
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152c6u6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	package outline	21
Figure 46.	TFBGA64, 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array	
	package recommended footprint1	22
Figure 47.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example 1	23
Figure 48.	Thermal resistance suffix 61	25
Figure 49.	Thermal resistance suffix 71	25

57

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151x6/8/B-A and STM32L152x6/8/B-A ultra-low-power ARM[®] Cortex[®]-M3 based microcontrollers product line.

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A microcontroller family includes devices in 3 different package types: from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, Wired and wireless sensors, Video intercom
- Utility metering

This STM32L151x6/8/B-A and STM32L152x6/8/B-A datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The document "Getting started with STM32L1xxxx hardware development" AN3216 gives a hardware implementation overview.

Both documents are available from the STMicroelectronics website www.st.com.

For information on the ARM[®] Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the ARM website.

Figure 1 shows the general block diagram of the device family.

Caution: This datasheet does not apply to:

STM32L15xx6/8/B

covered by a separate datasheet.

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From a proprietary 8bit core up to the Cortex-M3, including the Cortex-M0+, the STM8Lx and STM32Lx series offer the best range of choices to meet your requirements in terms of ultra-low-power features. The STM32 Ultra-low-power series is an ideal fit for applications like gas/water meters, keyboard/mouse, or wearable devices for fitness and healthcare. Numerous built-in features like LCD drivers, dual-bank memory, low-power Run mode, op-amp, AES-128bit, DAC, crystal-less USB and many others, allow to build highly cost-optimized applications by reducing the BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lx and STM32Lx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your existing applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-Low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy

To offer flexibility and optimize performance, the STM8L15xxx and STM32L1xxxx families use a common architecture:

- Common power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for STM8L15xxx devices)
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultra-safe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector.

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 512 Kbytes

DocID024330 Rev 4

3.1 Low-power modes

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply:

- In Range 1 (V_{DD} range limited to 1.71-3.6 V), the CPU runs at up to 32 MHz (refer to Table 18 for consumption).
- In Range 2 (full V_{DD} range), the CPU runs at up to 16 MHz (refer to *Table 18* for consumption)
- In Range 3 (full V_{DD} range), the CPU runs at up to 4 MHz (generated only with the multispeed internal RC oscillator clock source). Refer to *Table 18* for consumption.

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Sleep mode power consumption: refer to Table 20.

Low-power Run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the minimum clock (less than 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In the low-power Run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power Run mode consumption: refer to Table 21.

• Low-power Sleep mode

This mode is achieved by entering the Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In the low-power Sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.

Low-power Sleep mode consumption: refer to *Table 22*.

• Stop mode with RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.

• Stop mode without RTC

Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI

DocID024330 Rev 4

3.5 Low-power real-time clock and backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes.

The programmable wakeup time ranges from 120 µs to 36 hours.

The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation. The RTC can also be automatically corrected with a 50/60Hz stable power line.

The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization. A time stamp can record an external event occurrence, and generates an interrupt.

There are twenty 32-bit backup registers provided to store 80 bytes of user application data. They are cleared in case of tamper detection. Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered.

3.6 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz.

External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines. The 7 other lines are connected to RTC, PVD, USB or Comparator events.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs		
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No		
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No		
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No		
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No		

