br>COMP1_INP/<br>RTC_REFIN |
| 55      | -      | -       | K9       | -                  | PD8      | I/O                     | FT            | PD8                                              | USART3_TX/<br>LCD_SEG28                                      | -                                    |
| 56      | -      | -       | K8       | -                  | PD9      | I/O                     | FT            | PD9                                              | USART3_RX/<br>LCD_SEG29                                      | -                                    |
| 57      | -      | -       | J12      | -                  | PD10     | I/O                     | FT            | PD10                                             | USART3_CK/<br>LCD_SEG30                                      | -                                    |
| 58      | -      | -       | J11      | -                  | PD11     | I/O                     | FT            | PD11                                             | USART3_CTS/<br>LCD_SEG31                                     | -                                    |
| 59      | -      | -       | J10      | -                  | PD12     | I/O                     | FT            | PD12                                             | TIM4_CH1/<br>USART3_RTS/<br>LCD_SEG32                        | -                                    |
| 60      | -      | -       | H12      | -                  | PD13     | I/O                     | FT            | PD13                                             | TIM4_CH2/LCD_SEG33                                           | -                                    |
| 61      | -      | -       | H11      | -                  | PD14     | I/O                     | FT            | PD14                                             | TIM4_CH3/LCD_SEG34                                           | -                                    |
| 62      | -      | -       | H10      | -                  | PD15     | I/O                     | FT            | PD15                                             | TIM4_CH4/LCD_SEG35                                           | -                                    |
| 63      | 37     | F6      | E12      | -                  | PC6      | I/O                     | FT            | PC6                                              | TIM3_CH1/LCD_SEG24                                           | -                                    |
| 64      | 38     | E7      | E11      | -                  | PC7      | I/O                     | FT            | PC7                                              | TIM3_CH2/LCD_SEG25                                           | -                                    |
| 65      | 39     | E8      | E10      | -                  | PC8      | I/O                     | FT            | PC8                                              | TIM3_CH3/LCD_SEG26                                           | -                                    |
| 66      | 40     | D8      | D12      | -                  | PC9      | I/O                     | FT            | PC9                                              | TIM3_CH4/LCD_SEG27                                           | -                                    |

## Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

DocID024330 Rev 4



## 6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

| Symbol                              | Ratings                                                                         | Min                  | Мах                  | Unit |
|-------------------------------------|---------------------------------------------------------------------------------|----------------------|----------------------|------|
| V <sub>DD</sub> -V <sub>SS</sub>    | External main supply voltage (including $V_{DDA}$ and $V_{DD}$ ) <sup>(1)</sup> | -0.3                 | 4.0                  |      |
| V <sub>IN</sub> <sup>(2)</sup>      | Input voltage on five-volt tolerant pin                                         | V <sub>SS</sub> –0.3 | V <sub>DD</sub> +4.0 | V    |
|                                     | Input voltage on any other pin                                                  | V <sub>SS</sub> -0.3 | 4.0                  |      |
| ΔV <sub>DDx</sub>                   | Variations between different V <sub>DD</sub> power pins                         | -                    | 50                   | mV   |
| V <sub>SSX</sub> -V <sub>SS</sub>   | Variations between all different ground pins <sup>(3)</sup>                     | -                    | 50                   |      |
| V <sub>REF+</sub> -V <sub>DDA</sub> | Allowed voltage difference for $V_{REF+} > V_{DDA}$                             | -                    | 0.4                  | V    |
| V <sub>ESD(HBM)</sub>               | Electrostatic discharge voltage<br>(human body model)                           | see Section 6        | see Section 6.3.11   |      |

1. All main power (V<sub>DD</sub>, V<sub>DDA</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supply, in the permitted range.

