

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectans	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152r6t6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1 Introduction	9
2 Description	
2.1 Device overview	
2.2 Ultra-low-power device continuum	
2.2.1 Performance	
2.2.2 Shared peripherals	
2.2.3 Common system strategy	
2.2.4 Features	
3 Functional overview	13
3.1 Low-power modes	
3.2 ARM [®] Cortex [®] -M3 core with MPU	
3.3 Reset and supply management	
3.3.1 Power supply schemes	
3.3.2 Power supply supervisor	
3.3.3 Voltage regulator	
3.3.4 Boot modes	
3.4 Clock management	
3.5 Low-power real-time clock and backup registers	
3.6 GPIOs (general-purpose inputs/outputs)	
3.7 Memories	
3.8 DMA (direct memory access)	
3.9 LCD (liquid crystal display)	
3.10 ADC (analog-to-digital converter)	
3.10.1 Temperature sensor	
3.10.2 Internal voltage reference (V _{REFINT})	
3.11 DAC (digital-to-analog converter)	
3.12 Ultra-low-power comparators and reference voltage	
3.13 Routing interface	
3.14 Touch sensing	
3.15 Timers and watchdogs	

2 Description

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 32 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices contain standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs and a USB. The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any application.

They also include a real-time clock with sub-second counting and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151x6/8/B-A devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105°C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications.

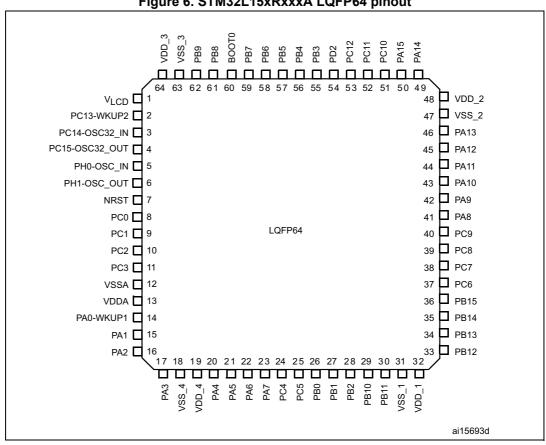


Figure 6. STM32L15xRxxxA LQFP64 pinout

1. This figure shows the package top view.

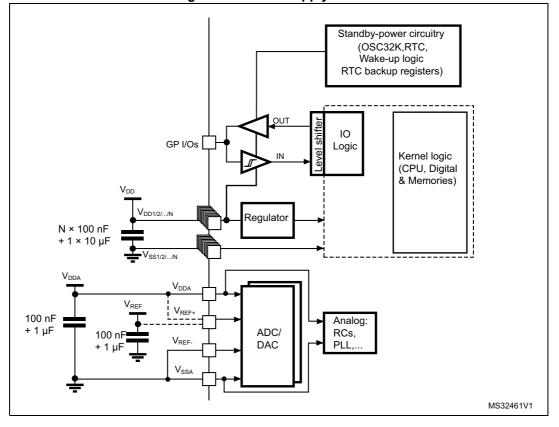
		Pins	;						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/ TIM11_CH1	-	
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-	
100	64	E4	C4	48	V _{DD_3}	S	-	V _{DD_3}	-	-	

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xxxxA devices only. In STM32L151xxxxA devices, this pin should be connected to V_{DD}.


4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

6.1.6 Power supply scheme

Figure 12. Power supply scheme

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
				1 MHz	215	285	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	490	μA
				4 MHz	725	1000	
		$f_{HSE} = f_{HCLK}$ up to 16 MHz, included		4 MHz	0.915	1.3	
		f _{HSE} = f _{HCLK} /2 above	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.15	
0	Supply	16 MHz (PLL ON) ⁽²⁾		16 MHz	3.4	4	
	Supply current in		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.1	2.9	
I _{DD (Run}	Run mode, code			16 MHz	4.2	5.2	
from Flash)	executed			32 MHz	8.25	9.6	
from	from Flash	HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.5	4.4	mA
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.2	10.2	
		MSI clock, 65 kHz		65 kHz	0.041	0.085	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	0.125	0.180	
		MSI clock, 4.2 MHz		4.2 MHz	0.775	0.935	

