

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f873-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	I	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	—	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active low RESET to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0.
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1.
RA2/AN2/VREF-	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage.
RA3/AN3/VREF+	5	6	22	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage.
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/SS/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be soft- ware programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3/PGM	36	39	11	I/O	TTL	RB3 can also be the low voltage programming input.
RB4	37	41	14	I/O	TTL	Interrupt-on-change pin.
RB5	38	42	15	I/O	TTL	Interrupt-on-change pin.
RB6/PGC	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming clock.
RB7/PGD	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming data.
Legend: I = input	0 = 0 — = N	utput lot used		I/O = inp TTL = T	out/output TL input	P = power ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmi or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾	
						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.
Vdd	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34		—	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input	0 = 0 — = N	utput lot used		I/O = inp TTL = T	out/output TL input	P = power ST = Schmitt Trigger input

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

NOTES:

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF				
	bit 7							bit 0				
bit 7	PSPIF⁽¹⁾: Parallel Slave Port Read/Write Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred											
bit 6	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete											
bit 5	RCIF : USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empty											
bit 4	 TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full 											
bit 3	 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI A transmission/reception has taken place. I²C Slave A transmission/reception has taken place. I²C Master 											
	 A transmission/reception has taken place. The initiated START condition was completed by the SSP module. The initiated STOP condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP module. A START condition occurred while the SSP module was idle (Multi-Master system). A STOP condition occurred while the SSP module was idle (Multi-Master system). No SSP interrupt condition has occurred. 											
bit 2	CCP1IF: CCP1 Interrupt Flag bit											
	Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred Unused in this mode											
bit 1	1 = TMR2 t	o PR2 mate	2 Match Inte ch occurred natch occur	(must be cle	it eared in soft	ware)						
bit 0	1 = TMR1 r	egister ove	ow Interrupt rflowed (mu not overflow	st be cleare	d in software	e)						
	Note 1: P	SPIF is res	erved on PI	C16F873/87	76 devices; a	always maint	ain this bit c	lear.				
	Legend:											
	R = Reada	ole bit	W = Writat		U = Unimp	lemented bit	t, read as '0'					
	- n = Value	at POR	'1' = Bit is	set	'0' = Bit is	cleared	x = Bit is ur	nknown				

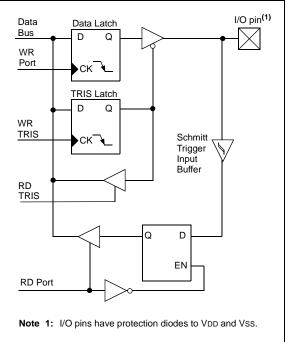
REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

3.5 PORTE and TRISE Register

PORTE and TRISE are not implemented on the PIC16F873 or PIC16F876.

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6, and RE2/CS/AN7) which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

The PORTE pins become the I/O control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make certain that the TRISE<2:0> bits are set, and that the pins are configured as digital inputs. Also ensure that ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.


Register 3-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected for analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs, and read as '0'.

FIGURE 3-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	RE0/RD/AN5 bit0 ST/TTL ⁽¹⁾		$\frac{I/O}{RD}$ port pin or read control input in Parallel Slave Port mode or analog input: 1 = Idle
REU/RD/ANS	bito	51/112 /	 a line a Read operation. Contents of PORTD register are output to PORTD I/O pins (if chip selected)
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	 I/O port pin or write control input in Parallel Slave Port mode or analog input: WR 1 = Idle 0 = Write operation. Value of PORTD I/O pins is latched into PORTD register (if chip selected)
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	I/O port pin or chip select control input in Parallel Slave Port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

TABLE 3-9:PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
09h	PORTE	—	—	_	—	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE [Data Direc	tion Bits	0000 -111	0000 -111
9Fh	ADCON1	ADFM	—		_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