2. V<sub>IN</sub> maximum must always be respected. Refer to *Table 12* for maximum allowed injected current values.

3. Include VREF- pin.

## Table 12. Current characteristics

| Symbol                               | Ratings                                                                       | Max.  | Unit |
|--------------------------------------|-------------------------------------------------------------------------------|-------|------|
| $\Sigma I_{VDD}$                     | Total current into sum of all $V_{DD_x}$ power lines (source) <sup>(1)</sup>  | 100   |      |
| $\Sigma I_{VSS}^{(2)}$               | Total current out of sum of all $V_{SS_x}$ ground lines (sink) <sup>(1)</sup> | 100   |      |
| I <sub>VDD(PIN)</sub>                | Maximum current into each V <sub>DD_x</sub> power pin (source) <sup>(1)</sup> | 70    |      |
| I <sub>VSS(PIN)</sub>                | Maximum current out of each $V_{SS_x}$ ground pin (sink) <sup>(1)</sup>       | -70   | mA   |
| 1                                    | Output current sunk by any I/O and control pin                                | 25    |      |
| Ι <sub>ΙΟ</sub>                      | Output current sourced by any I/O and control pin                             | - 25  |      |
| 21                                   | Total output current sunk by sum of all IOs and control pins <sup>(2)</sup>   | 60    |      |
| ΣΙ <sub>ΙΟ(ΡΙΝ)</sub>                | Total output current sourced by sum of all IOs and control $pins^{(2)}$       | -60   |      |
| (3)                                  | Injected current on five-volt tolerant I/O <sup>(4)</sup> RST and B pins      | -5/+0 |      |
| I <sub>INJ(PIN)</sub> <sup>(3)</sup> | Injected current on any other pin <sup>(5)</sup>                              | ± 5   |      |
| ΣI <sub>INJ(PIN)</sub>               | Total injected current (sum of all I/O and control pins) <sup>(6)</sup>       | ± 25  |      |

1. All main power ( $V_{DD}$ ,  $V_{DDA}$ ) and ground ( $V_{SS}$ ,  $V_{SSA}$ ) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.



| Symbol | Parameter                                             | Conditions                               | Min | Max | Unit |  |
|--------|-------------------------------------------------------|------------------------------------------|-----|-----|------|--|
|        |                                                       | UFBGA100 package                         | -   | 339 |      |  |
|        |                                                       | LQFP100 package                          | -   | 435 |      |  |
| Р      | Power dissipation at TA = 85 °C for                   | TFBGA64 package                          | -   | 308 | m)// |  |
| PD     | suffix 6 or $TA = 105 \degree C$ for suffix $7^{(4)}$ | LQFP64 package                           | -   | 444 | mW   |  |
|        |                                                       | LQFP48 package                           | -   | 364 |      |  |
|        |                                                       | UFQFPN48 package                         | -   | 606 |      |  |
| Та     | Ambient temperature for 6 suffix version              | Maximum power dissipation <sup>(5)</sup> | -40 | 85  | °C   |  |
| IA     | Ambient temperature for 7 suffix version              | Maximum power dissipation                | -40 | 105 | C    |  |
| т.     | Junction temperature range                            | 6 suffix version                         | -40 | 105 | °C   |  |
| TJ     | Junction temperature range                            | 7 suffix version                         | -40 | 110 | C    |  |

 Table 14. General operating conditions (continued)

1. When the ADC is used, refer to *Table 55: ADC characteristics*.

2. It is recommended to power  $V_{DD}$  and  $V_{DDA}$  from the same source. A maximum difference of 300 mV between  $V_{DD}$  and  $V_{DDA}$  can be tolerated during power-up and operation.

3. To sustain a voltage higher than  $V_{DD}$ +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T<sub>A</sub> is lower, higher P<sub>D</sub> values are allowed as long as T<sub>J</sub> does not exceed T<sub>J</sub> max (see Table 13: Thermal characteristics on page 56).

In low-power dissipation state, T<sub>A</sub> can be extended to -40°C to 105°C temperature range as long as T<sub>J</sub> does not exceed T<sub>J</sub> max (see *Table 13: Thermal characteristics on page 56*).

## 6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in the following table.

| Symbol                               | Parameter                      | Conditions                                          | Min | Тур | Max  | Unit |  |
|--------------------------------------|--------------------------------|-----------------------------------------------------|-----|-----|------|------|--|
|                                      | V <sub>DD</sub> rise time rate | BOR detector enabled                                | 0   | -   | ∞    |      |  |
| + (1)                                | V <sub>DD</sub> lise time late | BOR detector disabled                               | 0   | -   | 1000 | µs/V |  |
| t <sub>VDD</sub> <sup>(1)</sup>      | V fall time rate               | BOR detector enabled                                | 20  | -   | ~    |      |  |
|                                      | V <sub>DD</sub> fall time rate | BOR detector disabled                               | 0   | -   | 1000 |      |  |
| <b>T</b> (1)                         | Reset temporization            | V <sub>DD</sub> rising, BOR enabled                 | -   | 2   | 3.3  |      |  |
| T <sub>RSTTEMPO</sub> <sup>(1)</sup> | Reset temporization            | V <sub>DD</sub> rising, BOR disabled <sup>(2)</sup> | 0.4 | 0.7 | 1.6  | ms   |  |
| V                                    | Power on/power down reset      | Falling edge                                        | 1   | 1.5 | 1.65 | v    |  |
| V <sub>POR/PDR</sub>                 | threshold                      | Rising edge                                         | 1.3 | 1.5 | 1.65 | v    |  |