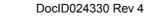
Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
				T_A = -40 °C to 25 °C	10.9	12	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	16.5	23	
			HOLK V- WH	T _A = 105 °C	26	47	
		All peripherals OFF, code		T_A = -40 °C to 25 °C	15	16	
		executed from RAM, Flash	MSI clock, 65 kHz f _{HCLK} = 65 kHz	T _A = 85 °C	22	29	
		switched OFF,	HOLK COMME	T _A = 105 °C	32	51	
		V _{DD} from 1.65 V to 3.6 V		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	29	37	
		1.00 V 10 0.0 V	MSI clock, 131 kHz	T _A = 55 °C	32.5	40	
	Supply current in Low-power run mode		f _{HCLK} = 131 kHz	T _A = 85 °C	35.5	54	-
I _{DD}				T _A = 105 °C	45	65	
(LP Run)		All peripherals OFF, code	MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	23	24	
				T _A = 85 °C	31	34	μA
				T _A = 105 °C	42.5	56	
			MSI clock, 65 kHz f _{HCLK} = 65 kHz	T_A = -40 °C to 25 °C	29	31	
				T _A = 85 °C	38	41	
		executed from Flash, V _{DD} from		T _A = 105 °C	49	63	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	46	55	1
			MSI clock, 131 kHz	T _A = 55 °C	48	59	
			f _{HCLK} = 131 kHz	T _A = 85 °C	53.5	72	1
				T _A = 105 °C	64.8	84	
I _{DD} Max (LP Run) ⁽²⁾	Max allowed current in Low-power run mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21. Current consumption in Low-power run mode


1. Guaranteed by characterization results, unless otherwise specified.

2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator. Consumption of the I/Os is not included in this limitation.

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max (1)(2)	Unit
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.13	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.38	4	
			LCD OFF	T _A = 55°C	1.70	6	
				T _A = 85°C	3.30	10	
		RTC clocked by LSI,		T _A = 105°C	7.80	23	
		regulator in LP mode, HSI		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	6	
		and HSE OFF (no independent	LCD ON (static	T _A = 55°C	1.80	7	
		watchdog)	duty) ⁽³⁾	T _A = 85°C	3.45	12	
				T _A = 105°C	8.02	27	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.80	10	
			LCD ON (1/8 duty) ⁽⁴⁾	T _A = 55°C	4.30	11	μΑ
				T _A = 85°C	6.10	16	
	Supply current in Stop mode with RTC enabled			T _A = 105°C	10.8	44	
		RTC clocked by LSE external clock (32.768 kHz), regulator in LP mode, HSI and HSE OFF	LCD OFF	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	-	
I _{DD (Stop}				T _A = 55°C	1.90	-	
with RTC)				T _A = 85°C	3.65	-	
				T _A = 105°C	8.25	-	
			LCD ON (static duty) ⁽³⁾	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.60	-	
				T _A = 55°C	2.05	-	
				T _A = 85°C	3.75	-	
		(no independent watchdog)		T _A = 105°C	8.40	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.90	-	
			LCD ON (1/8	T _A = 55°C	4.55	-	
			duty) ⁽⁴⁾	T _A = 85°C	6.35	-	
				T _A = 105°C	11.10	-	
				T _A = -40°C to 25°C V _{DD} = 1.8 V	1.23	-	
		RTC clocked by LSE (no independent watchdog) ⁽⁵⁾	LCD OFF	T _A = -40°C to 25°C V _{DD} = 3.0 V	1.50	-	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6 \text{ V}$	1.75	-	

Table 23. Typical and maximum current consumptions in Stop mode

Peripheral		Туріса	Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C				
		Range 1, V _{CORE} = 1.8 V VOS[1:0] = 01	Range 2, V _{CORE} = 1.5 V VOS[1:0] = 10	Range 3, V _{CORE} = 1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit	
I _{DD (RTC)}			0.4				
I _{DD (LCD)}			3.1				
I _{DD (ADC)} ⁽⁴⁾							
I _{DD (DAC)} ⁽⁵⁾							
IDD (COMP1)			μA				
1	Slow mode		2				
IDD (COMP2)	Fast mode		5				
I _{DD (PVD / BOR)} ⁽⁶⁾							
I _{DD (IWDG)}			0.25				

Table 25. Peripheral	current consumption ⁽¹⁾	(continued)
----------------------	------------------------------------	-------------

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Lowpower run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

- 3. In low-power sleep and run mode, the Flash memory must always be in power-down mode.
- 4. Data based on a differential Ibb measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).
- Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating.
- 6. Including supply current of internal reference voltage.

