

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152r8h6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A block diagram 13
Figure 2.	Clock tree
Figure 3.	STM32L15xVxxxA UFBGA100 ballout
Figure 4.	STM32L15xVxxxA LQFP100 pinout
Figure 5.	STM32L15xRxxxA TFBGA64 ballout
Figure 6.	STM32L15xRxxxA LQFP64 pinout
Figure 7.	STM32L15xCxxxA LQFP48 pinout
Figure 8.	STM32L15xCxxxA UFQFPN48 pinout
Figure 9.	Memory map
Figure 10.	Pin loading conditions
Figure 11.	Pin input voltage
Figure 12.	Power supply scheme
Figure 13.	Optional LCD power supply scheme
Figure 14.	Current consumption measurement scheme
Figure 15.	High-speed external clock source AC timing diagram
Figure 16.	Low-speed external clock source AC timing diagram
Figure 17.	HSE oscillator circuit diagram
Figure 18.	Typical application with a 32.768 kHz crystal
Figure 19.	I/O AC characteristics definition
Figure 20.	Recommended NRST pin protection
Figure 21.	I ² C bus AC waveforms and measurement circuit
Figure 22.	SPI timing diagram - slave mode and CPHA = 0
Figure 23.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾
Figure 24.	SPI timing diagram - master mode ⁽¹⁾
Figure 25.	USB timings: definition of data signal rise and fall time
Figure 26.	ADC accuracy characteristics
Figure 27.	Typical connection diagram using the ADC
Figure 28.	Maximum dynamic current consumption on V _{REF+} supply pin during ADC
5	conversion
Figure 29.	12-bit buffered /non-buffered DAC
Figure 30.	LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline
Figure 31.	LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint 108
Figure 32.	LQFP100 14 x 14 mm, 100-pin package top view example
Figure 33.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline
Figure 34.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint 110
Figure 35.	LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example 111
Figure 36.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline
Figure 37.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package recommended footprint 114
Figure 38.	LQFP48 7 x 7 mm, 48-pin low-profile quad flat package top view example
Figure 39.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline
Figure 40.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint
Figure 41.	UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example
Figure 42.	UFBGA100, 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
	package outline
Figure 43.	UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
	package recommended footprint
Figure 44.	UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example
Figure 45.	TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array

2 Description

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes and RAM up to 32 Kbytes) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six generalpurpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices contain standard and advanced communication interfaces: up to two I²Cs and SPIs, three USARTs and a USB. The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any application.

They also include a real-time clock with sub-second counting and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151x6/8/B-A devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105°C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices embed a nested vectored interrupt controller able to handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of *late arriving*, higher-priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.3 Reset and supply management

3.3.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

The device exists in two versions:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V_{DD} min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode
- V_{LCD} rail decoupling capability

		Bias		Р	1 4	
	1/2	1/3	1/4	Pin		
V _{LCDrail1}	1/2 V _{LCD}	2/3 V _{LCD}	1/2 V _{LCD}	PB2		
V _{LCDrail2}	NA	1/3 V _{LCD}	1/4 V _{LCD}	PB12	PE11	
V _{LCDrail3}	NA	NA	3/4 V _{LCD}	PB0	PE12	

Table 6. V_{LCD} rail decoupling

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B-A and STM32L152x6/8/B-A devices with up to 24 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.12 Ultra-low-power comparators and reference voltage

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- one comparator with fixed threshold
- one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or V_{REFINT} submultiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical).

3.13 Routing interface

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.14 Touch sensing

The STM32L151x6/8/B-A and STM32L152x6/8/B-A devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 20 capacitive sensing channels distributed over 10 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.13: Routing interface).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.15 Timers and watchdogs

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A devices include six general-purpose timers, two basic timers and two watchdog timers.

Table 7 compares the features of the general-purpose and basic timers.

DocID024330 Rev 4

3.15.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)

There are six synchronizable general-purpose timers embedded in the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices (see *Table 7* for differences).