#### Table 15. Embedded reset and power control block characteristics

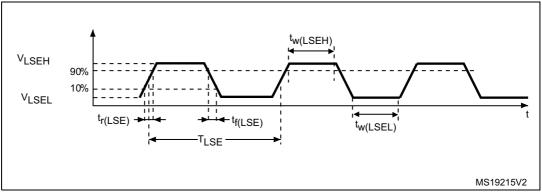


| Symbol                            | Parameter                                                  |                                            | Conditions                                                   |                                         |         |     |    |
|-----------------------------------|------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|-----------------------------------------|---------|-----|----|
|                                   |                                                            |                                            | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 32 kHz<br>Flash OFF | $T_A = -40 \ ^\circ C$ to 25 $^\circ C$ | C 5.5 - |     |    |
|                                   |                                                            |                                            | MSI clock, 65 kHz                                            | $T_A$ = -40 °C to 25 °C                 | 15      | 16  |    |
|                                   |                                                            |                                            | f <sub>HCLK</sub> = 32 kHz                                   | T <sub>A</sub> = 85 °C                  | 20      | 23  |    |
|                                   |                                                            | All                                        | Flash ON                                                     | T <sub>A</sub> = 105 °C                 | 24      | 26  |    |
|                                   |                                                            | peripherals<br>OFF, V <sub>DD</sub>        | MSI clock, 65 kHz                                            | $T_A$ = -40 °C to 25 °C                 | 15      | 16  |    |
|                                   |                                                            | from 1.65 V<br>to 3.6 V                    | f <sub>HCLK</sub> = 65 kHz,                                  | T <sub>A</sub> = 85 °C                  | 20.5    | 23  |    |
|                                   |                                                            | 10 3.0 V                                   | Flash ON                                                     | T <sub>A</sub> = 105 °C                 | 25.4    | 27  |    |
|                                   |                                                            |                                            |                                                              | $T_A$ = -40 °C to 25 °C                 | 18      | 20  |    |
|                                   | Supply<br>current in<br>Low-power<br>sleep<br>mode         |                                            | MSI clock, 131 kHz                                           | T <sub>A</sub> = 55 °C                  | 21      | 22  | μΑ |
| I <sub>DD</sub> (LP               |                                                            |                                            | f <sub>HCLK</sub> = 131 kHz,<br>Flash ON                     | T <sub>A</sub> = 85 °C                  | 23      | 27  |    |
| Sleep)                            |                                                            |                                            |                                                              | T <sub>A</sub> = 105 °C                 | 28      | 31  |    |
|                                   |                                                            |                                            | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 32 kHz              | $T_A$ = -40 °C to 25 °C                 | 15      | 16  |    |
|                                   |                                                            |                                            |                                                              | T <sub>A</sub> = 85 °C                  | 20      | 22  |    |
|                                   |                                                            |                                            |                                                              | T <sub>A</sub> = 105 °C                 | 24      | 26  |    |
|                                   |                                                            | TIM9 and USART1                            | MSI clock, 65 kHz<br>f <sub>HCLK</sub> = 65 kHz              | $T_A$ = -40 °C to 25 °C                 | 15      | 16  |    |
|                                   |                                                            | enabled,                                   |                                                              | T <sub>A</sub> = 85 °C                  | 20.5    | 23  | 1  |
|                                   |                                                            | Flash ON,<br>V <sub>DD</sub> from          | HCLK - 00 KHZ                                                | T <sub>A</sub> = 105 °C                 | 25.4    | 27  |    |
|                                   |                                                            | 1.65 V to<br>3.6 V                         |                                                              | $T_A$ = -40 °C to 25 °C                 | 18      | 20  |    |
|                                   |                                                            | 5.0 V                                      | MSI clock, 131 kHz                                           | T <sub>A</sub> = 55 °C                  | 21      | 22  |    |
|                                   |                                                            |                                            | f <sub>HCLK</sub> = 131 kHz                                  | T <sub>A</sub> = 85 °C                  | 23      | 27  | -  |
|                                   |                                                            |                                            |                                                              | T <sub>A</sub> = 105 °C                 | 28      | 30  |    |
| I <sub>DD</sub> Max<br>(LP Sleep) | Max<br>allowed<br>current in<br>Low-power<br>Sleep<br>mode | V <sub>DD</sub> from<br>1.65 V to<br>3.6 V | -                                                            | -                                       | -       | 200 |    |

Table 22. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.




## Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

| Symbol                                       | Parameter                             | Min                | Тур    | Мах                | Unit |
|----------------------------------------------|---------------------------------------|--------------------|--------|--------------------|------|
| f <sub>LSE_ext</sub>                         | User external clock source frequency  | 1                  | 32.768 | 1000               | kHz  |
| V <sub>LSEH</sub>                            | OSC32_IN input pin high level voltage | 0.7V <sub>DD</sub> | -      | V <sub>DD</sub>    | -    |
| V <sub>LSEL</sub>                            | OSC32_IN input pin low level voltage  | V <sub>SS</sub>    | -      | 0.3V <sub>DD</sub> | -    |
| t <sub>w(LSEH)</sub><br>t <sub>w(LSEL)</sub> | OSC32_IN high or low time             | 465                | -      | -                  | 20   |
| t <sub>r(LSE)</sub><br>t <sub>f(LSE)</sub>   | OSC32_IN rise or fall time            | -                  | -      | 10                 | ns   |
| C <sub>IN(LSE)</sub>                         | OSC32_IN input capacitance            | -                  | 0.6    | -                  | pF   |

| Table 28. Low-speed external user clock characteristics <sup>(1)</sup> |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|

1. Guaranteed by design.



## Figure 16. Low-speed external clock source AC timing diagram

## High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Table 29. HSE os | cillator characteristics <sup>(1)(2)</sup> |
|------------------|--------------------------------------------|
|------------------|--------------------------------------------|

| Symbol              | Parameter            | Conditions | Min | Тур | Мах | Unit |
|---------------------|----------------------|------------|-----|-----|-----|------|
| f <sub>OSC_IN</sub> | Oscillator frequency | -          | 1   |     | 24  | MHz  |
| R <sub>F</sub>      | Feedback resistor    | -          |     | 200 | -   | kΩ   |



## Multi-speed internal (MSI) RC oscillator

| Table 33. MSI oscillator characteristics |                                                                                          |                                          |      |     |      |
|------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------|------|-----|------|
| Symbol                                   | Parameter                                                                                | Condition                                | Тур  | Мах | Unit |
|                                          |                                                                                          | MSI range 0                              | 65.5 | -   |      |
|                                          |                                                                                          | MSI range 1                              | 131  | -   | kU-  |
|                                          |                                                                                          | MSI range 2                              | 262  | -   | kHz  |
| f <sub>MSI</sub>                         | Frequency after factory calibration, done at $V_{DD}$ = 3.3 V and T <sub>A</sub> = 25 °C | MSI range 3                              | 524  | -   |      |
|                                          |                                                                                          | MSI range 4                              | 1.05 | -   |      |
|                                          |                                                                                          | MSI range 5                              | 2.1  | -   | MHz  |
|                                          |                                                                                          | MSI range 6                              | 4.2  | -   |      |
| ACC <sub>MSI</sub>                       | Frequency error after factory calibration                                                | -                                        | ±0.5 | -   | %    |
| D <sub>TEMP(MSI)</sub> <sup>(1)</sup>    | MSI oscillator frequency drift<br>0 °C ≤T <sub>A</sub> ≤105 °C                           | -                                        | ±3   | -   | %    |
| D <sub>VOLT(MSI)</sub> <sup>(1)</sup>    | MSI oscillator frequency drift<br>1.65 V ≤V <sub>DD</sub> ≤3.6 V, T <sub>A</sub> = 25 °C | -                                        | -    | 2.5 | %/V  |
|                                          | MSI oscillator power consumption                                                         | MSI range 0                              | 0.75 | -   | μA   |
|                                          |                                                                                          | MSI range 1                              | 1    | -   |      |
|                                          |                                                                                          | MSI range 2                              | 1.5  | -   |      |
| I <sub>DD(MSI)</sub> <sup>(2)</sup>      |                                                                                          | MSI range 3                              | 2.5  | -   |      |
|                                          |                                                                                          | MSI range 4                              | 4.5  | -   |      |
|                                          |                                                                                          | MSI range 5                              | 8    | -   |      |
|                                          |                                                                                          | MSI range 6                              | 15   | -   |      |
|                                          |                                                                                          | MSI range 0                              | 30   | -   |      |
|                                          |                                                                                          | MSI range 1                              | 20   | -   |      |
|                                          |                                                                                          | MSI range 2                              | 15   | -   |      |
|                                          |                                                                                          | MSI range 3                              | 10   | -   |      |
| t                                        | MSI oscillator startup time                                                              | MSI range 4                              | 6    | -   |      |
| t <sub>SU(MSI)</sub>                     |                                                                                          | MSI range 5                              | 5    | -   | μs   |
|                                          |                                                                                          | MSI range 6,<br>Voltage range 1<br>and 2 | 3.5  | -   |      |
|                                          |                                                                                          | MSI range 6,<br>Voltage range 3          | 5    | -   |      |

## Table 33. MSI oscillator characteristics





## 6.3.9 Memory characteristics

The characteristics are given at  $T_{\text{A}}$  = -40 to 105  $^{\circ}\text{C}$  unless otherwise specified.

