

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152rbt6a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.

Stop mode consumption: refer to *Table 23*.

• Standby mode with RTC

Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

• **Standby** mode without RTC

Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI, RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Standby mode consumption: refer to *Table 24*.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the Stop or Standby mode.

	Functionalities depending on the operating power supply range							
Operating power supply range	DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation				
V _{DD} = 1.65 to 1.71 V	Not functional	Not functional	Range 2 or Range 3	Degraded speed performance				
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	Not functional	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance				
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 500 Ksps	Not functional	Range 1, Range 2 or Range 3	Degraded speed performance				

Table 3. Functionalities depending on the operating power supply range

3.17 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.18 Development support

Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

The JTAG port can be permanently disabled with a JTAG fuse.

Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151x6/8/B-A and STM32L152x6/8/B-A device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

4 Pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	1800to	(PD7)	(PD5)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12)	(PC10)	(PA11)
с	PC13 WKUP2	(PE5)	(PE0)	VDD_B	(PB5)			(PD2)	(PDO)	PC11)	(PH2)	(PA10)
D	PC14) 0\$C32_IN		ŃSS_B							(PA9)	(PA8)	(PC9)
E	PC15) OSC32_C	VLCD	ŃSS_#							(PC8)	(PC7)	(PC6)
F	PHO) QSCZIN	a_zzvi					I L				WSS_P	NSS_)
G	PH1)											NDD M
н	(PC0)	NRST								PD15)	(PD14)	(PD13)
J	VSSA)	(PC1)	(PC2)							PD12)	PD11)	(PD10)
к	VREF	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	PB14)	(PB13)
L	(VRE#+	PA0) WKUP1	(PA3)	(PA6)	(PC5)	(PB2)	(PE8)	(PE10)	(PE12)	(PB10)	(PB11)	iPB12)
М	NDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	/ (PE11)	/~~ (PE13	PE14	PE13
												ai17096f

Figure 3. STM32L15xVxxxA UFBGA100 ballout

1. This figure shows the package top view.

		Pins	;						Pins functio	ons
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
98	-	-	A2	-	PE1	I/O	FT	PE1	LCD_SEG37/ TIM11_CH1	-
99	63	D4	D3	47	V _{SS_3}	S	-	V _{SS_3}	-	-
100	64	E4	C4	48	V _{DD_3}	S	-	V _{DD_3}	-	-

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)

1. I = input, O = output, S = supply.

 Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to *Table 2 on page 11*.

3. Applicable to STM32L152xxxxA devices only. In STM32L151xxxxA devices, this pin should be connected to V_{DD}.

4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L1xxxx reference manual (RM0038).

 The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.

6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The V_{REF+} functionality is provided instead.

50/129

			T	able 10. A	Iternate f	function i	nput/out	put (contin	ued)						
		Digital alternate function number													
Port name	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFOI6	AFIO7	AFI O8	AFI O9	AFIO11	AFIO 12	AFIO 13	AFIO14	AFIO15
Fort name		Alternate function													
	SYSTEM	TIM2	TIM3/4	TIM9/10/11	I2C1/2	SPI1/2	N/A	USART 1/2/3	N/A	N/A	LCD	N/A	N/A	RI	SYSTEM
PH1- OSC_OUT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PH2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

5 Memory mapping

The memory map is shown in the following figure.

DocID024330 Rev 4

6.3.3 Embedded internal reference voltage

The parameters given in the following table are based on characterization results, unless otherwise specified.

Table 16	. Embedded	internal	reference	voltage	calibration values
----------	------------	----------	-----------	---------	--------------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C ±5 °C, V _{DDA} = 3 V ±10 mV	0x1FF8 0078-0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +110 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μA
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REF} value $^{(2)}$	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +110 °C	-	25	100	ppm/°C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾	ADC sampling time when reading the internal reference voltage	-	4	-	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current ⁽⁵⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	% V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	

Table 17. Embedded internal reference voltage

1. Guaranteed by test in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. Shortest sampling time can be determined in the application by multiple interactions.

5. To guarantee less than 1% VREF_OUT deviation.

Symbol	Parameter	Conc	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3.	1 MHz	185	255	
			V _{CORE} =1.2 V	2 MHz	345	435	μA
		fuer = fueur	VOS[1:0] = 11	4 MHz	645	930	
		up to 16 MHz,	Range 2	4 MHz	0.755	1.5	
		included $f_{\rm Her} = f_{\rm Her} / 2$ above	V _{CORE} =1.5 V	8 MHz	1.5	2.2	
	Supply current in Run mode, code executed from RAM, Flash switched off	16 MHz	MHZ = 10 $VOS[1:0] = 10$	16 MHz	3.0	3.6	
		(PLL ON) ⁽²⁾ Range V _{CORE}	Range 1	8 MHz	1.8	2.9	
			V _{CORE} =1.8 V	16 MHz	3.6	4.3	
^I DD (Run from RAM)			VOS[1:0] = 01	32 MHz	7.15	8.5	mA
from KAM) F		HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	2.95	3.7	
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	7.15	8.7	
		MSI clock, 65 kHz	Range 3	65 kHz	39	115	
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	110	205	μA
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	690	870	

