

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vbt6atr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	package outline	21
Figure 46.	TFBGA64, 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball grid array	
	package recommended footprint1	22
Figure 47.	TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example 1	23
Figure 48.	Thermal resistance suffix 61	25
Figure 49.	Thermal resistance suffix 71	25

57

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151x6/8/B-A and STM32L152x6/8/B-A ultra-low-power ARM[®] Cortex[®]-M3 based microcontrollers product line.

The ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A microcontroller family includes devices in 3 different package types: from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, Wired and wireless sensors, Video intercom
- Utility metering

This STM32L151x6/8/B-A and STM32L152x6/8/B-A datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The document "Getting started with STM32L1xxxx hardware development" AN3216 gives a hardware implementation overview.

Both documents are available from the STMicroelectronics website www.st.com.

For information on the ARM[®] Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the ARM website.

Figure 1 shows the general block diagram of the device family.

Caution: This datasheet does not apply to:

STM32L15xx6/8/B

covered by a separate datasheet.

2.1 Device overview

Table 2. Ultra-low-power STM32L151x6/8/B-A and STM32L152x6/8/B-A device features and peripheral counts

Periph	STM32L15xCxxxA			STM:	32L15xR	хххА	STM32L15xVxxxA				
Flash (Kbytes)		32	64	128	32	64	128	64	128		
Data EEPROM (Kb	oytes)					4					
RAM (Kbytes)		16	32	32	16	32	32	32	32		
Timers	General- purpose	6									
	Basic			128 32 64 128 64 128 32 16 32 32 32 32 32 32 16 32 32 32 32 32 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3							
	SPI					2					
Communication interfaces	l ² C					2					
	USART		3								
	USB	1									
GPIOs		37			51/50 ⁽¹⁾			83			
12-bit synchronize Number of channe	ed ADC els	1 14 channels			1 20/19 channels ⁽¹⁾			1 24 channels			
12-bit DAC Number of channe	els	2 2									
LCD (STM32L152x COM x SEG	xxxA Only)		4x16		4) 8)	(32/4x31 ⁽ (28/8x27 ⁽	(1) (1)	4x44 8x40			
Comparator						2					
Capacitive sensing	g channels		13				20)			
Max. CPU frequen	су	32 MHz									
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option									
Operating tempera	atures	Ar	mbient o	perating t Junc	temperatu tion temp	ures: –40 erature: -	to +85 °(40 to +1′	C / _40 to + 1 10°C	05 °C		
Packages		LQFP	48, UFQI	FPN48	LQFP64, TFBGA64			LQFP100, UFBGA100			

1. For TFBGA64 package (instead of PC3 pin there is V_{REF^+} pin).

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System Memory
- Boot from embedded RAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1 or USART2. See the application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

3.15.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)

There are six synchronizable general-purpose timers embedded in the STM32L151x6/8/B-A and STM32L152x6/8/B-A devices (see *Table 7* for differences).

TIM2, TIM3, TIM4

These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.15.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.15.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit down-counter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.15.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

4 Pin descriptions

	1	2	3	4	5	6	7	8	9	10	11	12
A	(PE3)	(PE1)	(PB8)	1800to	(PD7)	(PD5)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	(PA12)
в	(PE4)	(PE2)	(PB9)	(PB7)	(PB6)	(PD6)	(PD4)	(PD3)	(PD1)	PC12)	(PC10)	(PA11)
с	PC13 WKUP2	(PE5)	(PE0)	VDD_B	(PB5)			(PD2)	(PDO)	PC11)	(PH2)	(PA10)
D	PC14) 0\$C32_IN		ŃSS_B							(PA9)	(PA8)	(PC9)
E	PC15) OSC32_C	VLCD	ŃSS_#							(PC8)	(PC7)	(PC6)
F	PHO) QSCZIN	a_zzvi					I L				WSS_P	NSS_)
G	PH1)											NDD M
н	(PC0)	NRST								PD15)	(PD14)	(PD13)
J	VSSA)	(PC1)	(PC2)							PD12)	PD11)	(PD10)
к	VREF	(PC3)	(PA2)	(PA5)	(PC4)			(PD9)	(PD8)	(PB15)	PB14)	(PB13)
L	(VRE#+	PA0) WKUP1	(PA3)	(PA6)	(PC5)	(PB2)	(PE8)	(PE10)	/FE12)	(PB10)	(PB11)	iPB12)
М	NDDA	(PA1)	(PA4)	(PA7)	(PB0)	(PB1)	(PE7)	(PE9)	/ (PE11)	/~~ (PE13	PE14	PE13
												ai17096f