6.3.5 Wakeup time from Low-power mode

The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Figure 17. HSE oscillator circuit diagram

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

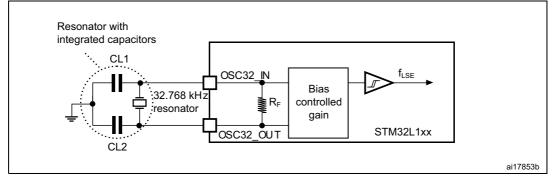
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 14*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	-	-	1.2	-	MΩ
C ⁽²⁾	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 kΩ	-	8	-	pF
I _{LSE}	LSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS}	-	-	1.1	μA
	LSE oscillator current consumption	V _{DD} = 1.8 V	-	450	-	
I _{DD (LSE)}		V _{DD} = 3.0 V	-	600	-	nA
		V _{DD} = 3.6V	-	750	-	
9 _m	Oscillator transconductance	-	3	-	-	µA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	1	-	S

Table 30. LSE oscillator characteristics	; (f _{LSE} = 32.768 kHz) ⁽¹⁾
--	--

1. Guaranteed by characterization results.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".


3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
ACC _{HSI} ⁽²⁾		V _{DDA} = 3.0 V, T _A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32. LSI oscillator	r characteristics
--------------------------	-------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift 0°C ≤T _A ≤85°C	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
t _{STAB(MSI)} ⁽²⁾	MSI oscillator stabilization time	MSI range 4	-	2.5	μs
		MSI range 5	-	- 2	
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage Range 3	-	3	
fourment	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
f _{OVER(MSI)}		Any range to range 6	-	6	1011 12

Table 33. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

6.3.8 PLL characteristics

The parameters given in *Table 34* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Table 34.	PLL	chara	cteristics
-----------	-----	-------	------------

Symbol	Parameter		Value		Unit	
Symbol Parameter		Min	Тур	Max ⁽¹⁾	Unit	
f	PLL input clock ⁽²⁾	2	-	24	MHz	
f _{PLL_IN} PLL input clock duty cycle		45	-	55	%	
f _{PLL_OUT}	PLL output clock	2	-	32	MHz	
t _{LOCK}	PLL lock time PLL input = 16 MHz - 1 PLL VCO = 96 MHz		115	160	μs	
Jitter	Cycle-to-cycle jitter	-	-	± 600	ps	
I _{DDA} (PLL)	Current consumption on V _{DDA}	- 220 450				
I _{DD} (PLL)	Current consumption on V_{DD}	-	120	150	μA	

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL_OUT}}$.

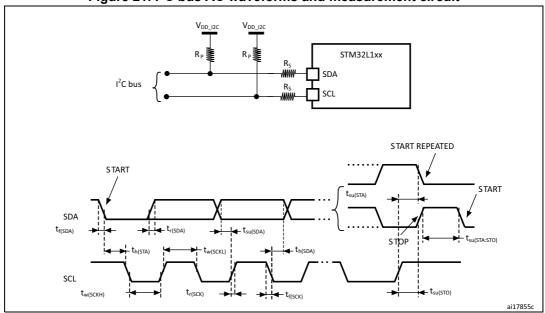


Figure 21. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistors
- 2. R_P = pull-up resistors
- 3. $V_{DD_{12C}} = 12C$ bus supply
- 4. Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}.

£ (1.11-)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x801B
300	0x8024
200	0x8035
100	0x00A0
50	0x0140
20	0x0320

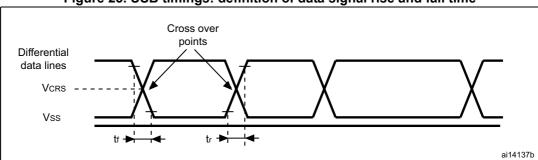
Table 49. SCL frequency $(f_{PCLK1} = 32 \text{ MHz}, V_{DD} = V_{DD_12C} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

 For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	ls				
V_{DD}	USB operating voltage ⁽²⁾	-	3.0	3.6	V
$V_{DI}^{(3)}$	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
$V_{SE}^{(3)}$	Single ended receiver threshold	-	1.3	2.0	
Output le	vels				
$V_{OL}^{(4)}$	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	v
V _{OH} ⁽⁴⁾	Static output level high	${\sf R}_{\sf L}$ of 15 ${\sf k}\Omega$ to ${\sf V}_{\sf SS}^{(5)}$	2.8	3.6	

Table 52. USB DC electrical characteristics


1. All the voltages are measured from the local ground potential.

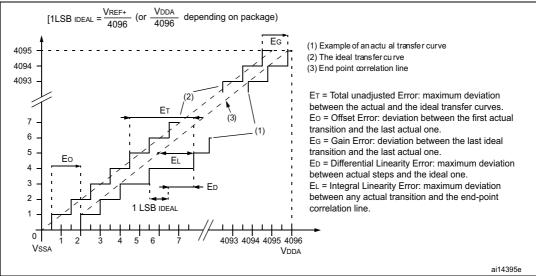
2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. Guaranteed by characterization results.