## **RAM** memory

| Table | 35. | RAM | and | hardware | reaisters |
|-------|-----|-----|-----|----------|-----------|
| 10010 | ••• |     | ana | naranaro | regiotore |

| Symbol | Parameter                          | Conditions           | Min  | Тур | Max | Unit |
|--------|------------------------------------|----------------------|------|-----|-----|------|
| VRM    | Data retention mode <sup>(1)</sup> | STOP mode (or RESET) | 1.65 | -   | -   | V    |

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

## Flash memory and data EEPROM

| Symbol            | Parameter                                             | Conditions                                      | Min  | Тур  | Max <sup>(1)</sup> | Unit |
|-------------------|-------------------------------------------------------|-------------------------------------------------|------|------|--------------------|------|
| V <sub>DD</sub>   | Operating voltage<br>Read / Write / Erase             | -                                               | 1.65 | -    | 3.6                | V    |
|                   | Programming / erasing time for                        | Erasing                                         | -    | 3.28 | 3.94               |      |
| t <sub>prog</sub> | byte / word / double word / half-<br>page             | Programming                                     | -    | 3.28 | 3.94               | ms   |
|                   | Average current during whole program/erase operation  | T <sub>A</sub> = 25 °C, V <sub>DD</sub> = 3.6 V | -    | 300  | -                  | μA   |
| I <sub>DD</sub>   | Maximum current (peak) during program/erase operation | Γ <sub>A</sub> = 25° C, V <sub>DD</sub> = 3.0 V | -    | 1.5  | 2.5                | mA   |

#### Table 36. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

## Table 37. Flash memory, data EEPROM endurance and data retention

| Symbol                          | Parameter                                                                      | Conditions              | Value              |     |     | Unit    |
|---------------------------------|--------------------------------------------------------------------------------|-------------------------|--------------------|-----|-----|---------|
| Symbol Parameter                |                                                                                | Conditions              | Min <sup>(1)</sup> | Тур | Мах | Unit    |
| NCYC <sup>(2)</sup>             | Cycling (erase / write)<br>Program memory                                      | $T_A = -40^{\circ}C$ to | 10                 | -   | -   | kovolos |
| INCTO: /                        | Cycling (erase / write)<br>EEPROM data memory                                  | 105 °C                  | 300                | -   | -   | kcycles |
|                                 | Data retention (program memory) after<br>10 kcycles at T <sub>A</sub> = 85 °C  | TRET = +85 °C           | 30                 | -   | -   |         |
| t <sub>RET</sub> <sup>(2)</sup> | Data retention (EEPROM data memory) after 300 kcycles at $T_A$ = 85 °C         | TRET - +05 C            | 30                 | -   | -   | voare   |
| 'RET`                           | Data retention (program memory) after<br>10 kcycles at T <sub>A</sub> = 105 °C | TRET = +105 °C          | 10                 | -   | -   | years   |
|                                 | Data retention (EEPROM data memory) after 300 kcycles at $T_A$ = 105 °C        | III.ET = 1103 C         | 10                 | _   | -   |         |

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

DocID024330 Rev 4



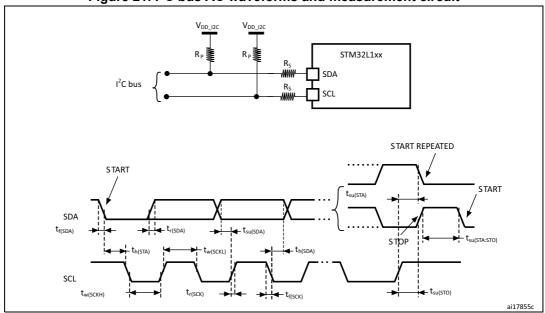



Figure 21. I<sup>2</sup>C bus AC waveforms and measurement circuit

- 1.  $R_S$  = series protection resistors
- 2.  $R_P$  = pull-up resistors
- 3.  $V_{DD_{12C}} = 12C$  bus supply
- 4. Measurement points are done at CMOS levels: 0.3V<sub>DD</sub> and 0.7V<sub>DD</sub>.

| £ (1.11-)              | I2C_CCR value           |
|------------------------|-------------------------|
| f <sub>SCL</sub> (kHz) | R <sub>P</sub> = 4.7 kΩ |
| 400                    | 0x801B                  |
| 300                    | 0x8024                  |
| 200                    | 0x8035                  |
| 100                    | 0x00A0                  |
| 50                     | 0x0140                  |
| 20                     | 0x0320                  |

## Table 49. SCL frequency $(f_{PCLK1} = 32 \text{ MHz}, V_{DD} = V_{DD_12C} = 3.3 \text{ V})^{(1)(2)}$

1.  $R_P$  = External pull-up resistance,  $f_{SCL}$  =  $I^2C$  speed.