Figure 3. STM32L15xVxxxA UFBGA100 ballout

1. This figure shows the package top view.

Na	me	Abbreviation	Definition			
Pin r	name	Unless otherwis during and after	e specified in brackets below the pin name, the pin function reset is the same as the actual pin name			
		S	Supply pin			
Pin	type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
I/O str	ruoturo	TC	TC Standard 3.3 V I/O			
1/O Su	uciure	В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
No	ites	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset				
	Alternate functions	Functions select	ted through GPIOx_AFR registers			
Pin functions	Additional functions	Functions direct	ly selected/enabled through peripheral registers			

Table 8	Legend/abbreviations	used in the	ninout table
Table 0.	Legenu/appreviations	useu ili ille	pillout table

		Pins	;						Pins functions		
LQFP100	LQFP64	TFBGA64	UFBGA100	LQFP48 or UFQFPN48	Pin name	Pin type ⁽¹⁾	I/O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions	
82	-	-	B9	-	PD1	I/O	FT	PD1	SPI2_SCK	-	
83	54	B5	C8	-	PD2	I/O	FT	PD2	TIM3_ETR/LCD_SEG31 /LCD_SEG43/ LCD_COM7	-	
84	-	-	B8	-	PD3	I/O	FT	PD3	USART2_CTS/ SPI2_MISO	-	
85	-	-	B7	-	PD4	I/O	FT	PD4	USART2_RTS/ SPI2_MOSI	-	
86	-	-	A6	-	PD5	I/O	FT	PD5	USART2_TX	-	
87	-	-	B6	-	PD6	I/O	FT	PD6	USART2_RX	-	
88	-	-	A5	-	PD7	I/O	FT	PD7	USART2_CK/ TIM9_CH2	-	
89	55	A5	A8	39	PB3	I/O	FT	JTDO	TIM2_CH2/PB3/ SPI1_SCK/ LCD_SEG7/JTDO	COMP2_INM	
90	56	A4	A7	40	PB4	I/O	FT	NJTRST	TIM3_CH1/PB4/ SPI1_MISO/LCD_SEG8 /NJTRST	COMP2_INP	
91	57	C4	C5	41	PB5	I/O	FT	PB5	I2C1_SMBA/TIM3_CH2/ SPI1_MOSI/LCD_SEG9	COMP2_INP	
92	58	D3	B5	42	PB6	I/O	FT	PB6	I2C1_SCL/TIM4_CH1/ USART1_TX	-	
93	59	C3	B4	43	PB7	I/O	FT	PB7	I2C1_SDA/TIM4_CH2/ USART1_RX	PVD_IN	
94	60	B4	A4	44	BOOT0	I	В	BOOT0	-	-	
95	61	В3	A3	45	PB8	I/O	FT	PB8	TIM4_CH3/I2C1_SCL/ LCD_SEG16/ TIM10_CH1	-	
96	62	A3	В3	46	PB9	I/O	FT	PB9	TIM4_CH4/I2C1_SDA/ LCD_COM3/ TIM11_CH1	-	
97	-	-	C3	-	PE0	I/O	FT	PE0	TIM4_ETR/LCD_SEG36 / TIM10_CH1	-	

Table 9. STM32L151x6/8/B-A and STM32L152x6/8/B-A pin definitions (continued)
Tuble 5. Of moze to txolob A and Of moze to zxolob A pin deminions (continued)

5 Memory mapping

The memory map is shown in the following figure.