TIM2, TIM3, TIM4

These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.15.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.15.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit down-counter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.15.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

		Figure	5. STM3	2L15xRx		GA64 ball	out	
	1	2	3	4	5	6	7	8
A	, PC14-, 0\\$C32_lN	, PC13-, WKUP2	(PB9)	, PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	/PC15-\ O\$C32_OUT	- (VLCD)	(PB8)	BOOTO	(PD2)	(PC11)	(PC10)	(PA12)
С	, ∕₽́ĤÒ`, OSC_IN ``	Vss_4	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D	OSC_OUT	'V _{DD_4} '	(PB6)	VSS_3	VSS_2	,V _{SS_1} ,	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	'V _{DD_3} '	'V _{DD_2} '	,V _{DD_1} ,	(PC7)	(PC8)
F	VSSA	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G	VREF+	PAO-WKUP1	(PA3)	(PA6)	// PB1)	(PB2)	(PB10)	(PB13)
н	VDDA;	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	// ((PB11)	(PB12)
								Al1609

Figure 5. STM32L15xRxxxA TFBGA64 ballout

1. This figure shows the package top view.

Figure 7. STM32L15xCxxxA LQFP48 pinout

1. This figure shows the package top view.

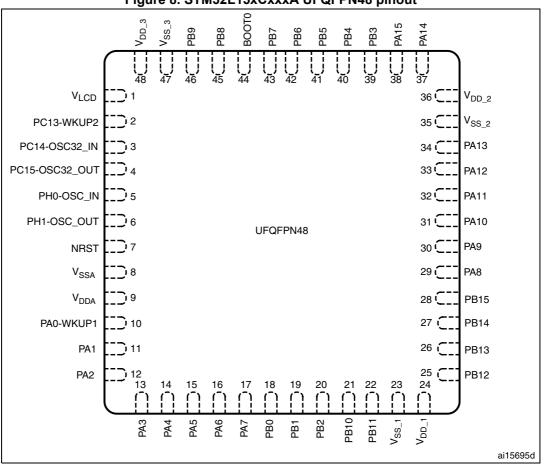


Figure 8. STM32L15xCxxxA UFQFPN48 pinout

1. This figure shows the package top view.

		Pins	;						Pins functio	ns
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-
83	54	В5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31 /LCD_SEG43/ LCD_COM7	-
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/ TIM9_CH2	-
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/ LCD_SEG7/JTDO	COMP2_INM
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8 /NJTRST	COMP2_INP
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	_
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN
94	60	B4	A4	44	BOOT0	Ι	В	BOOT0	-	-
95	61	В3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/ TIM10_CH1	-
96	62	A3	В3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/ TIM11_CH1	-
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36 / TIM10_CH1	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)	

						Digital alterna	te functior	n number							
Dertheme	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Port name	·					Altern	ate functio	'n							
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PC10	-	-	-	-	-	-	-	USART3_TX	-	-	COM4 / SEG28 / SEG40	-	-	TIMx_IC3	EVENTOU
PC11	-	-	-	-	-	-	-	USART3_RX	-	-	COM5 / SEG29 / SEG41	-	-	TIMx_IC4	EVENTOL
PC12	-	-	-	-	-	-	-	USART3_CK	-	-	COM6 / SEG30 / SEG42	-	-	TIMx_IC1	EVENTOL
PC13- WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOL
PC14- OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOL
PC15- OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENTOL
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS	-	-	-	-	-	-	-	TIMx_IC1	EVENTOL
PD1	-	-	-	-	-	SPI2_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTOL
PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	COM7 / SEG31 / SEG43	-	-	TIMx_IC3	EVENTOL
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	-	-	-	-	TIMx_IC4	EVENTOL
PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS	-	-	-	-	-	TIMx_IC1	EVENTOL
PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	-	TIMx_IC2	EVENTOL
PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-		TIMx_IC3	EVENTOL
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	-	-	-	-	TIMx_IC4	EVENTOL
PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	-	TIMx_IC1	EVENTOL
PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	-	TIMx_IC2	EVENTOL