 For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.



| Symbol                                                            | Parameter                                 | Conditions                                                                                                                                | Min  | Тур | Max <sup>(1)</sup> | Unit       |
|-------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------------------|------------|
| V <sub>DDA</sub>                                                  | Analog supply voltage                     | -                                                                                                                                         | 1.65 | -   | 3.6                | V          |
| V <sub>IN</sub>                                                   | Comparator 2 input voltage range          | -                                                                                                                                         | 0    | -   | V <sub>DDA</sub>   | V          |
| t                                                                 | Comparator startup time                   | Fast mode                                                                                                                                 | -    | 15  | 20                 |            |
| t <sub>start</sub>                                                |                                           | Slow mode                                                                                                                                 | -    | 20  | 25                 |            |
| t <sub>d slow</sub> Propagation delay <sup>(2)</sup> in slow mode |                                           | 1.65 V ≤V <sub>DDA</sub> ≤2.7 V                                                                                                           | -    | 1.8 | 3.5                |            |
|                                                                   |                                           | 2.7 V ≤V <sub>DDA</sub> ≤3.6 V                                                                                                            | -    | 2.5 | 6                  | μs         |
| t <sub>d fast</sub> Propagation delay <sup>(2)</sup> in fast mode |                                           | 1.65 V ≤V <sub>DDA</sub> ≤2.7 V                                                                                                           | -    | 0.8 | 2                  |            |
| t <sub>d fast</sub>                                               | Fropagation delay 7 in last mode          | 2.7 V ≤V <sub>DDA</sub> ≤3.6 V                                                                                                            | -    | 1.2 | 4                  |            |
| V <sub>offset</sub>                                               | Comparator offset error                   | -                                                                                                                                         | -    | ±4  | ±20                | mV         |
| dThreshold/<br>dt                                                 | Threshold voltage temperature coefficient | $V_{DDA} = 3.3V$<br>$T_{A} = 0 \text{ to } 50 \circ C$<br>$V = V_{REFINT},$<br>$3/4 V_{REFINT},$<br>$1/2 V_{REFINT},$<br>$1/4 V_{REFINT}$ | -    | 15  | 100                | ppm<br>/°C |
| I <sub>COMP2</sub> Current consumption <sup>(3)</sup>             |                                           | Fast mode                                                                                                                                 | -    | 3.5 | 5                  |            |
| I <sub>COMP2</sub>                                                |                                           | Slow mode                                                                                                                                 | -    | 0.5 | 2                  | μA         |

|  | Table 62. | Comparator | 2 characteristics |
|--|-----------|------------|-------------------|
|--|-----------|------------|-------------------|

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.



## 6.3.21 LCD controller (STM32L152x6/8/B-A devices only)

The STM32L152xx-A devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V<sub>DD</sub> voltage. An external capacitor C<sub>ext</sub> must be connected to the V<sub>LCD</sub> pin to decouple this converter.

