

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152rbh6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1 Introduction	9								
2 Description									
2.1 Device overview									
2.2 Ultra-low-power device continuum									
2.2.1 Performance									
2.2.2 Shared peripherals									
2.2.3 Common system strategy									
2.2.4 Features									
3 Functional overview	Functional overview								
3.1 Low-power modes									
3.2 ARM [®] Cortex [®] -M3 core with MPU									
3.3 Reset and supply management									
3.3.1 Power supply schemes									
3.3.2 Power supply supervisor									
3.3.3 Voltage regulator									
3.3.4 Boot modes									
3.4 Clock management									
3.5 Low-power real-time clock and backup registers	Low-power real-time clock and backup registers								
3.6 GPIOs (general-purpose inputs/outputs)									
3.7 Memories	Memories								
3.8 DMA (direct memory access)									
3.9 LCD (liquid crystal display)									
3.10 ADC (analog-to-digital converter)									
3.10.1 Temperature sensor									
3.10.2 Internal voltage reference (V _{REFINT})									
3.11 DAC (digital-to-analog converter)									
3.12 Ultra-low-power comparators and reference voltage									
3.13 Routing interface									
3.14 Touch sensing									
2.15 Timoro and watchdogo	27								

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From a proprietary 8bit core up to the Cortex-M3, including the Cortex-M0+, the STM8Lx and STM32Lx series offer the best range of choices to meet your requirements in terms of ultra-low-power features. The STM32 Ultra-low-power series is an ideal fit for applications like gas/water meters, keyboard/mouse, or wearable devices for fitness and healthcare. Numerous built-in features like LCD drivers, dual-bank memory, low-power Run mode, op-amp, AES-128bit, DAC, crystal-less USB and many others, allow to build highly cost-optimized applications by reducing the BOM.

Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible the pin-to-pin compatibility between any STM8Lx and STM32Lx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, your existing applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.

This allows the ultra-Low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy migration from one family to another:

- Analog peripherals: ADC, DAC and comparators
- Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy

To offer flexibility and optimize performance, the STM8L15xxx and STM32L1xxxx families use a common architecture:

- Common power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for STM8L15xxx devices)
- Architecture optimized to reach ultra-low consumption both in low-power modes and Run mode
- Fast startup strategy from low-power modes
- Flexible system clock
- Ultra-safe reset: same reset strategy including power-on reset, power-down reset, brownout reset and programmable voltage detector.

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:

- More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
- Memory density ranging from 4 to 512 Kbytes

DocID024330 Rev 4

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs					
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No					
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No					
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No					
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No					

Table 7. Timer feature comparison

		Pins	5						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
35	26	F5	M5	18	PB0	I/O	тс	PB0	TIM3_CH3/ LCD_SEG5	ADC_IN8/ COMP1_INP/ VREF_OUT /VLCDRAIL3	
36	27	G5	M6	19	PB1	I/O	FT	PB1	TIM3_CH4/ LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT	
37	28	G6	L6	20	PB2	I/O	FT	PB2/ BOOT1	BOOT1	VLCDRAIL1	
38	-	-	M7	-	PE7	I/O	тс	PE7	-	ADC_IN22/ COMP1_INP	
39	-	-	L7	-	PE8	I/O	тс	PE8	-	ADC_IN23/ COMP1_INP	
40	-	-	M8	-	PE9	I/O	тс	PE9	TIM2_CH1_ETR	ADC_IN24/ COMP1_INP	
41	-	-	L8	-	PE10	I/O	тс	PE10	TIM2_CH2	ADC_IN25/ COMP1_INP	
42	-	-	M9	-	PE11	I/O	FT	PE11	TIM2_CH3	VLCDRAIL2	
43	-	-	L9	-	PE12	I/O	FT	PE12	TIM2_CH4/ SPI1_NSS	VLCDRAIL3	
44	-	-	M10	-	PE13	I/O	FT	PE13	SPI1_SCK	-	
45	-	-	M11	-	PE14	I/O	FT	PE14	SPI1_MISO	-	
46	-	-	M12	-	PE15	I/O	FT	PE15	SPI1_MOSI	-	
47	29	G7	L10	21	PB10	I/O	FT	PB10	I2C2_SCL/USART3_TX /TIM2_CH3/ LCD_SEG10	-	
48	30	H7	L11	22	PB11	I/O	FT	PB11	I2C2_SDA/USART3_RX /TIM2_CH4/ LCD_SEG11	-	
49	31	D6	F12	23	V _{SS_1}	S	-	V _{SS_1}	-	-	
50	32	E6	G12	24	V _{DD_1}	S	-	V _{DD_1}	-	-	