Pin descriptions

5

Digital alternate function number AFI O9 AFI AFIO AFIO AFIO2 AFIO4 AFIO5 AFOI6 AFIO11 AFIO0 AFIO1 AFIO3 AFIO7 AFIO14 AFIO15 08 13 12 Port name Alternate function USART SYSTEM TIM2 TIM3/4 TIM9/10/11 I2C1/2 SPI1/2 N/A N/A N/A LCD N/A N/A RI SYSTEM 1/2/3 PD10 USART3_CK TIMx_IC3 EVENTOUT ------------TIMx_IC4 PD11 USART3_CTS -EVENTOUT -----------PD12 TIM4 CH1 USART3_RTS TIMx IC1 EVENTOUT -_ ---------TIM4_CH2 PD13 TIMx_IC2 EVENTOUT ------------PD14 TIM4_CH3 TIMx_IC3 EVENTOUT ------------TIM4_CH4 _ -TIMx_IC4 EVENTOUT PD15 _ _ -_ -----_ TIM4 ETR TIM10 CH1 TIMx_IC1 EVENTOUT PE0 -----------TIM11_CH1 TIMx_IC2 EVENTOUT PE1 -----------TIMx_IC3 PE2 TRACECK TIM3 ETR EVENTOUT -----------TIMx_IC4 PE3 TRACED0 TIM3_CH1 EVENTOUT -----------TIMx_IC1 PE4 -EVENTOUT TRACED1 -TIM3 CH2 ---------PE5 TRACED2 TIM9 CH1* -TIMx_IC2 EVENTOUT ----------PE6 TRACED3 TIM9_CH2* TIMx_IC3 EVENTOUT -----------TIMx_IC4 EVENTOUT PE7 ------------TIMx_IC1 EVENTOUT PE8 ------------TIMx_IC2 EVENTOUT PE9 TIM2 CH1 ETR ------------EVENTOUT **PE10** TIM2_CH2 -TIMx_IC3 -----------EVENTOUT PE11 TIM2_CH3 TIMx_IC4 ------------PE12 TIMx_IC1 EVENTOUT TIM2_CH4 SPI1_NSS -----------TIMx_IC2 EVENTOUT PE13 -SPI1_SCK -----------PE14 SPI1_MISO TIMx_IC3 EVENTOUT ------------PE15 SPI1_MOSI TIMx_IC4 EVENTOUT ------------PH0-----------. --_ -OSC_IN

Table 10. Alternate function input/output (continued)

49/129

Pin descriptions

Symbol	Parameter		Conditions		Тур	Max (1)	Unit				
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	5.5	-					
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	15	16					
			f _{HCLK} = 32 kHz	T _A = 85 °C	20	23					
		All	Flash ON	T _A = 105 °C	24	26					
		peripherals OFF, V _{DD}	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	15	16					
		from 1.65 V to 3.6 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	20.5	23					
			Flash ON	T _A = 105 °C	25.4	27					
				T_A = -40 °C to 25 °C	18	20					
			MSI clock, 131 kHz f _{HCLK} = 131 kHz, Flash ON	T _A = 55 °C	21	22	μA				
I _{DD} (LP				T _A = 85 °C	23	27					
Sleep)	sleep			T _A = 105 °C	28	31					
	mode	TIM9 and USART1 enabled,		T_A = -40 °C to 25 °C	15	16					
							MSI clock, 65 kHz f _{HCLK} = 32 kHz	T _A = 85 °C	20	22	
			HOLK OZ KIZ	T _A = 105 °C	24	26					
			T1 MSI clock, 65 kHz	T_A = -40 °C to 25 °C	15	16					
				T _A = 85 °C	20.5	23					
		Flash ON, V _{DD} from	HCLK - 00 KHZ	T _A = 105 °C	25.4	27					
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	18	20					
		5.0 V	MSI clock, 131 kHz	T _A = 55 °C	21	22					
			f _{HCLK} = 131 kHz	T _A = 85 °C	23	27					
				T _A = 105 °C	28	30					
I _{DD} Max (LP Sleep)	Max allowed current in Low-power Sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200					

Table 22. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 45*, respectively.

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kHz
00	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400	KIIZ
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ne
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625	ns
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	MHz
01	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1	
01	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	n 0
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	250	ns
	F	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	MHz
10	F _{max(IO)out}	Maximum nequency.	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2	WITZ
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25	
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	ns
		Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	50	MHz
11	F _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	8	
	t _{f(IO)out}	Output rise and fall time	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5	
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns

Table 45. I/O AC characteristics ⁽¹⁾	Table	45. I/O	AC	characteristics ⁽¹⁾	
---	-------	---------	----	--------------------------------	--

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 19*.