| Symbol                           | Parameter                                                 | Min     | Тур                  | Max       | Unit |  |
|----------------------------------|-----------------------------------------------------------|---------|----------------------|-----------|------|--|
| $V_{LCD}$                        | LCD external voltage                                      | -       | -                    | 3.6       |      |  |
| V <sub>LCD0</sub>                | LCD internal reference voltage 0                          | -       | 2.6                  | -         | 1    |  |
| V <sub>LCD1</sub>                | LCD internal reference voltage 1                          | -       | 2.73                 | -         | 1    |  |
| V <sub>LCD2</sub>                | LCD internal reference voltage 2                          | -       | 2.86                 | -         |      |  |
| V <sub>LCD3</sub>                | LCD internal reference voltage 3                          | -       | 2.98                 | -         | V    |  |
| $V_{LCD4}$                       | LCD internal reference voltage 4                          | -       | 3.12                 | -         |      |  |
| $V_{LCD5}$                       | LCD internal reference voltage 5                          | -       | 3.26                 | -         |      |  |
| V <sub>LCD6</sub>                | LCD internal reference voltage 6 - 3.4                    |         | 3.4                  | -         |      |  |
| V <sub>LCD7</sub>                | LCD internal reference voltage 7                          | -       | 3.55                 | -         |      |  |
| C <sub>ext</sub>                 | V <sub>LCD</sub> external capacitance                     |         | -                    | 2         | μF   |  |
| ı (1)                            | Supply current at V <sub>DD</sub> = 2.2 V                 | -       | 3.3                  | -         |      |  |
| I <sub>LCD</sub> <sup>(1)</sup>  | Supply current at V <sub>DD</sub> = 3.0 V                 | - 3.1 - |                      |           | μA   |  |
| R <sub>Htot</sub> <sup>(2)</sup> | Low drive resistive network overall value                 | 5.28    | 6.6                  | 7.92      | MΩ   |  |
| $R_L^{(2)}$                      | High drive resistive network total value                  | 192     | 240                  | 288       | kΩ   |  |
| V <sub>44</sub>                  | Segment/Common highest level voltage                      | -       | -                    | $V_{LCD}$ | V    |  |
| V <sub>34</sub>                  | Segment/Common 3/4 level voltage                          | -       | 3/4 V <sub>LCD</sub> | -         |      |  |
| V <sub>23</sub>                  | Segment/Common 2/3 level voltage - 2/3 V <sub>LCD</sub>   |         | -                    | v         |      |  |
| V <sub>12</sub>                  | Segment/Common 1/2 level voltage - 1/2 V <sub>LCD</sub> - |         | -                    |           |      |  |
| V <sub>13</sub>                  | Segment/Common 1/3 level voltage -                        |         | 1/3 V <sub>LCD</sub> | -         | v    |  |
| V <sub>14</sub>                  | Segment/Common 1/4 level voltage                          | -       | 1/4 V <sub>LCD</sub> | -         |      |  |
| V <sub>0</sub>                   | Segment/Common lowest level voltage                       | 0       | -                    | -         |      |  |
| $\Delta Vxx^{(2)}$               | Segment/Common level voltage error $T_A = -40$ to 105 ° C | -       | -                    | ±50       | mV   |  |

#### Table 63. LCD controller characteristics

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected

2. Guaranteed by characterization results.



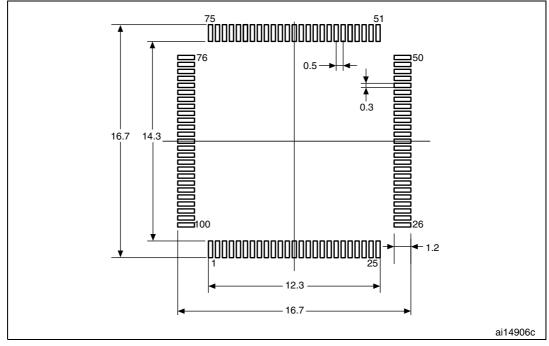



Figure 31. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

## LQFP100 device Marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

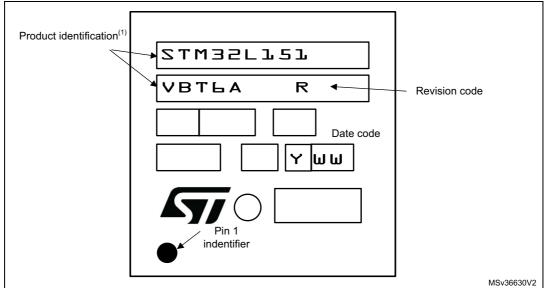



Figure 32. LQFP100 14 x 14 mm, 100-pin package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



# 7.2 LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information

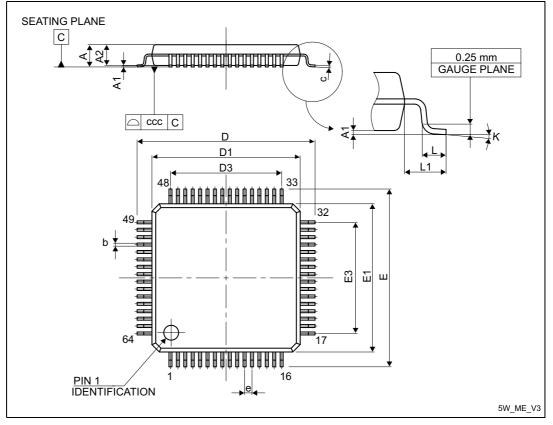



Figure 33. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline

1. Drawing is not to scale.

| Table 65. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical |
|------------------------------------------------------------------------------|
| data                                                                         |