DocID024330 Rev 4

- 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 11: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C
T _{LEAD}	Maximum lead temperature during soldering	see note ⁽¹⁾	°C

Table 13. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

6.3 Operating conditions

6.3.1 General operating conditions

Table 14.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	32			
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz		
f _{PCLK2}	Internal APB2 clock frequency	-	0	32			
V _{DD}		BOR detector disabled	1.65	3.6			
	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V		
		BOR detector disabled, after power on	1.65	3.6			
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V		
	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6			
		FT pins: 2.0 V ≤V _{DD}	-0.3	5.5 ⁽³⁾			
V		FT pins: V _{DD} < 2.0 V	-0.3	5.25 ⁽³⁾	v		
MN		BOOT0	0	5.5			
f _{PCLK2} V _{DD} V _{DDA} ⁽¹⁾		Any other pin	-0.3	V _{DD} +0.3	-		

Symbol	Parameter	Cond	f _{HCLK}	Тур	Max ⁽¹⁾	Unit	
				1 MHz	215	285	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	490	μA
				4 MHz	725	1000	
		$f_{HSE} = f_{HCLK}$		4 MHz	0.915	1.3	
		$f_{HSE} = f_{HCLK}/2$ above	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.15	
	Supply current in Run mode, code executed from Flash	16 MHz (PLL ON) ⁽²⁾		16 MHz	3.4	4	-
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.1	2.9	
I _{DD (Run}				16 MHz	4.2	5.2	
from Flash)				32 MHz	8.25	9.6	_
		HSI clock source (16 MHz)	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.5	4.4	mA
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.2	10.2	
		MSI clock, 65 kHz		65 kHz	0.041	0.085	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	0.125	0.180	
		MSI clock, 4.2 MHz		4.2 MHz	0.775	0.935	

Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Conditions		Typ ⁽¹⁾	Max (1)(2)	Unit
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.865	-	Unit
		RTC clocked by I SI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.11	1.9	
		independent watchdog)	T _A = 55 °C	1.15	2.2	
		$T_{A} = 85$ $T_{A} = 10$ $T_{A} = -44$ $V_{DD} = -7$ $T_{A} = -44$ $T_{A} = -44$ $T_{A} = -44$ $T_{A} = -55$ $T_{A} = 85$	T _A = 85 °C	1.35	4	
I _{DD}	Supply current in Standby		T _A = 105 °C	1.93	8.3 ⁽³⁾	
(Standby with RTC)	mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.97	-	
			$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.28	-	
			T _A = 55 °C	1.4	-	μA
			T _A = 85 °C	1.7	-	
			T _A = 105 °C	2.34	-	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.0	1.7	
	Supply current in Standby		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.277	0.6	
(Standby)	mode with RTC disabled	Independent watchdog	T _A = 55 °C	0.31	0.9	
		and LSI OFF	T _A = 85 °C	0.52	2.75	
			T _A = 105 °C	1.09	7 ⁽³⁾	
I _{DD (WU} from Standby)	RMS supply current during wakeup time when exiting from Standby mode	-	V _{DD} = 3.0 V T _A = -40 °C to 25 °C	1	-	mA

Table 24.	Typical and m	naximum curren	t consumptions	in Standb	v mode
			t oonouniptione		,

1. The typical values are given for V_{DD} = 3.0 V and max values are given for V_{DD} = 3.6 V, unless otherwise specified.