Table 19. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Cond	itions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit	
			Range 3.	1 MHz	50	155		
			V _{CORE} =1.2 V	2 MHz	78.5	235		
		<i>.</i>	VOS[1:0] = 11	4 MHz	140	370 ⁽³⁾		
		t _{HSE} = t _{HCLK} up to 16 MHz included.	Range 2.	4 MHz	165	375		
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	310	530		
		ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	590	1000		
	Supply	,	Range 1,	8 MHz	350	615		
	current in		V _{CORE} =1.8 V	16 MHz	680	1200		
	Sleep		VOS[1:0] = 01	32 MHz	1600	2350	μA	
I _{DD}	Flash OFF	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	640	970		
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2350		
		MSI clock, 65 kHz	Range 3,	65 kHz	19	60		
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	33	90		
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	145	210		
(Sleep)			Range 3,	1 MHz	60.5	145		
		f _{HSE} = f _{HCLK} up to 16 MHz included,	V _{CORE} =1.2 V	2 MHz	89.5	225		
			VOS[1:0] = 11	4 MHz	150	360		
			Range 2,	4 MHz	180	370		
		$f_{HSE} = f_{HCLK}/2$	V _{CORE} =1.5 V	8 MHz	320	490		
		ON ⁽²⁾	VOS[1:0] = 10	16 MHz	605	895		
	Supply		Range 1,	8 MHz	380	565		
	current in		V _{CORE} =1.8 V	16 MHz	695	1070		
	Sleep		VOS[1:0] = 01	32 MHz	1600	2200	μA	
	Flash ON	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	650	970		
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	1600	2320		
		MSI clock, 65 kHz	Range 3.	65 kHz	29.5	65		
		MSI clock, 524 kHz	V _{CORE} =1.2V	524 kHz	44	80		
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	155	220		

Table 20. Current consumption in Sleep mode

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)

3. Guaranteed by test in production.

Symbol	Parameter	C	Conditions				Unit
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.13	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.38	4	
			LCD OFF	T _A = 55°C	1.70	6	
		RTC clocked by I SI		T _A = 85°C	3.30	10	
				T _A = 105°C	7.80	23	
		regulator in LP mode, HSI		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	6	
		and HSE OFF (no independent	LCD ON (static	T _A = 55°C	1.80	7	
		watchdog)	duty) ⁽³⁾	T _A = 85°C	3.45	12	
				T _A = 105°C	8.02	27	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.80	10	
			LCD ON (1/8 duty) ⁽⁴⁾	T _A = 55°C	4.30	11	
				T _A = 85°C	6.10	16	
				T _A = 105°C	10.8	44	
	Supply current in	RTC clocked by LSE		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.50	-	
I _{DD} (Stop	Stop mode with RTC enabled			T _A = 55°C	1.90	-	μA
with RTC)				T _A = 85°C	3.65	-	
				T _A = 105°C	8.25	-	
			LCD ON	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.60	-	
		kHz), regulator in LP		T _A = 55°C	2.05	-	
		mode, HSI and HSE OFF	duty) ⁽³⁾	T _A = 85°C	3.75	-	
		watchdog)		T _A = 105°C	8.40	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.90	-	
			LCD ON	T _A = 55°C	4.55	-	
			duty) ⁽⁴⁾	T _A = 85°C	6.35	-	
				T _A = 105°C	11.10	-	
				T _A = -40°C to 25°C V _{DD} = 1.8 V	1.23	-	
		RTC clocked by LSE (no independent watchdog) ⁽⁵⁾	LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0 \text{ V}$	1.50	-	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6 \text{ V}$	1.75	-	

Table 23. Typical and maximum current consumptions in Stop mode

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-	
t	Wakeup from Low-power	f _{HCLK} = 262 kHz Flash enabled	46	-	
'WUSLEEP_LP	f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-	
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 1 and 2	7.7	8.9	
	Wakeup from Stop mode, regulator in low-power	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage Range 3	8.2	13.1	μs
t _{WUSTOP}		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4	
twusleep_lp twustop		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20	
		f _{HCLK} = f _{MSI} = 524 kHz	31	37	
		f _{HCLK} = f _{MSI} = 262 kHz	57	66	
		f _{HCLK} = f _{MSI} = 131 kHz	112	123	
		f _{HCLK} = MSI = 65 kHz	221	236	
^t wustdby	Wakeup from Standby mode FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104	
	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms

Table 26. Low-power mode wakeup timings

1. Guaranteed by characterization results, unless otherwise specified

6.3.6 **External clock source characteristics**

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 15.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fun	User external clock source	CSS is on or PLL is used	1	0	20	Mu-
'HSE_ext	HSE_ext frequency CSS is off, PLL not used		0	0	52	111112
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}		$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance	-	-	2.6	-	pF

Table 27. High-s	speed external	user clock	characteristics ⁽¹⁾
------------------	----------------	------------	--------------------------------

1. Guaranteed by design.

Figure 15. High-speed external clock source AC timing diagram

- Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see Figure 18). CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF, then CL1 = CL2 = 8 pF.

