
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152c8u6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From a proprietary 8bit core up to the Cortex-M3, including the Cortex-M0+, the STM8Lx and STM32Lx series offer the best range of choices to meet your requirements in terms of ultra-low-power features. The STM32 Ultra-low-power series is an ideal fit for applications like gas/water meters, keyboard/mouse, or wearable devices for fitness and healthcare. Numerous built-in features like LCD drivers, dual-bank memory, low-power Run mode, op-amp, AES-128bit, DAC, crystal-less USB and many others, allow to build highly cost-optimized applications by reducing the BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lx and STM32Lx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your existing applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-Low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy

To offer flexibility and optimize performance, the STM8L15xxx and STM32L1xxxx families use a common architecture:

- Common power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for STM8L15xxx devices)
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultra-safe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector.

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 512 Kbytes

		Functionalities depending on the operating power supply range							
Operating power supply range		DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation				
V _{DD} = 2.	.0 to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				
V _{DD} = 2.	.4 to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. Should be USB-compliant from I/O voltage standpoint, the minimum V_{DD} is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1 MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

			Low-	Low-		Stop		Standby
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability
CPU	Y	-	Y	-	-	-	-	-
Flash	Y	Y	Y	Y	-	-	-	-
RAM	Y	Y	Y	Y	Y	-	-	-
Backup Registers	Y	Y	Y	Y	Y	-	Y	-
EEPROM	Y	Y	Y	Y	Y	-	-	-
Brown-out reset (BOR)	Y	Y	Y	Y	Y	Y	Y	-
DMA	Y	Y	Y	Y	-	-	-	-
Programmable Voltage Detector (PVD)	Y	Y	Y	Y	Y	Y	Y	-
Power On Reset (POR)	Y	Y	Y	Y	Y	Y	Y	-
Power Down Rest (PDR)	Y	Y	Y	Y	Y	-	Y	-
High Speed Internal (HSI)	Y	Y	-	-	-	-	-	-
High Speed External (HSE)	Y	Y	-	-	-	-	-	-
Low Speed Internal (LSI)	Y	Y	Y	Y	Y	-	Y	-
Low Speed External (LSE)	Y	Y	Y	Y	Y	-	Y	-
Multi-Speed Internal (MSI)	Y	Y	Y	Y	-	-	-	-
Inter-Connect Controller	Y	Y	Y	Y	-	-	-	-
RTC	Y	Y	Y	Y	Y	Y	Y	-
RTC Tamper	Y	Y	Y	Y	Y	Y	Y	Y
Auto Wakeup (AWU)	Y	Y	Y	Y	Y	Y	Y	Y
LCD	Y	Y	Y	Y	Y	-	-	-
USB	Y	Y	-	-	-	Y	-	-
USART	Y	Y	Y	Y	Y	(1)	-	-
SPI	Y	Y	Y	Y	-	-	-	-
I2C	Y	Y	Y	Y	-	(1)	-	-
ADC	Y	Y	-	-	-	-	-	-

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock source**: three different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz) with a consumption proportional to speed, down to 750 nA typical. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

4 Pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12	
A	(PE3)	(PE1)	(PB8)	iBOOTO	(PD7)	(PD5)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)	
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	/-\ (PD1)	PC12)	(PC10)	(PA11)	
С	PC13 WKUP2	(PE5)	(PEO)	VDD_B	(PB5)		' 	(PD2)	(PD0)	PC11)	(PH2)	(PA10)	
D	PC14) 0\$C32_IN	PE6) WUKP3	ŃSS_B							(PA9)	(PA8)	(PC9)	
E	PC15) OSC32_C	VLCD	NSS_H							(PC8)	(PC7)	(PC6)	
F	PHO QSCZIN	a zzvi					1				NSS_P	vss_1	
G	PH1)						⊢ − '					אַרַם אַ	
н	(PC0)	INRST								PD15)	PD14)	(PD13)	
J	VSSA)	(PC1)	(PC2)							PD12)	(PD11)	(PD10)	
к	VREF	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	(PB14)	(PB13)	
L	(VRE俳+	(PA0) WKUP1	(PA3)	(PA6)	(PC5)	(PB2)	(PE8)	(PE10)	/=\ IPE12	(PB10)	(PB11)	(PB12)	
М	NDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	/-\ (PE11)	/-\ (PE13)	PE14	/~\ (PE19	
													ai17096f

