

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f873-20-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PIC [®] MCU Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 instructions	35 instructions	35 instructions	35 instructions

TABLE 1-1:	PIC16F873 AND PIC16F876 PINOUT DESCRIPTION
IADLE I-I.	FIG 10F0/3 AND FIG 10F0/0 FINOUT DESCRIFTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	—	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active low RESET to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	2	I/O	TTL	RA0 can also be analog input0.
RA1/AN1	3	3	I/O	TTL	RA1 can also be analog input1.
RA2/AN2/VREF-	4	4	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage.
RA3/AN3/VREF+	5	5	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage.
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4	7	7	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3/PGM	24	24	I/O	TTL	RB3 can also be the low voltage programming input.
RB4	25	25	I/O	TTL	Interrupt-on-change pin.
RB5	26	26	I/O	TTL	Interrupt-on-change pin.
RB6/PGC	27	27	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming clock.
RB7/PGD	28	28	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI/CCP2	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/outpu for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	17	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	18	18	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.
Vdd	20	20	Р	_	Positive supply for logic and I/O pins.
Legend: I = input	0 = outp — = Not			input/output = TTL input	P = power ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	g this locatio	egister)	0000 0000	27					
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	47
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
04h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27
05h	PORTA	_	_	PORTA Da	ta Latch whe	n written: POI	RTA pins whe	n read		0x 0000	29
06h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	31
07h	PORTC	PORTC D	ata Latch wh	en written: F	ORTC pins v	vhen read				xxxx xxxx	33
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				xxxx xxxx	35
09h ⁽⁴⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	36
0Ah ^(1,3)	PCLATH	_			Write Buffer	for the upper	r 5 bits of the I	Program Cou	unter	0 0000	26
0Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22
0Dh	PIR2	—	(5)	_	EEIF	BCLIF	—		CCP2IF	-r-0 00	24
0Eh	TMR1L	Holding re	gister for the	Least Signif	ficant Byte of	the 16-bit TM	IR1 Register			xxxx xxxx	52
0Fh	TMR1H	Holding re	gister for the	Most Signifi	cant Byte of t	the 16-bit TM	R1 Register			xxxx xxxx	52
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51
11h	TMR2	Timer2 Mo	dule Registe	er						0000 0000	55
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transm	it Register				xxxx xxxx	70, 73
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					XXXX XXXX	57
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					XXXX XXXX	57
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	99
1Ah	RCREG	USART Re	eceive Data I	Register						0000 0000	101
1Bh	CCPR2L	Capture/C	ompare/PWI	V Register2	(LSB)					xxxx xxxx	57
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	57
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58
1Eh	ADRESH	A/D Result	t Register Hi	gh Byte						xxxx xxxx	116
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

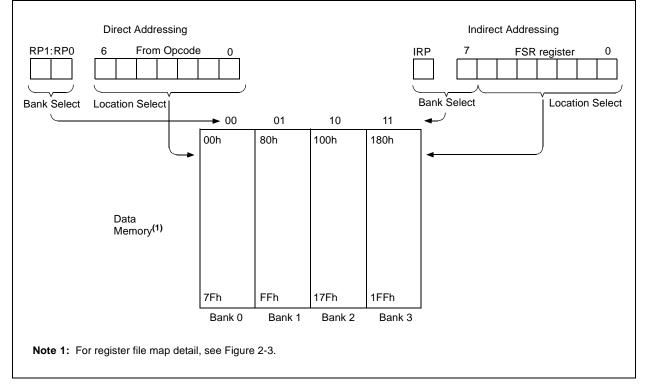
Note:	To achieve a 1:1 prescaler assignment for
	the TMR0 register, assign the prescaler to
	the Watchdog Timer.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU INTEDG T0CS TOSE PSA PS2 PS1 PS0 bit 7 bit 0 **RBPU:** PORTB Pull-up Enable bit bit 7 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values bit 6 **INTEDG:** Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 1:1 1:2 1:2 001 1:4 010 1:4 1:8 011 1:8 1:16 1:16 100 1:32 101 1:32 1:64 110 1:128 1:64 111 1:128 1:256 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-6. A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			
	:		;yes continue

PIC16F87X

NOTES:

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset, or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding R	egister for th	ne Least Sig	nificant Byte	of the 16-bit	TMR1 Regi	ster		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

PIC16F87X

REGISTER 0-1:	CCPTCON REGISTER/CCP2CON REGISTER (ADDRESS: 1/11/1011)									
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0		
	bit 7							bit 0		
	bit 7-6 Unimplemented: Read as '0'									
bit 5-4			Least Sign	ificant bits						
	<u>Capture m</u> Unused	ode:								
	<u>Compare n</u> Unused	node:								
	<u>PWM mode</u> These bits		LSbs of the	e PWM duty	cycle. The eig	ght MSbs ar	e found in C	CPRxL.		
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits						
	 bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM disabled (resets CCPx module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every falling edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP² resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled) 11xx = PWM mode 									
	Legend:									
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented l	bit, read as	ʻ0'		