2. Guaranteed by characterization results, unless otherwise specified.

3. Guaranteed by test in production.

4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

Peripheral		Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C				
		Range 1, V _{CORE} = 1.8 V VOS[1:0] = 01	Range 2, V _{CORE} = 1.5 V VOS[1:0] = 10	Range 3, V _{CORE} = 1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
I _{DD (RTC)}			0.4			
I _{DD (LCD)}						
$I_{DD(ADC)}^{(4)}$						
I _{DD (DAC)} ⁽⁵⁾						
IDD (COMP1)			μA			
	Slow mode		2			
IDD (COMP2)	Fast mode	5				
I _{DD (PVD / BOR)} ⁽⁶⁾		2.6				
I _{DD (IWDG)}		0.25				

Table 25. Peripheral current	t consumption ⁽¹⁾ ((continued)
------------------------------	--------------------------------	-------------

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (Range 1), f_{HCLK} = 16 MHz (Range 2), f_{HCLK} = 4 MHz (Range 3), f_{HCLK} = 64kHz (Lowpower run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

- 3. In low-power sleep and run mode, the Flash memory must always be in power-down mode.
- 4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).
- Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating.
- 6. Including supply current of internal reference voltage.

6.3.5 Wakeup time from Low-power mode

The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
dOffeet/dT ⁽¹⁾	Offset error temperature	$V_{DDA} = 3.3V, V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer OFF	-20	-10	0	W//°C		
dOffset/d1(1)	coefficient (code 0x800)	$V_{DDA} = 3.3V, V_{REF+} = 3.0V$ $T_A = 0$ to 50 ° C DAC output buffer ON	0	20	50	μν/ Ο		
Coin ⁽¹⁾	Coin orror ⁽⁶⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON		+0.1 / -0.2%	+0.2 / - 0.5%	0/		
Gain	Gainenoi	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / - 0.2%	+0 / - 0.4%	70		
dGain/dT ⁽¹⁾		Gain error temperature	$V_{DDA} = 3.3V$, $V_{REF+} = 3.0V$ $T_A = 0$ to 50 °C DAC output buffer OFF	-10	-2	0		
	coefficient	$V_{DDA} = 3.3V, V_{REF+} = 3.0V$ $T_A = 0$ to 50 °C DAC output buffer ON	-40	-8	0	μv/ C		
TUE ⁽¹⁾	Total upadjusted error	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30			
		No R _L , C _L ≤ 50 pF DAC output buffer OFF	-	8	12	LOD		
tSETTLING	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	7	12	μs		
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps		
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁷⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	9	15	μs		
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB		

 Table 58. DAC characteristics (continued)

1. Guaranteed by characterization results.

2. Difference between two consecutive codes - 1 LSB.

 Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.

- 5. Difference between the value measured at Code (0x001) and the ideal value.
- 6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.

7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

7.4 UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information

Figure 39. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

Table 67. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 40. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint

1. Dimensions are in millimeters.

UFQFPN48 device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5 UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package information

1. Drawing is not to scale.

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Бутрої	Min	Тур	Мах	Min	Тур	Max
А	-	-	0.6	-	-	0.0236
A1	0.05	0.08	0.11	0.002	0.0031	0.0043
A2	0.4	0.45	0.5	0.0157	0.0177	0.0197
A3	0.08	0.13	0.18	0.0031	0.0051	0.0071
A4	0.27	0.32	0.37	0.0106	0.0126	0.0146
b	0.2	0.25	0.3	0.0079	0.0098	0.0118
D	6.95	7	7.05	0.2736	0.2756	0.2776
D1	5.45	5.5	5.55	0.2146	0.2165	0.2185
E	6.95	7	7.05	0.2736	0.2756	0.2776
E1	5.45	5.5	5.55	0.2146	0.2165	0.2185
е	-	0.5	-	-	0.0197	-

Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array
package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
F	0.7	0.75	0.8	0.0276	0.0295	0.0315
ddd	-	-	0.1	-	-	0.0039
eee	-	-	0.15	-	-	0.0059
fff	-	-	0.05	-	-	0.002

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch ball grid array package recommended footprint

Table 69. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Figure 48. Thermal resistance suffix 6

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

DocID024330 Rev 4