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{IL}	Input low lovel veltage	TC and FT I/O	-	-	0.3 V _{DD} ⁽¹⁾⁽²⁾		
	input low level voltage	BOOT0	-		0.14 V _{DD} ⁽²⁾		
		TC I/O	0.45 V _{DD} +0.38 ⁽²⁾	-	-	Unit V NA	
$V_{\rm IH}$	Input high level voltage	FT I/O	0.39 V _{DD} +0.59 ⁽²⁾	-	-	V	
		BOOT0	0.15 V _{DD} +0.56 ⁽²⁾	-	-		
V	I/O Schmitt trigger voltage	TC and FT I/O	-	10% V _{DD} ⁽³⁾	-		
V hys	hysteresis ⁽²⁾	BOOT0	- 0.01		-		
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with LCD	-	-	±50		
I _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches	-	-	±50		
		V _{SS} ≤V _{IN} ≤V _{DD} I/Os with analog switches and LCD	-	-	±50	nA	
		$V_{SS} \leq V_{IN} \leq V_{DD}$ I/Os with USB	-	±250			
	V _{SS} TC V _D	V _{SS} ≤V _{IN} ≤V _{DD} TC and FT I/O	-	-	±50		
		FT I/O V _{DD} ≤V _{IN} ≤5V	-	-	±10	uA	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾⁽¹⁾	$V_{IN} = V_{SS}$	30 45		60	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

Table 43.	I/O	static	characteristics
-----------	-----	--------	-----------------

1. Guaranteed by test in production.

2. Guaranteed by design.

3. With a minimum of 200 mV.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see *Table 46*).

Unless otherwise specified, the parameters given in *Table 46* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	$0.3 V_{DD}$	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39 V _{DD} +0.59	-		
(1)	NPST output low level voltage	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V		-	0.4	V
VOL(NRST)`´	INKST output low level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾		mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽¹⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 46. NRST pin characteristics

1. Guaranteed by design.

2. 200 mV minimum value

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

Figure 21. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistors
- 2. R_P = pull-up resistors
- 3. $V_{DD_{12C}} = 12C$ bus supply
- 4. Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}.

f. (kH=)	I2C_CCR value
ISCL (KITZ)	R _P = 4.7 kΩ
400	0x801B
300	0x8024
200	0x8035
100	0x00A0
50	0x0140
20	0x0320

Table 49. SCL frequency $(f_{PCLK1} = 32 \text{ MHz}, V_{DD} = V_{DD_12C} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

 For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1	2	
EG	Gain error	$-2.4 V \le V_{\text{REF}+} \le 3.6 V$	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2	3	
ENOB	Effective number of bits	2.4 V ≤ V _{DDA} ≤ 3.6 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	59	62	-	
SNR	Signal-to-noise ratio	T _A = -40 to 105 ° C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ENOB	Effective number of bits	1.8 V ≤ V _{DDA} ≤ 2.4 V	9.5	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ $f_{ADC} = 8 MHz \text{ or } 4 MHz,$	59	62	-	
SNR	Signal-to-noise ratio	$-R_{AIN} = 50.02$ $T_{\Delta} = -40$ to 105 °C	60	62	-	dB
THD	Total harmonic distortion	F _{input} =10 kHz	-	-72	-69	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	-	1.5	3.5	
EG	Gain error	$1.8 V \le V_{\text{REF}+} \le 2.4 V$	-	3.5	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2	
EL	Integral linearity error		-	2.5	3.5	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \le \text{V}_{\text{DDA}} \le 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	$1.8 V \le V_{\text{REF}+} \le 2.4 V$ $f_{\text{ADO}} = 4 \text{ MHz} \text{ Rain} = 50 \text{ O}$	-	1.5	2.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 ° C	-	1	2]
EL	Integral linearity error		-	2	3	

Table 56. ADC accuracy⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

Figure 31. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint

1. Dimensions are in millimeters.

LQFP100 device Marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 32. LQFP100 14 x 14 mm, 100-pin package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Package information

7.6 TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array package information

Figure 45. TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array package outline

1. Drawing is not to scale.

Table 70. TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array
package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.200	-	-	0.0472
A1	0.150	-	-	0.0059	-	-
A2	-	0.200	-	-	0.0079	-
A4	-	-	0.600	-	-	0.0236
b	0.250	0.300	0.350	0.0098	0.0118	0.0138
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	-	3.500	-	-	0.1378	-
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	-	3.500	-	-	0.1378	-
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-