'1' = Bit is set

- n = Value at POR

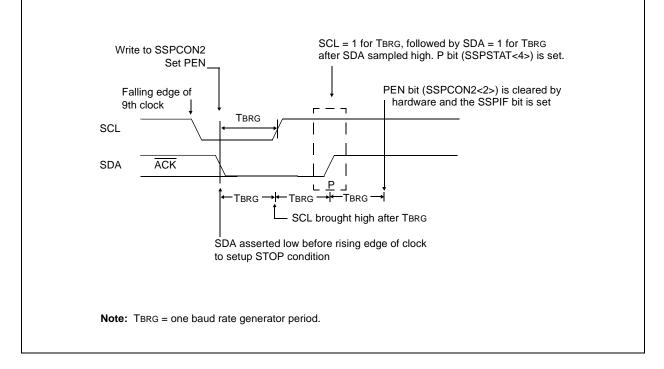
REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

x = Bit is unknown

'0' = Bit is cleared

9.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high


while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 9-17).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

9.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Baud Rat	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	F	osc = 20 M	IHz	F	osc = 16 N	IHz	F	Fosc = 10 MHz			
RATE (K)	KBAUD	% KBAUD ERROR		Value				SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-		
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129		
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64		
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15		
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7		
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4		
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4		
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2		
HIGH	1.221	-	255	0.977	-	255	0.610	-	255		
LOW	312.500	-	0	250.000	-	0	156.250	-	0		

DAUD		Fosc = 4 M	Hz	Fosc = 3.6864 MHz			
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	0.300	0	207	0.3	0	191	
1.2	1.202	0.17	51	1.2	0	47	
2.4	2.404	0.17	25	2.4	0	23	
9.6	8.929	6.99	6	9.6	0	5	
19.2	20.833	8.51	2	19.2	0	2	
28.8	31.250	8.51	1	28.8	0	1	
33.6	-	-	-	-	-	-	
57.6	62.500	8.51	0	57.6	0	0	
HIGH	0.244	-	255	0.225	-	255	
LOW	62.500	-	0	57.6	-	0	

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 20 MHz		F	osc = 16 M	Hz	Fosc = 10 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	-	255	3.906	-	255	2.441	-	255
LOW	1250.000	-	0	1000.000		0	625.000	-	0

BAUD	F	osc = 4 MH	łz	Fosc = 3.6864 MHz		
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-
1.2	1.202	0.17	207	1.2	0	191
2.4	2.404	0.17	103	2.4	0	95
9.6	9.615	0.16	25	9.6	0	23
19.2	19.231	0.16	12	19.2	0	11
28.8	27.798	3.55	8	28.8	0	7
33.6	35.714	6.29	6	32.9	2.04	6
57.6	62.500	8.51	3	57.6	0	3
HIGH	0.977	-	255	0.9	-	255
LOW	250.000	-	0	230.4	-	0

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾

CP1	CP0	DEBUG	—	WRT	CPD	LVP	BODEN	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0
bit13 bit 13-	12,			-	n Memor	y Code	Protection b	_{Dits} (2)					bit0
bit 5-4		10 = 1F00 10 = 0F00 01 = 1000 01 = 0800 00 = 0000	11 = Code protection off 10 = 1F00h to 1FFFh code protected (PIC16F877, 876) 10 = 0F00h to 0FFFh code protected (PIC16F874, 873) 01 = 1000h to 1FFFh code protected (PIC16F877, 876) 01 = 0800h to 0FFFh code protected (PIC16F874, 873) 00 = 0000h to 1FFFh code protected (PIC16F877, 876) 00 = 0000h to 0FFFh code protected (PIC16F874, 873)										
bit 11		1 = In-Cir	DEBUG: In-Circuit Debugger Mode 1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger.										
bit 10		Unimpler	nented:	Read as	'1'								
bit 9		1 = Unpro	WRT: FLASH Program Memory Write Enable 1 = Unprotected program memory may be written to by EECON control 0 = Unprotected program memory may not be written to by EECON control										
bit 8		1 = Code	CPD: Data EE Memory Code Protection 1 = Code protection off 0 = Data EEPROM memory code protected										
bit 7		1 = RB3/F	PGM pin	has PGN	1 functio	n, low v	iming Enabl oltage prog e used for p	ramming		1			
bit 6		BODEN : 1 = BOR 0 = BOR	enabled	ut Reset	Enable t	_{Dit} (3)							
bit 3		PWRTE : 1 = PWR 0 = PWR	T disable	d	nable b	it(3)							
bit 2		WDTE : W 1 = WDT 0 = WDT	enabled		nable bit								
bit 1-0		FOSC1:F 11 = RC (10 = HS (01 = XT (00 = LP (oscillator oscillator oscillator		Selectio	n bits							