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

46/129

DocID024330 Rev 4

		Digital alternate function number													
Dentaria	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Port name						Altern	ate functio	'n	•	•			•		
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
BOOT0	BOOT0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NRST	NRST	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PA0-WKUP1	-	TIM2_CH1_ETR	-	-	-	-	-	USART2_CTS	-	-	-	-	-	TIMx_IC1	EVENTOUT
PA1	-	TIM2_CH2	-	-	-	-	-	USART2_RTS	-	-	[SEG0]	-	-	TIMx_IC2	EVENTOUT
PA2	-	TIM2_CH3	-	TIM9_CH1	-	-	-	USART2_TX	-	-	[SEG1]	-	-	TIMx_IC3	EVENTOUT
PA3	-	TIM2_CH4	-	TIM9_CH2	-	-	-	USART2_RX	-	-	[SEG2]	-	-	TIMx_IC4	EVENTOUT
PA4	-	-	-	-	-	SPI1_NSS	-	USART2_CK	-	-	-	-	-	TIMx_IC1	EVENTOUT
PA5	-	TIM2_CH1_ETR	-	-	-	SPI1_SCK	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PA6	-	-	TIM3_CH1	TIM10_CH1	-	SPI1_MISO	-	-	-	-	[SEG3]	-	-	TIMx_IC3	EVENTOUT
PA7	-	-	TIM3_CH2	TIM11_CH1	-	SPI1_MOSI	-	-	-	-	[SEG4]	-	-	TIMx_IC4	EVENTOUT
PA8	MCO	-	-	-	-	-	-	USART1_CK	-	-	[COM0]	-	-	TIMx_IC1	EVENTOUT
PA9	-	-	-	-	-	-	-	USART1_TX	-	-	[COM1]	-	-	TIMx_IC2	EVENTOUT
PA10	-	-	-	-	-	-	-	USART1_RX	-	-	[COM2]	-	-	TIMx_IC3	EVENTOUT
PA11	-	-	-	-	-	SPI1_MISO	-	USART1_CTS	-	-	-	-	-	TIMx_IC4	EVENTOUT
PA12	-	-	-	-	-	SPI1_MOSI	-	USART1_RTS	-	-	-	-	-	TIMx_IC1	EVENTOUT
PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENTOUT
PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENTOUT
PA15	JTDI	TIM2_CH1_ETR	-	-	-	SPI1_NSS	-	-	-	-	SEG17	-	-	TIMx_IC4	EVENTOUT
PB0	-	-	TIM3_CH3	-	-	-	-	-	-	-	[SEG5]	-	-	-	EVENTOUT
PB1	-	-	TIM3_CH4	-	-	-	-	-	-	-	[SEG6]	-	-	-	EVENTOUT
PB2	BOOT1	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
PB3	JTDO	TIM2_CH2	-	-	-	SPI1_SCK	-	-	-	-	[SEG7]	-	-	-	EVENTOUT