Figure 3. STM32L15xVxxxA UFBGA100 ballout

1. This figure shows the package top view.

		Pins	;						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
1	-	-	B2	-	PE2	I/O	FT	PE2	TRACECLK/ LCD_SEG38/TIM3_ETR	-	
2	-	-	A1	-	PE3	I/O	FT	PE3	TRACED0/ LCD_SEG39/TIM3_CH1	-	
3	-	-	B1	-	PE4	I/O	FT	PE4	TRACED1/TIM3_CH2	-	
4	-	-	C2	-	PE5	I/O	FT	PE5	TRACED2/TIM9_CH1	-	
5	-	-	D2	-	PE6-WKUP3	I/O	FT	PE6	TRACED3/TIM9_CH2	WKUP3 /RTC_TAMP3	
6	1	B2	E2	1	V _{LCD} ⁽³⁾	S		V _{LCD}	-	-	
7	2	A2	C1	2	PC13-WKUP2	I/O	FT	PC13	-	RTC_TAMP1/ RTC_TS/ RTC_OUT/ WKUP2	
8	3	A1	D1	3	PC14- OSC32_IN ⁽⁴⁾	I/O	тс	PC14	-	OSC32_IN	
9	4	B1	E1	4	PC15- OSC32_OUT (4)	I/O	тс	PC15	-	OSC32_OUT	
10	-	-	F2	-	V _{SS_5}	S	-	V _{SS_5}	-	-	
11	-	-	G2	-	V _{DD_5}	S	-	V_{DD_5}	-	-	
12	5	C1	F1	5	PH0-OSC_IN ⁽⁵⁾	I/O	TC	PH0	-	OSC_IN	
13	6	D1	G1	6	PH1-OSC_OUT	I/O	тс	PH1	-	OSC_OUT	
14	7	E1	H2	7	NRST	I/O	RST	NRST	-	-	
15	8	E3	H1	-	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ COMP1_INP	
16	9	E2	J2	-	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP	
17	10	F2	J3	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP	
18	11	_(6)	K2	-	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP	
19	12	F1	J1	8	V _{SSA}	S	-	V _{SSA}	-	-	

6.1.7 Optional LCD power supply scheme

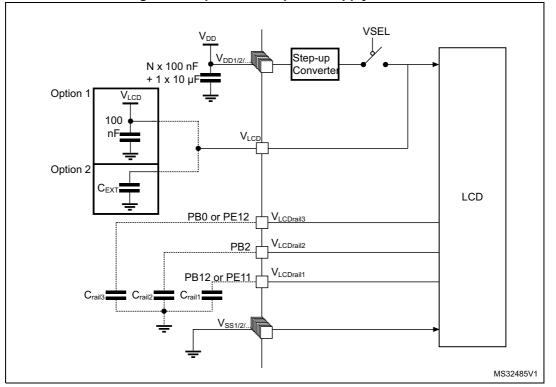
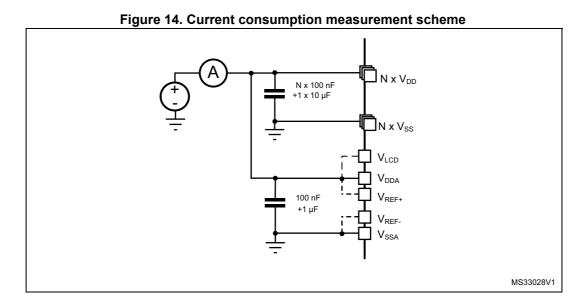



Figure 13. Optional LCD power supply scheme

1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.