TRISE REGISTER (ADDRESS 89h) R/W-1 R-0 R-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 IBF OBF **IBOV PSPMODE** Bit2 Bit1 Bit0 bit 7 bit 0 Parallel Slave Port Status/Control Bits: bit 7 IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received bit 6 **OBF**: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read bit 5 **IBOV**: Input Buffer Overflow Detect bit (in Microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred bit 4 PSPMODE: Parallel Slave Port Mode Select bit 1 = PORTD functions in Parallel Slave Port mode 0 = PORTD functions in general purpose I/O mode Unimplemented: Read as '0' bit 3 **PORTE Data Direction Bits:** Bit2: Direction Control bit for pin RE2/CS/AN7 bit 2 1 = Input0 = OutputBit1: Direction Control bit for pin RE1/WR/AN6 bit 1 1 = Input 0 = Output Bit0: Direction Control bit for pin RE0/RD/AN5 bit 0 1 = Input 0 = Output Legend:

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

R = Readable bit

- n = Value at POR

REGISTER 3-1:

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

REGISTER 5-1: OPTION REG REGISTER

DANA

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF1, MOVWF1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

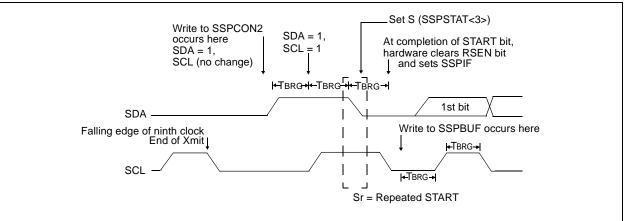
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0			
	bit 7							bit 0			
bit 7	RBPU										
bit 6	INTEDG										
bit 5	TOCS : TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)										
bit 4	T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin										
bit 3	1 = Presca	caler Assign aler is assigne aler is assigne	ed to the W		e						
bit 2-0	PS2:PS0:	Prescaler Ra	ite Select b	oits							
	Bit Value	TMR0 Rate	WDT Rat	e							
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
	Legend:										
	R = Reada	able bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '()'			
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown			
To avoid an unintended device RESET, the instruction sequence shown in the PIC [®] MCU Mid-Range Fam- ily Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.											

Note:

9.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG, while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

9.2.10.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 9-13: REPEAT START CONDITION WAVEFORM

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires a minimum 12TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 11-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Clock	AD Clock Source (TAD)					
Operation	ADCS1:ADCS0	Max.				
2Tosc	0 0	1.25 MHz				
8Tosc	01	5 MHz				
32Tosc	10	20 MHz				
RC ^(1, 2, 3)	11	(Note 1)				

Note 1: The RC source has a typical TAD time of 4 μ s, but can vary between 2-6 μ s.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 15.1 and 15.2).

11.3 Configuring Analog Port Pins

The ADCON1 and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Note	1: When reading the port register, any pin
	configured as an analog input channel will
	read as cleared (a low level). Pins config-
	ured as digital inputs will convert an ana-
	log input. Analog levels on a digitally
	configured input will not affect the conver-
	sion accuracy.

2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the device specifications.

11.4 A/D Conversions

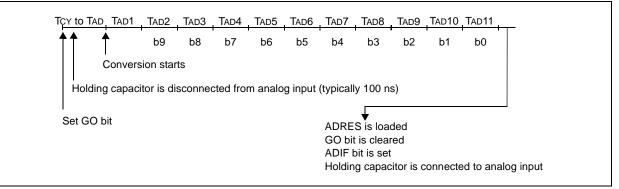
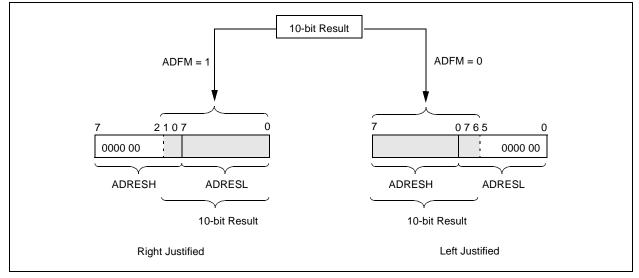

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next

FIGURE 11-3: A/D CONVERSION TAD CYCLES

acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.


Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-4: A/D RESULT JUSTIFICATION

NOTES:

POR	BOR	то	PD				
0	x	1	1	Power-on Reset			
0	x	0	x	Illegal, TO is set on POR			
0	x	x	0	Illegal, PD is set on POR			
1	0	1	1	Brown-out Reset			
1	1	0	1	WDT Reset			
1	1	0	0	WDT Wake-up			
1	1	u	u	MCLR Reset during normal operation			
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP			

TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE

Legend: x = don't care, u = unchanged

TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

Register		Dev	ices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt	
W	873	874	876	877	XXXX XXXX	<u>uuuu</u> uuuu	uuuu uuuu	
INDF	873	874	876	877	N/A	N/A	N/A	
TMR0	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCL	873	874	876	877	0000h	0000h	PC + 1 ⁽²⁾	
STATUS	873	874	876	877	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾	
FSR	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTA	873	874	876	877	0x 0000	0u 0000	uu uuuu	
PORTB	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTC	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTD	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTE	873	874	876	877	xxx	uuu	uuu	
PCLATH	873	874	876	877	0 0000	0 0000	u uuuu	
INTCON	873	874	876	877	0000 000x	0000 000u	uuuu uuuu (1)	
PIR1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu (1)	
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu (1)	
PIR2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu (1)	
TMR1L	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR1H	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	873	874	876	877	00 0000	uu uuuu	uu uuuu	
TMR2	873	874	876	877	0000 0000	0000 0000	uuuu uuuu	
T2CON	873	874	876	877	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSPCON	873	874	876	877	0000 0000	0000 0000	սսսս սսսս	
CCPR1L	873	874	876	877	xxxx xxxx	uuuu uuuu	սսսս սսսս	
CCPR1H	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCP1CON	873	874	876	877	00 0000	00 0000	uu uuuu	
RCSTA	873	874	876	877	x000 0000	0000 000x	սսսս սսսս	
TXREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu	
RCREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu	
CCPR2L	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCPR2H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP2CON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu	
ADRESH	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu	
ADCON0	873	874	876	877	0000 00-0	0000 00-0	uuuu uu-u	
OPTION_REG	873	874	876	877	1111 1111	1111 1111	uuuu uuuu	
TRISA	873	874	876	877	11 1111	11 1111	uu uuuu	
TRISB	873	874	876	877	1111 1111	1111 1111	uuuu uuuu	
TRISC	873	874	876	877	1111 1111	1111 1111	uuuu uuuu	
TRISD	873	874	876	877	1111 1111	1111 1111	uuuu uuuu	
TRISE	873	874	876	877	0000 -111	0000 -111	uuuu -uuu	
PIE1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu	
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu	

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

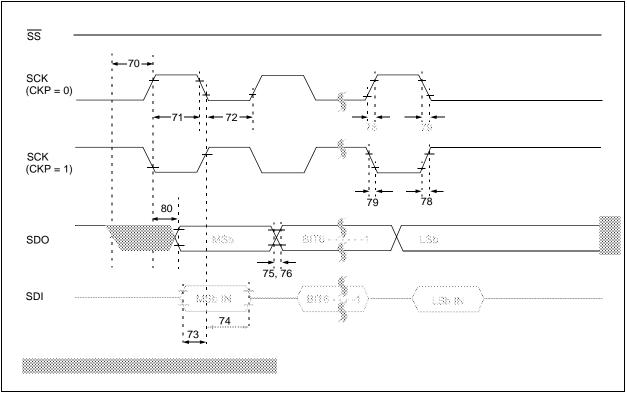
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

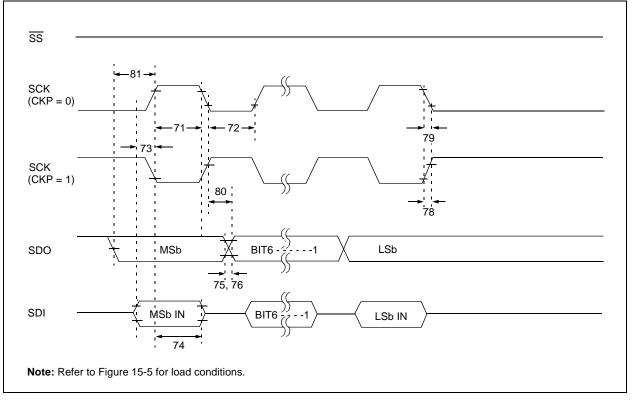
PIC16LF8 (Comme	73/874/87 ercial, Indu		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
PIC16F87 PIC16F87 (Comme		/877-20		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Units	Conditions			
-	IPD	Power-down Current ^(3,5)							
D020		16LF87X	_	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D020		16F87X		10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D021		16LF87X	_	0.9	5	μΑ	VDD = 3.0V, WDT enabled, 0°C to +70°C		
D021		16F87X	_	1.5	16	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D021A		16LF87X		0.9	5	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021A		16F87X		1.5	19	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D023	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V		

Legend: Rows with standard voltage device data only are shaded for improved readability.


† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

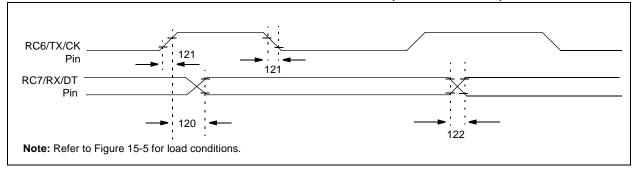
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)


TABLE 15-9: I ² C BUS DATA REQU	IREMENTS
--	----------

Param No.	Sym	Characte	eristic	Min	Max	Units	Conditions	
100	Thigh	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			SSP Module	0.5Tcy				
101	Tlow	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			SSP Module	0.5TCY				
102	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns		
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
103	Tf	SDA and SCL fall time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF	
90	Tsu:sta	START condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		setup time	400 kHz mode	0.6	—	μs	START condition	
91	Thd:sta	START condition hold	100 kHz mode	4.0	—	μs	After this period, the first clock	
		time	400 kHz mode	0.6		μS	pulse is generated	
106	Thd:dat	Data input hold time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μs		
107	Tsu:dat	Data input setup time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs		
		time	400 kHz mode	0.6	—	μs		
109	Таа	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	—		ns		
110	Tbuf	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	_	μs	before a new transmission can start	
	Cb	Bus capacitive loading		—	400	pF		

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast mode (400 kHz) I²C bus device can be used in a standard mode (100 kHz) I²C bus system, but the requirement that Tsu:dat ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+ Tsu:dat = 1000 + 250 = 1250 ns (according to the standard mode I²C bus specification) before the SCL line is released.

FIGURE 15-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

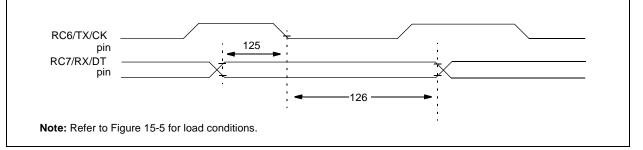
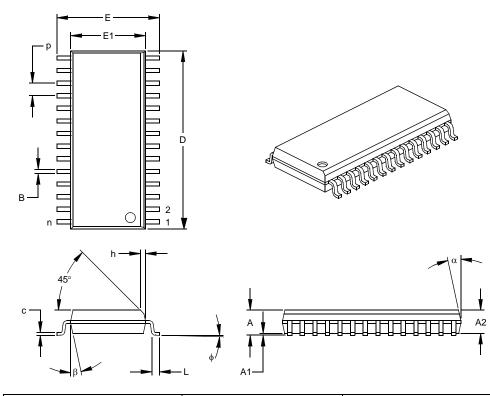


TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic			Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	Standard(F)	_	_	80	ns	
		Clock high to data out valid	Extended(LF)	_	-	100	ns	
121	Tckrf	Clock out rise time and fall time	Standard(F)	_	_	45	ns	
		(Master mode)	Extended(LF)	_	—	50	ns	
122	Tdtrf	Data out rise time and fall time	Standard(F)	—	—	45	ns	
			Extended(LF)	_		50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-20: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING


TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK \downarrow (DT setup time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.050			1.27		
Overall Height	А	.093	.099	.104	2.36	2.50	2.64	
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39	
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30	
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67	
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59	
Overall Length	D	.695	.704	.712	17.65	17.87	18.08	
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74	
Foot Length	L	.016	.033	.050	0.41	0.84	1.27	
Foot Angle Top	ф	0	4	8	0	4	8	
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33	
Lead Width	В	.014	.017	.020	0.36	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052