Table 7. Timer feature comparison

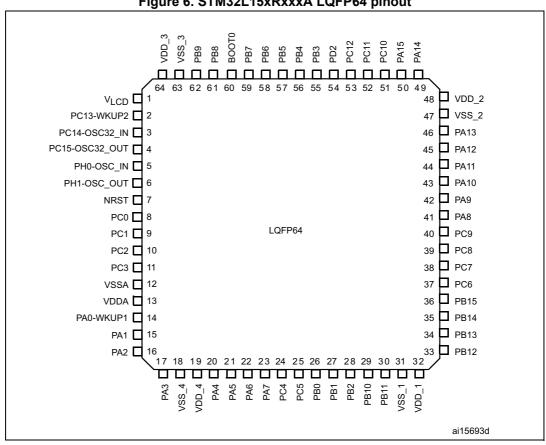


Figure 6. STM32L15xRxxxA LQFP64 pinout

1. This figure shows the package top view.

Figure 7. STM32L15xCxxxA LQFP48 pinout

1. This figure shows the package top view.

				1 11/32		1x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)				
	1	Pins	;	1					Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
51	33	H8	L12	25	PB12	I/O	FT	PB12	SPI2_NSS/I2C2_SMBA/ USART3_CK/ LCD_SEG12/ TIM10_CH1	ADC_IN18/ COMP1_INP /VLCDRAIL2
52	34	G8	K12	26	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS/ LCD_SEG13/TIM9_CH1	ADC_IN19/ COMP1_INP
53	35	F8	K11	27	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS/ LCD_SEG14/TIM9_CH2	ADC_IN20/ COMP1_INP
54	36	F7	K10	28	PB15	I/O	FT	PB15	SPI2_MOSI/ LCD_SEG15/ TIM11_CH1	ADC_IN21/ COMP1_INP/ RTC_REFIN
55	-	-	K9	-	PD8	I/O	FT	PD8	USART3_TX/ LCD_SEG28	-
56	-	-	K8	-	PD9	I/O	FT	PD9	USART3_RX/ LCD_SEG29	-
57	-	-	J12	-	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-
58	-	-	J11	-	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
59	-	-	J10	-	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
60	-	-	H12	-	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
61	-	-	H11	-	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
62	-	-	H10	-	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
63	37	F6	E12	-	PC6	I/O	FT	PC6	TIM3_CH1/LCD_SEG24	-
64	38	E7	E11	-	PC7	I/O	FT	PC7	TIM3_CH2/LCD_SEG25	-
65	39	E8	E10	-	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
66	40	D8	D12	-	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

DocID024330 Rev 4

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾	-0.3	4.0	
V _{IN} ⁽²⁾	Input voltage on five-volt tolerant pin	V _{SS} –0.3	V _{DD} +4.0	V
VIN V	Input voltage on any other pin	V _{SS} -0.3	4.0	
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all different ground pins ⁽³⁾	-	50	
V _{REF+} -V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6	see Section 6.3.11	

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 12* for maximum allowed injected current values.

3. Include VREF- pin.

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	100	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS_x} ground lines (sink) ⁽¹⁾	100	
I _{VDD(PIN)}	Maximum current into each V _{DD_x} power pin (source) ⁽¹⁾	70	
I _{VSS(PIN)}	Maximum current out of each V_{SS_x} ground pin (sink) ⁽¹⁾	-70	mA
1	Output current sunk by any I/O and control pin	25	
Ι _{ΙΟ}	Output current sourced by any I/O and control pin	- 25	
21	Total output current sunk by sum of all IOs and control pins ⁽²⁾	60	
ΣΙ _{ΙΟ(ΡΙΝ)}	Total output current sourced by sum of all IOs and control $pins^{(2)}$	-60	
(3)	Injected current on five-volt tolerant I/O ⁽⁴⁾ RST and B pins	-5/+0	
I _{INJ(PIN)} ⁽³⁾	Injected current on any other pin ⁽⁵⁾	± 5	
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

- 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C
T _{LEAD}	Maximum lead temperature during soldering	see note ⁽¹⁾	°C

Table 13. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

6.3 Operating conditions

6.3.1 General operating conditions

Table 14.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	32	
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	32	
	BOR detector disabled		1.65	3.6	
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V
		BOR detector disabled, after power on	1.65	3.6	
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)Must be the same voltage as		1.65	3.6	V
VDDA` ′	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6	V
		FT pins: 2.0 V ≤V _{DD}	-0.3	5.5 ⁽³⁾	
V	I/O input voltage	FT pins: V _{DD} < 2.0 V	-0.3	5.25 ⁽³⁾	V
V _{IN}		BOOT0	0	5.5	
		Any other pin	-0.3	V _{DD} +0.3	

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
twusleep	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-	
	Wakeup from Low-power sleep mode	f _{HCLK} = 262 kHz Flash enabled	46	-	
^I WUSLEEP_LP	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-	
Wakeup from Stop mode, regulator in Run mode		f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 1 and 2	7.7	8.9	
	Wakeup from Stop mode, regulator in low-power mode	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 3	8.2	13.1	μs
t _{WUSTOP}		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4	
		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20	
		f _{HCLK} = f _{MSI} = 524 kHz	31	37	
		f _{HCLK} = f _{MSI} = 262 kHz	57	66	
		f _{HCLK} = f _{MSI} = 131 kHz	112	123	
		f _{HCLK} = MSI = 65 kHz	221	236	
	Wakeup from Standby mode FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104	
^t wustdby	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms

Table 26. Low-power mode wakeup timings

1. Guaranteed by characterization results, unless otherwise specified

	Table 23. THE Oscillator Characteristics (continued)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
С	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF			
I _{HSE}	HSE driving current	V _{DD} = 3.3 V, V _{IN} = V _{SS} with 30 pF load	-	-	3	mA			
	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized)	mA			
IDD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)				
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V			
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	1	-	ms			

Table 29. HSE oscillator	r characteristics ⁽¹⁾⁽²⁾	(continued)	
--------------------------	-------------------------------------	-------------	--

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

				Max vs			
Symbol	Parameter	Conditions	Monitored frequency band	4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
		V _{DD} = 3.3 V,	0.1 to 30 MHz	-16	-7	-3	
6	Peak level	$T_A = 25 \ ^\circ C$,	30 to 130 MHz	-12	2	12	dBµV
SEMI	S _{EMI} Peak level LQFP100 package compliant with IEC	130 MHz to 1GHz	-11	0	8		
			SAE EMI Level	1	1.5	2	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C, conforming to ANSI/ESD STM5.3.1	All	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

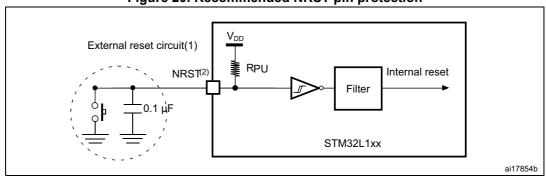


Figure 20. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 46. Otherwise the reset will not be taken into account by the device.