Table 10. Alternate function input/output

Pin descriptions

50/129

	Table 10. Alternate function input/output (continued)														
						Digital alterna	ate function	number							
Port name	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Fort name		Alternate function													
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PH1- OSC_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0	
V(2)	Input voltage on five-volt tolerant pin	V _{SS} -0.3	V _{DD} +4.0	V
$\frac{V_{\rm IN}^{(2)}}{ \rm Input \ voltage}}$ $\frac{ \Delta V_{\rm DDx} }{ \Delta V_{\rm DDx} } Variations \ be$	Input voltage on any other pin	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/
$ V_{SSX} - V_{SS} $	Variations between all different ground pins ⁽³⁾	-	50	IIIV
$V_{REF+} - V_{DDA}$	Allowed voltage difference for $V_{REF^+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6	.3.11	-

Table 11. Voltage characteristics	Table	cteristics	charact	Voltage
-----------------------------------	-------	------------	---------	---------

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 12* for maximum allowed injected current values.

3. Include VREF- pin.

Table 12. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	100	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS_x} ground lines $(sink)^{(1)}$	100	
I _{VDD(PIN)}	Maximum current into each V_{DD_x} power pin (source) ⁽¹⁾	70	
I _{VSS(PIN)}	Maximum current out of each V_{SS_x} ground pin (sink) ⁽¹⁾	-70	mA
I _{IO}	Output current sunk by any I/O and control pin	25	
	Output current sourced by any I/O and control pin	- 25	
51	Total output current sunk by sum of all IOs and control pins ⁽²⁾	60	
∠IO(PIN)	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-60	
(3)	Injected current on five-volt tolerant I/O ⁽⁴⁾ RST and B pins	-5/+0	
'INJ(PIN)`´	Injected current on any other pin ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

- 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C
T _{LEAD}	Maximum lead temperature during soldering	see note ⁽¹⁾	°C

Table 13. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

6.3 Operating conditions

6.3.1 General operating conditions

Table 14.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
· · · (1)	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V	
V DDA`	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	Min Max 0 32 0 32 0 32 1.65 3.6 1.8 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.65 3.6 1.8 3.6 -0.3 5.5 ⁽³⁾ -0.3 5.25 ⁽³⁾ 0 5.5 -0.3 V _{DD} +0.3		
		FT pins: 2.0 V ≤V _{DD}	-0.3	5.5 ⁽³⁾		
V		FT pins: V _{DD} < 2.0 V	-0.3	5.25 ⁽³⁾	v	
MN		BOOT0	0	5.5		
		Any other pin	-0.3	V _{DD} +0.3		

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit	
I _{DD (Stop)}		Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.80	2.2		
	Supply current in Stop mode ($T_A = -40^{\circ}C$ to $25^{\circ}C$	0.434	1	μA	
	RTC disabled)	Regulator in LP mode, LSI, HSI and	T _A = 55°C	0.735	3		
		HSE OFF (no independent watchdog)	T _A = 85°C	2.350	9		
			T _A = 105°C	6.84	22 ⁽⁶⁾		
	RMS (root mean	MSI = 4.2 MHz		2	-		
I _{DD (WU} from Stop)	square) supply current during wakeup time when exiting from Stop mode MSI = 1.05 MHz MSI = 65 kHz ⁽⁷⁾	MSI = 1.05 MHz	V _{DD} = 3.0 V	1.45	-		
		MSI = 65 kHz ⁽⁷⁾	$T_A = -40^{\circ}C$ to 25°C	1.45	-	ΜA	

Table 23. Typical and maximum current consumptions in Stop mode (continued)

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.