|        |             |        | uata  |                       |        |        |
|--------|-------------|--------|-------|-----------------------|--------|--------|
| Symbol | millimeters |        |       | inches <sup>(1)</sup> |        |        |
|        | Min         | Тур    | Мах   | Тур                   | Min    | Мах    |
| А      | -           | -      | 1.600 | -                     | -      | 0.0630 |
| A1     | 0.050       | -      | 0.150 | 0.0020                | -      | 0.0059 |
| A2     | 1.350       | 1.400  | 1.450 | 0.0531                | 0.0551 | 0.0571 |
| b      | 0.170       | 0.220  | 0.270 | 0.0067                | 0.0087 | 0.0106 |
| С      | 0.090       | -      | 0.200 | 0.0035                | -      | 0.0079 |
| D      | -           | 12.000 | -     | -                     | 0.4724 | -      |
| D1     | -           | 10.000 | -     | -                     | 0.3937 | -      |
| D3     | -           | 7.500  | -     | -                     | 0.2953 | -      |
| Е      | -           | 12.000 | -     | -                     | 0.4724 | -      |
| E1     | -           | 10.000 | -     | -                     | 0.3937 | -      |



## 7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

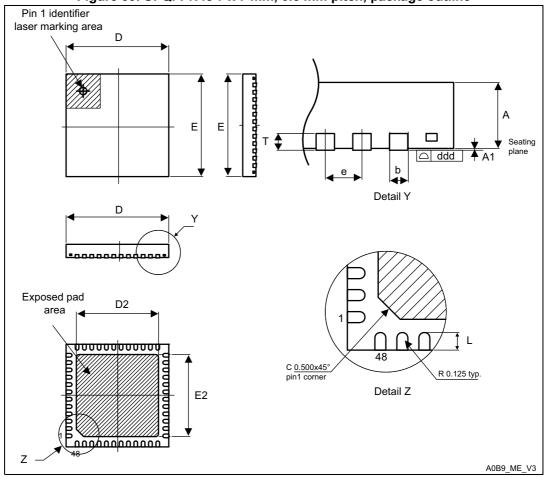



Figure 39. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.



## **TFBGA64** device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

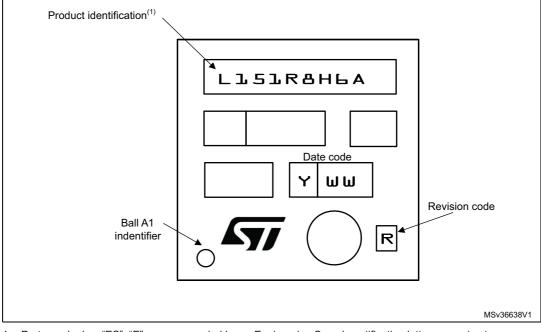



Figure 47. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



# 9 Revision history

| Date                                                                                                                                                                                                                                                                                                                                                                            | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04-Feb-2014                                                                                                                                                                                                                                                                                                                                                                     | 1        | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12-Mar-2014                                                                                                                                                                                                                                                                                                                                                                     | 2        | <ul> <li>Updated Section 3.5: Low-power real-time clock and backup registers, Section 6.1.2: Typical values and Section 6.3.4: Supply current characteristics.</li> <li>Updated General PCB design guidelines.</li> <li>Updated Table 5: Working mode-dependent functionalities (from Run/active down to standby), Table 14: General operating conditions, Table 21: Current consumption in Low-power run mode, Table 22: Current consumption in Low-power sleep mode, Table 22: Current consumptions in Stop mode, Table 24: Typical and maximum current consumptions in Stop mode, Table 24: Typical and maximum current consumption, Table 42: I/O current injection susceptibility, Table 66: I/O static characteristics and Table 46: NRST pin characteristics.</li> <li>Updated Figure 14: Current consumption measurement scheme.</li> </ul> |
| 04-Feb-20153Updated DMIPS features in cover page and Section 2: Desc<br>Updated max temperature at 105°C instead of 85°C in the w<br>datasheet.<br>Updated current consumption in Table 20: Current consump<br>Sleep mode.<br>Updated Table 25: Peripheral current consumption with new<br>measured values.<br>Updated Table 57: Maximum source impedance RAIN max a<br>note 2. |          | Updated current consumption in <i>Table 20: Current consumption in</i><br><i>Sleep mode</i> .<br>Updated <i>Table 25: Peripheral current consumption</i> with new<br>measured values.<br>Updated <i>Table 57: Maximum source impedance RAIN max</i> adding<br>note 2.<br>Updated <i>Section 7: Package information</i> with new package device<br>marking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Table 74. Document revision history