6.3.15 TIM timer characteristics

The parameters given in *Table 47* are guaranteed by design.

Refer to *Section 6.3.13: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit
t	Timer resolution time	-	1	-	t _{TIMxCLK}
^t res(TIM)		f _{TIMxCLK} = 32 MHz	31.25	-	ns
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
	16-bit counter clock	-	1	65536	t _{TIMxCLK}
^t COUNTER	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs
t	Maximum possible count	_	-	65536 × 65536	t _{TIMxCLK}
^t MAX_COUNT		f _{TIMxCLK} = 32 MHz	-	134.2	S

Table 47. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

SPI characteristics

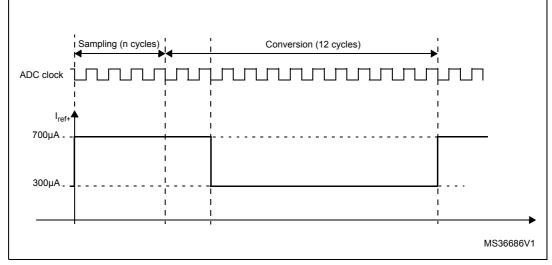
Unless otherwise specified, the parameters given in the following table are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Parameter Conditions		Max ⁽²⁾	Unit	
_		Master mode	-	16		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz	
		Slave transmitter	-	12 ⁽³⁾		
t _{r(SCK)} ⁽²⁾ t _{f(SCK)} ⁽²⁾	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-		
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2– 5	t _{SCK} /2+ 3		
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	5	-		
t _{su(SI)} ⁽²⁾	Data input setup time	Slave mode	6	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns	
t _{h(SI)} ⁽²⁾		Slave mode	5	-		
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}		
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5		
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-		
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-		

Table 50. SPI characteristics ⁽¹

1. The characteristics above are given for voltage Range 1.


2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

Table 57. Maximum source impedance $R_{AIN} max^{(1)}$

Ts (µs)	Multiplexed channels		Direct o	hannels	Ts (cycles) f _{ADC} = 16 MHz ⁽²⁾
			$4 V < V_{DDA} < 3.6 V$ 1.8 V $< V_{DDA} < 2.4 V$ 2.4 V $< V_{DDA} < 3.3 V$ 1.8 V $< V_{DDA} < 2.4 V$		ADC
0.25	Not allowed	Not allowed	0.7	Not allowed	4
0.5625	0.8	Not allowed	2.0	1.0	9
1	2.0	0.8	4.0	3.0	16
1.5	3.0	1.8	6.0	4.5	24
3	6.8	4.0	15.0	10.0	48
6	15.0	10.0	30.0	20.0	96
12	32.0	25.0	50.0	40.0	192
24	50.0	50.0	50.0	50.0	384

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (us).

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 12*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

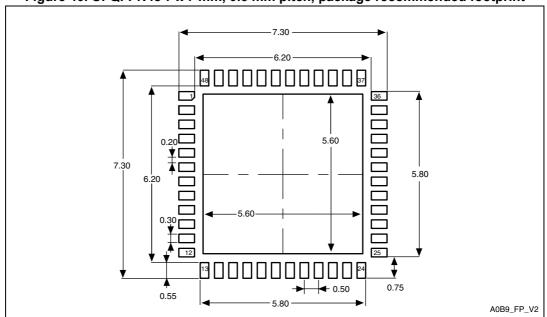
6.3.20 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kΩ
R _{10K}	R _{10K} value	-	-	10	-	K52
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	
td	Propagation delay ⁽²⁾	-	-	3	10	μs
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 ° C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 61. Comparator 1 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.


3. Comparator consumption only. Internal reference voltage not included.

	millimeters					
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 67. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 40. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.

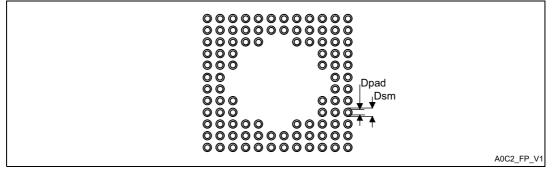


Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array	
package mechanical data (continued)	

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
F	0.7	0.75	0.8	0.0276	0.0295	0.0315
ddd	-	-	0.1	-	-	0.0039
eee	-	-	0.15	-	-	0.0059
fff	-	-	0.05	-	-	0.002

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package recommended footprint

Table 69. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