4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

6. Guaranteed by test in production.

When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining time
of the wakeup period, the current is similar to the Run mode current.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-	
Symbol twusleep_lp	Wakeup from Low-power	f _{HCLK} = 262 kHz Flash enabled	46	-	
'WUSLEEP_LP	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-	
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	μs
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 1 and 2	7.7	8.9	
	Wakeup from Stop mode, regulator in low-power mode	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 3	8.2	13.1	
t _{WUSTOP}		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4	
		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20	
		f _{HCLK} = f _{MSI} = 524 kHz	31	37	
		f _{HCLK} = f _{MSI} = 262 kHz	57	66	
		f _{HCLK} = f _{MSI} = 131 kHz	112	123	
		f _{HCLK} = MSI = 65 kHz	221	236	
^t wustdby	Wakeup from Standby mode FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104	
	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms

Table 26. Low-power mode wakeup timings

1. Guaranteed by characterization results, unless otherwise specified

6.3.7 Internal clock source characteristics

The parameters given in the following table are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
		V _{DDA} = 3.0 V, T _A = -10 to 70 °C	-2	-	2	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V_{DDA} = 3.0 V, T_A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μA

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32	. LSI	oscillator	characteristics
----------	-------	------------	-----------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
$D_{LSI}^{(2)}$	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol				Max vs. frequency range			
	Parameter	Conditions	Monitored frequency band	4 MHz voltage Range 3	16 MHz voltage Range 2	32 MHz voltage Range 1	Unit
S _{EMI}		V _{DD} = 3.3 V,	0.1 to 30 MHz	-16	-7	-3	
	Poak lovel	$T_A = 25 °C,$	30 to 130 MHz	-12	2	12	dBµV
	reak level	compliant with IEC	130 MHz to 1GHz	-11	0	8	
		61967-2	SAE EMI Level	1	1.5	2	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25$ °C, conforming to ANSI/ESD STM5.3.1	All	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence, oscillator frequency deviation, LCD levels).

The test results are given in Table 42.

		Functional susceptibility		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on all 5 V tolerant (FT) pins	-5	NA	
I _{INJ}	Injected current on BOOT0	-0	NA	mA
	Injected current on any other pin	-5	+5	

Table 42. I/O current injection susceptibility

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Figure 22. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	$-2.4 V \le V_{\text{REF}+} \le 3.6 V$	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{\text{DDA}} = V_{\text{REF+}}$ $f_{\text{ADC}} = 16 \text{ MHz}, R_{\text{AIN}} = 50 \Omega$	59	62	-	
SNR	Signal-to-noise ratio	T _A = -40 to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ENOB	Effective number of bits	1.8 V \leq V _{DDA} \leq 2.4 V V _{DDA} $=$ V _{REF+} f _{ADC} $=$ 8 MHz or 4 MHz,	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio		59	62	-	dB
SNR	Signal-to-noise ratio	$-R_{AIN} = 50.02$ $T_{\Delta} = -40$ to 105 °C	60	62	-	
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1.5	3.5	1
EG	Gain error	$1.8 V \le V_{\text{REF}+} \le 2.4 V$	-	3.5	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2.5	3.5	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	$1.8 V \le V_{REF+} \le 2.4 V$ face = 4 MHz Raw = 50 O	-	1.5	2.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2]
EL	Integral linearity error		-	2	3	

Table 56. ADC accuracy⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 64. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package								
mechanical data								

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.3 LQFP48 7 x 7 mm, 48-pin low-profile quad flat package information

Figure 36. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline

1. Drawing is not to scale.

Figure 37. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID024330 Rev 4

Symbol	millimeters			inches ⁽¹⁾					
	Min	Тур	Мах	Min	Тур	Max			
А	0.500	0.550	0.600	0.0197	0.0217	0.0236			
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020			
D	6.900	7.000	7.100	0.2717	0.2756	0.2795			
E	6.900	7.000	7.100	0.2717	0.2756	0.2795			
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244			
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244			
L	0.300	0.400	0.500	0.0118	0.0157	0.0197			
Т	-	0.152	-	-	0.0060	-			
b	0.200	0.250	0.300	0.0079	0.0098	0.0118			
е	-	0.500	-	-	0.0197	-			
ddd	-	-	0.080	-	-	0.0031			

Table 67. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 40. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.

UFBGA100 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 44. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