4. Guaranteed by test in production.

5. $\ensuremath{\,R_L}$ is the load connected on the USB drivers.

Figure 25. USB timings: definition of data signal rise and fall time


Table 53. USB: full speed electrical characteristics

	Driver characteristics ⁽¹⁾						
Symbol	Parameter Conditions Min Max Uni						
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall Time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V		

1. Guaranteed by design.

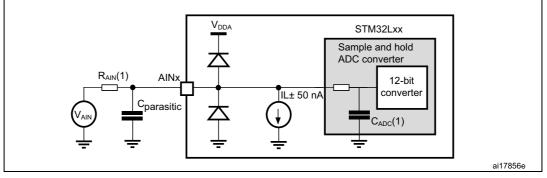

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification section 7 (version 2.0).

Figure 26. ADC accuracy characteristics

Figure 27. Typical connection diagram using the ADC

- 1. Refer to Table 57: Maximum source impedance RAIN max for the value of RAIN and Table 55: ADC characteristics for the value of CADC
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
dOffset/dT ⁽¹⁾	Offset error temperature	$V_{DDA} = 3.3V, V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer OFF	-20	-10	0	- μV/°C	
uonseva t	coefficient (code 0x800)	$V_{DDA} = 3.3V$, $V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer ON	0	20	50	μν/ Ο	
Gain ⁽¹⁾	Gain error ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / - 0.5%	%	
Gainty	Gainenor	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / - 0.2%	+0 / - 0.4%	70	
dGain/dT ⁽¹⁾	Gain error temperature	$V_{DDA} = 3.3V$, $V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer OFF	-10	-2	0	-μV/°C	
coefficient		$V_{DDA} = 3.3V$, $V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer ON	-40	-8	0	μv/ C	
TUE ⁽¹⁾	Total unadjusted error	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30	LSB	
		No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	8	12	LOD	
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁷⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

 Table 58. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Difference between two consecutive codes - 1 LSB.

 Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

- 5. Difference between the value measured at Code (0x001) and the ideal value.
- 6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.

7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

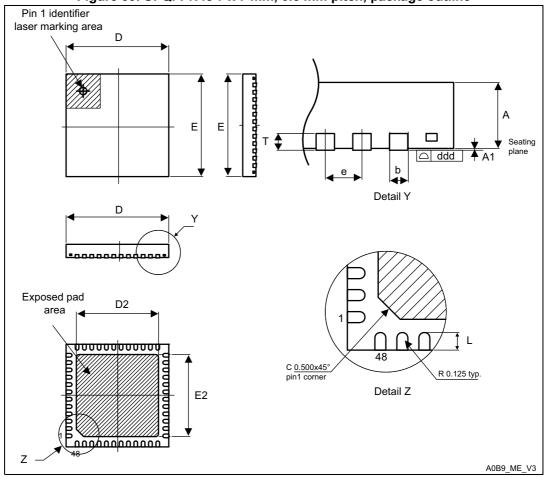


Figure 39. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

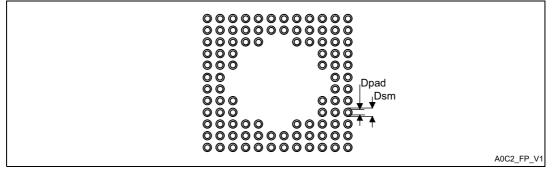


Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array	
package mechanical data (continued)	

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
F	0.7	0.75	0.8	0.0276	0.0295	0.0315
ddd	-	-	0.1	-	-	0.0039
eee	-	-	0.15	-	-	0.0059
fff	-	-	0.05	-	-	0.002

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package recommended footprint

Table 69. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

TFBGA64 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

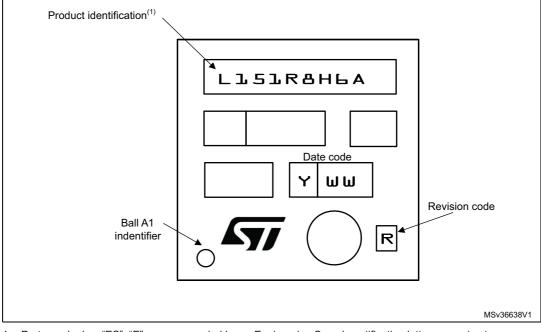


Figure 47. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