2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
				1 MHz	215	285	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	490	μA
				4 MHz	725	1000	
		$f_{HSE} = f_{HCLK}$ up to 16 MHz, included		4 MHz	0.915	1.3	
		f _{HSE} = f _{HCLK} /2 above	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.15	
		16 MHz (PLL ON) ⁽²⁾		16 MHz	3.4	4	-
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.1	2.9	
I _{DD (Run}	Run mode, code			16 MHz	4.2	5.2	
from Flash)	executed			32 MHz	8.25	9.6	
	from Flash	HSI clock source (16	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.5	4.4	mA
	MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.2	10.2		
	MSI clock, 65 kHz		65 kHz	0.041	0.085		
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	0.125	0.180	
		MSI clock, 4.2 MHz	voo[1.0] – 11	4.2 MHz	0.775	0.935	

Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

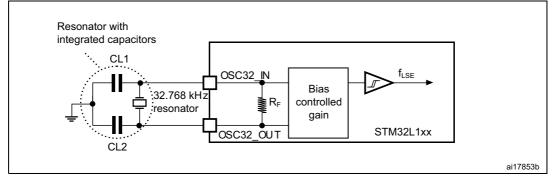
Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
				T_A = -40 °C to 25 °C	10.9	12	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	16.5	23	
			HOLK V- WH	T _A = 105 °C	26	47	
		All peripherals OFF, code		T_A = -40 °C to 25 °C	15	16	
		executed from RAM, Flash	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	22	29	
		switched OFF,	HOLK COMME	T _A = 105 °C	32	51	
		V _{DD} from 1.65 V to 3.6 V		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	29	37	
		1.00 V 10 0.0 V	MSI clock, 131 kHz	T _A = 55 °C	32.5	40	
	Supply		f _{HCLK} = 131 kHz	T _A = 85 °C	35.5	54	
I _{DD}	Supply current in Low-power run mode			T _A = 105 °C	45	65	
(LP Run)		All peripherals	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	23	24	
				T _A = 85 °C	31	34	μA
				T _A = 105 °C	42.5	56	
			MSI clock, 65 kHz f _{HCLK} = 65 kHz	T_A = -40 °C to 25 °C	29	31	
		OFF, code executed from		T _A = 85 °C	38	41	
		Flash, V _{DD} from	HOLK OUT IN L	T _A = 105 °C	49	63	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	46	55	
			MSI clock, 131 kHz	T _A = 55 °C	48	59	
			f _{HCLK} = 131 kHz	T _A = 85 °C	53.5	72	
			T _A = 105 °C	64.8	84		
I _{DD} Max (LP Run) ⁽²⁾	Max allowed current in Low-power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low-power run mode

1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
twusleep	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-	
+	Wakeup from Low-power sleep mode	f _{HCLK} = 262 kHz Flash enabled	46	-	
^t wusleep_lp	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-	
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 1 and 2	7.7	8.9	
	Wakeup from Stop mode,	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 3	8.2	13.1	μs
t _{WUSTOP}		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4	
	regulator in low-power mode	f _{HCLK} = f _{MSI} = 1.05 MHz	16	20	
		f _{HCLK} = f _{MSI} = 524 kHz	31	37	
		f _{HCLK} = f _{MSI} = 262 kHz	57	66	
		f _{HCLK} = f _{MSI} = 131 kHz	112 123		
		f _{HCLK} = MSI = 65 kHz	221	236	
	Wakeup from Standby mode FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104	
^t wustdby	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms


Table 26. Low-power mode wakeup timings

1. Guaranteed by characterization results, unless otherwise specified

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
+ (2)	MSI oscillator stabilization time	MSI range 4	-	2.5	
t _{STAB(MSI)} ⁽²⁾		MSI range 5	-	2	μs
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage Range 3	-	3	
fourment	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
f _{OVER(MSI)}		Any range to range 6	-	6	1011 12

Table 33. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 34* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Table 34.	PLL	chara	cteristics
-----------	-----	-------	------------

Symbol	Parameter		Unit		
Symbol	Parameter	Min Typ		Max ⁽¹⁾	Unit
f _{PLL_IN}	PLL input clock ⁽²⁾	2	-	24	MHz
	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL lock time PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-	-	± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V_{DD}	-	120	150	μA

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL_OUT}}$.