Bus Collision During a Repeated	
START Condition (Case 1)	2
Bus Collision During a Repeated	
START Condition (Case2)92	2
Bus Collision During a START	
Condition (SCL = 0)	
Bus Collision During a STOP Condition	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM	с С
I ² C Bus Data	5 1
I ² C Bus START/STOP bits	n n
I ² C Master Mode First START Bit Timing	
I ² C Master Mode Reception Timing	
I ² C Master Mode Transmission Timing83	3
Master Mode Transmit Clock Arbitration	В
Power-up Timer164	4
Repeat START Condition81	
RESET164	
SPI Master Mode70	
SPI Slave Mode (CKE = 1)	
SPI Slave Mode Timing (CKE = 0)	
Start-up Timer	
Time-out Sequence on Power-up	
Time-out Sequence on Power-up	
Timer1	
USART Asynchronous Master Transmission	
USART Asynchronous Reception	
USART Synchronous Receive	
USART Synchronous Reception 108	
USART Synchronous Transmission	
USART, Asynchronous Reception104	
Wake-up from SLEEP via Interrupt	
Watchdog Timer	
TMR0	
TMR0 Register	
TMR1CS dit	
TMR1H Register	
TMR1L	
TMR1L Register	
TMR1ON bit	
TMR2	
TMR2 Register15	5
TMR2ON bit55	5
TOUTPS0 bit55	
TOUTPS1 bit	
TOUTPS2 bit	
TOUTPS3 bit	
TRISA Register	
TRISB Register	
TRISC Register	
TRISE Register	
IBF Bit	
IBOV Bit	
OBF Bit	
PSPMODE Bit	8
TXREG	

TXSTA Register	
BRGH Bit	
CSRC Bit	
SYNC Bit	
TRMT Bit	
TX9 Bit	
TX9D Bit	
TXEN Bit	

U

UA	66
Universal Synchronous Asynchronous Receiver	
Transmitter. See USART	
Update Address, UA	66
USART	95
Address Detect Enable (ADDEN Bit)	96
Asynchronous Mode	
Asynchronous Receive	
Associated Registers	
Block Diagram	
Asynchronous Receive (9-bit Mode)	
Associated Registers	
Block Diagram	
Timing Diagram	
Asynchronous Receive with Address Detect.	101
SeeAsynchronous Receive (9-bit Mode).	
Asynchronous Reception	102
Asynchronous Transmitter	
Baud Rate Generator (BRG)	
Baud Rate Formula	
Baud Rates, Asynchronous Mode (BRGH=0).	
High Baud Rate Select (BRGH Bit)	
Sampling	
Clock Source Select (CSRC Bit)	97
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Mode Select (SYNC Bit)	95
Overrun Error (OERR Bit)	
RC6/TX/CK Pin	
RC7/RX/DT Pin	
RCSTA Register	
Receive Data, 9th bit (RX9D Bit)	
Receive Enable, 9-bit (RX9 Bit)	
Serial Port Enable (SPEN Bit)	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Synchronous Master Reception	
Associated Registers	
Synchronous Master Transmission	
Associated Registers	
Synchronous Slave Mode	
Synchronous Slave Reception	
Associated Registers	
Synchronous Slave Transmit	108
Associated Registers	108
Transmit Block Diagram	
Transmit Data, 9th Bit (TX9D)	
Transmit Enable (TXEN Bit)	95
Transmit Enable, Nine-bit (TX9 Bit)	95
Transmit Shift Register Status (TRMT Bit)	95
TXSTA Register	95

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	To: Technical Publications Manager Total Pa	ges Sent
RE:	RE: Reader Response	
From	From: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: () FAX: ()
Appl	Application (optional):	
Wou	Would you like a reply?YN	
Devi	Device: PIC16F87X Literature Number: DS30292D	
Que	Questions:	
1. \	1. What are the best features of this document?	
_		
2. ł	2. How does this document meet your hardware and software development	needs?
-		
- 2 [2. Do you find the experimentian of this data sheet easy to follow? If not why	5
3. I	3. Do you find the organization of this data sheet easy to follow? If not, why?	
-		
4. \	4. What additions to the data sheet do you think would enhance the structure	e and subject?
-		
5. \	5. What deletions from the data sheet could be made without affecting the o	verall usefulness?
-		
6. I	6. Is there any incorrect or misleading information (what and where)?	
_		
-		
7. H	7. How would you improve this document?	
-		
- 8. H	 How would you improve our software, systems, and silicon products? 	