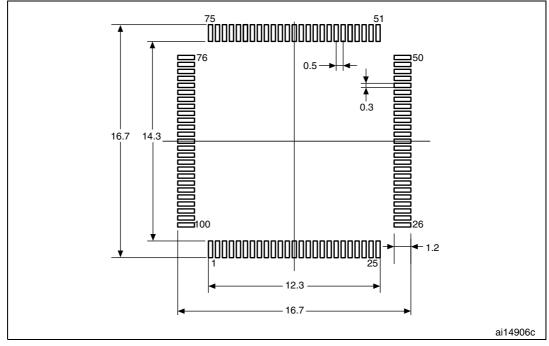
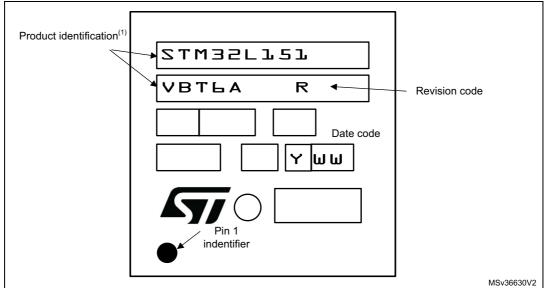


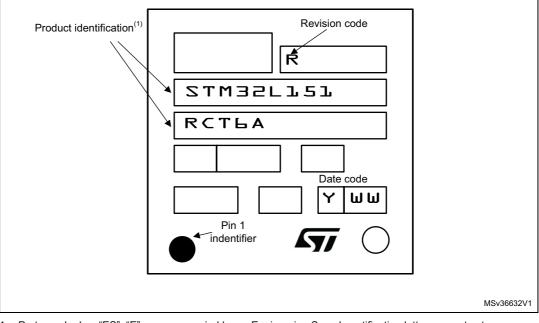
Figure 31. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP100 device Marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.




Figure 32. LQFP100 14 x 14 mm, 100-pin package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

LQFP64 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

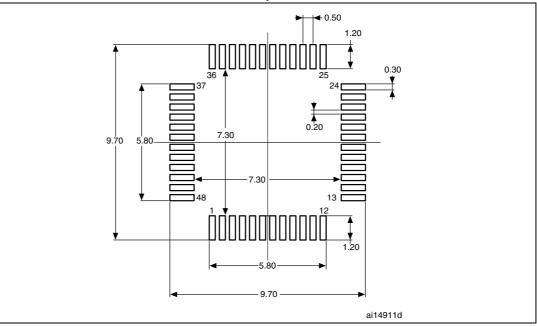
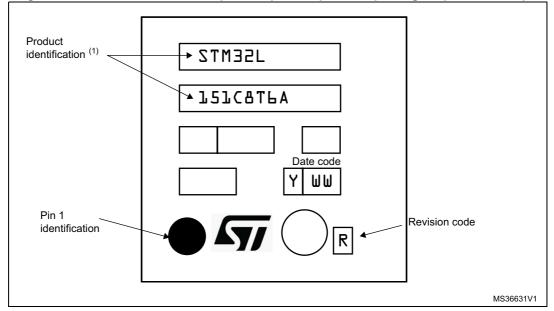
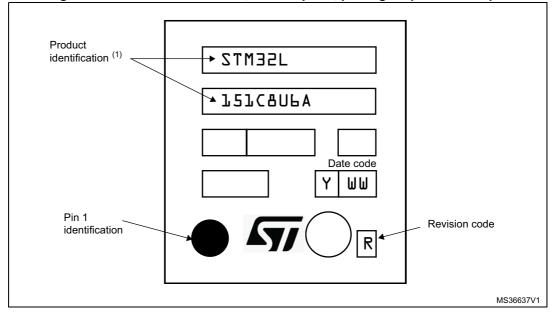



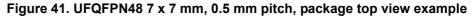
Figure 37. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.


DocID024330 Rev 4

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.7 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm	59	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	
0	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm	65	°C 1.1/
Θ_{JA}	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm / 0.5 mm pitch	33	

Table 72. Thermal characteristics

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID024330 Rev 4