6.3.9 Memory characteristics

The characteristics are given at T_{A} = -40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

RAM memory

Table	35.	RAM	and	hardware	reaisters
10010	•••		ana	naranaro	regiotore

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
-	Programming / erasing time for	Erasing	-	3.28	3.94	
	byte / word / double word / half- page	Programming	-	3.28	3.94	ms
	Average current during whole program/erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	300	-	μA
I _{DD}	Maximum current (peak) during program/erase operation	Γ _A = 25° C, V _{DD} = 3.0 V	-	1.5	2.5	mA

Table 36. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 37. Flash memory, data EEPROM endurance and data retention

Symbol	Parameter	Conditions	Value			Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Мах	Unit
NCYC ⁽²⁾	Cycling (erase / write) Program memory	$T_A = -40^{\circ}C$ to	10	-	-	kovolos
NCYC ⁽⁻⁾	Cycling (erase / write) EEPROM data memory	105 °C	300	-	-	kcycles
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	TRET = +85 °C	30	-	-	
+ (2)	Data retention (EEPROM data memory) after 300 kcycles at T_A = 85 °C	TRET - +05 C	30	-	-	voare
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 105 °C	TRET = +105 °C	10	-	-	years
	Data retention (EEPROM data memory) after 300 kcycles at T_A = 105 °C	11121 - 1103 C	10	_	-	

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.16 Communication interfaces

I²C interface characteristics

The STM32L151x6/8/B-A and STM32L152x6/8/B-A product line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 48*. Refer also to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter		rd mode 1)(2)	Fast mode	Unit	
		Min	Мах	Min	Мах	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above $t_{SP(max)}$.

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤ V _{REF+} ≤ 3.6 V f _{ADC} = 8 MHz, R _{AIN} = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	59	62	-	
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ENOB	Effective number of bits	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ $f_{ADC} = 8 MHz \text{ or } 4 MHz,$	59	62	-	
SNR	Signal-to-noise ratio	— R _{AIN} = 50 Ω _ T _A = -40 to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1.5	3.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	3.5	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2.5	3.5	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	1.8 V ≤ V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	1
EL	Integral linearity error		-	2	3	

Table 56. ADC accuracy⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

6.3.18 DAC electrical specifications

Data guaranteed by design, unless otherwise specified.

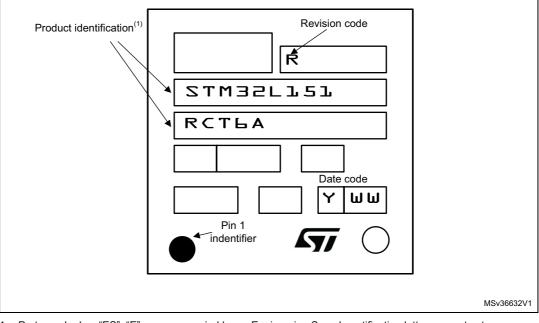

Symbol	Parameter	C	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage		-	1.8	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must V _{DDA}	always be below	1.8	-	3.6	V
V _{REF-}	Lower reference voltage	-			V_{SSA}		V
(4)	Current consumption on	No load, mid	dle code (0x800)	-	130	220	μA
I _{DDVREF+} (1)	V _{REF+} supply V _{REF+} = 3.3 V	No load, wor	st code (0x000)	-	220	350	μA
(1)	Current consumption on	No load, mid	ldle code (0x800)	-	210	320	μA
I _{DDA} ⁽¹⁾	V _{DDA} supply V _{DDA} = 3.3 V	No load, wor	st code (0xF1C)	-	320	520	μA
D	Resistive load	DAC output	Connected to V_{SSA}	5	-	-	kΩ
R _L	Resistive load	buffer ON	Connected to V _{DDA}	25	-	-	K52
CL	Capacitive load	DAC output	buffer ON	-	-	50	pF
R _O	Output impedance	DAC output	buffer OFF	12	16	20	kΩ
	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{DDA} – 0.2	V
V _{DAC_OUT}	output	DAC output buffer OFF		0.5	-	V _{REF+} 1LSB	mV
DNL ⁽¹⁾	Differential non linearity ⁽²⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	1.5	3	
Ditt		No R _L , C _L ≤50 pF DAC output buffer OFF		-	1.5	3	
INL ⁽¹⁾	Integral non linearity ⁽³⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	2	4	
	Integral nor linearity ·	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	2	4	LSB
Offset ⁽¹⁾	Offset error at code 0x800 ⁽⁴⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		-	±10	±25	
UIISEL' '		No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF		-	±5	±8	
Offset1 ⁽¹⁾	Offset error at code 0x001 ⁽⁵⁾	No R _L , C _L \leq DAC output		-	±1.5	±5	

Table	58.	DAC	characteristics
TUDIC	vv .	DAO	onunuotoristios

LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

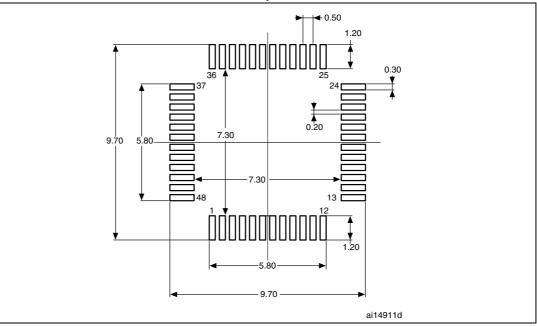
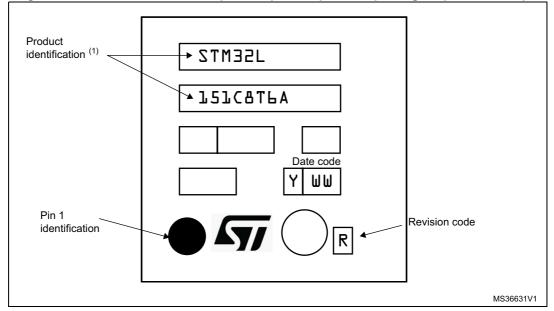



Figure 37. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

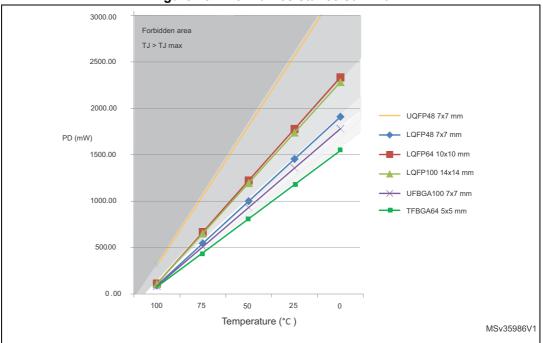
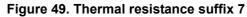
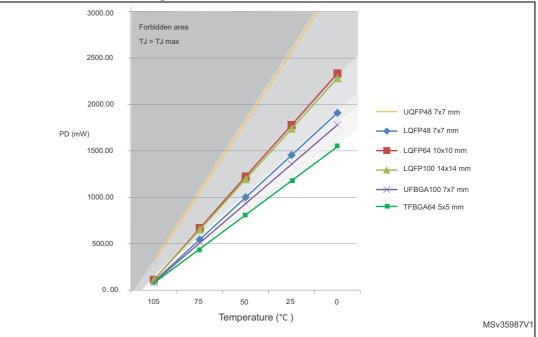




Figure 48. Thermal resistance suffix 6

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

8 Ordering information

Table 73. Ordering info	ormation	scheme)			
Example:	STM32	L 152	RВ	T 6	А	D TR
Device family						
STM32 = ARM-based 32-bit microcontroller						
Product type						
L = Low-power		-				
Device subfamily						
151: Devices without LCD						
152: Devices with LCD						
Pin count						
C = 48 pins			-			
R = 64 pins						
V = 100 pins						
Flash memory size						
6 = 32 Kbytes of Flash memory						
8 = 64 Kbytes of Flash memory						
B = 128 Kbytes of Flash memory						
Package						
H = BGA						
T = LQFP						
U = UFQFPN						
Temperature range						
6 = Industrial temperature range, -40 to 85 °C						
7 = Industrial temperature range, -40 to 105 °C						
Options						
A = device generation A						
No character = VDD range: 1.8 to 3.6 V and BOR enabled						
D = VDD range: 1.65 to 3.6 V and BOR disabled						
Packing						
TR = tape and reel]

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