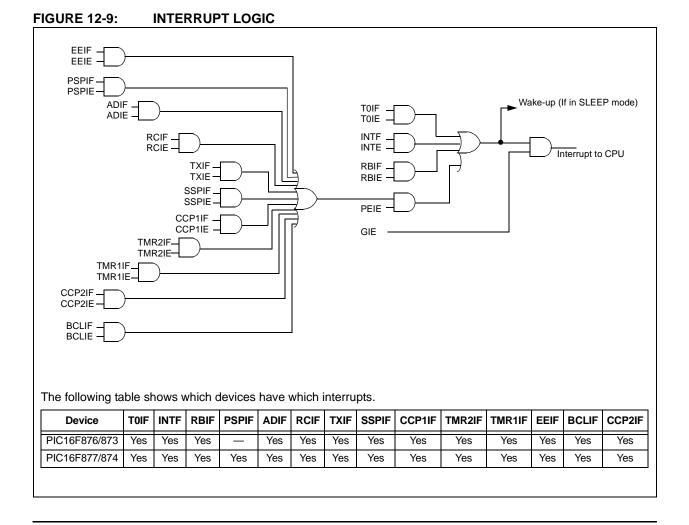
- **Note 1:** The erased (unprogrammed) value of the configuration word is 3FFFh.
 - 2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
 - **3:** Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

12.10 Interrupts

The PIC16F87X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

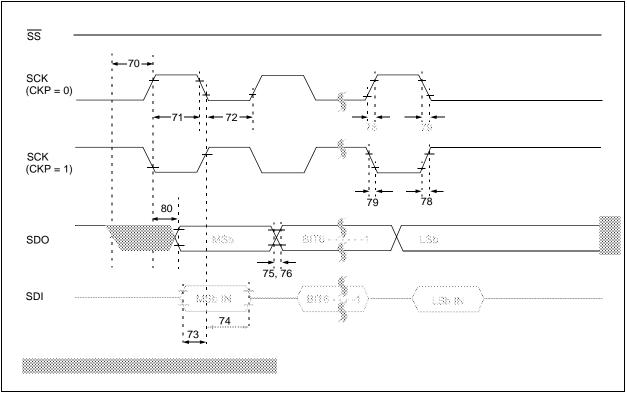
When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

© 1998-2013 Microchip Technology Inc.

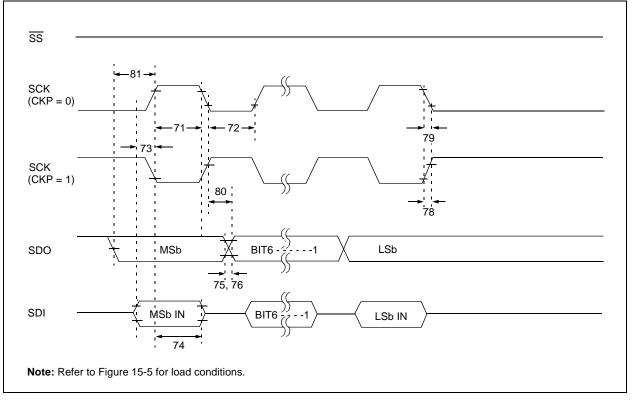
15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

(Commercial, Industrial)			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions	
	Vdd	Supply Voltage						
D001		16LF87X	2.0		5.5	V	LP, XT, RC osc configuration (DC to 4 MHz)	
D001		16F87X	4.0	_	5.5	V	LP, XT, RC osc configuration	
D001A			4.5		5.5	V	HS osc configuration	
			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details	
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled	


Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

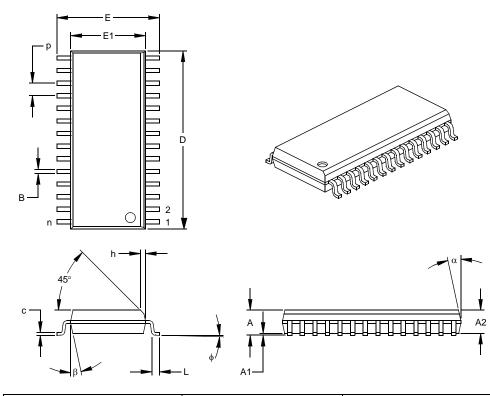

FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	1ILLIMETERS	5
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	ф	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1:	CONVERSION
	CONSIDERATIONS

Characteristic	PIC16C7X	PIC16F87X
Pins	28/40	28/40
Timers	3	3
Interrupts	11 or 12	13 or 14
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz
Voltage	2.5V - 5.5V	2.0V - 5.5V
A/D	8-bit	10-bit
CCP	2	2
Program Memory	4K, 8K EPROM	4K, 8K FLASH
RAM	192, 368 bytes	192, 368 bytes
EEPROM data	None	128, 256 bytes
Other	_	In-Circuit Debugger, Low Voltage Programming

PIC16F87X

Master Mode Operation	
Master Mode START Condition	
Master Mode Transmission	
Master Mode Transmit Sequence	
Multi-Master Communication	
Multi-master Mode	
Operation	
Repeat START Condition Timing	
Slave Mode	
Block Diagram	
Slave Reception	74
Slave Transmission	
SSPBUF	73
STOP Condition Receive or Transmit Timing .	
STOP Condition Timing	
Waveforms for 7-bit Reception	
Waveforms for 7-bit Transmission	76
I ² C Module Address Register, SSPADD	73
I ² C Slave Mode	
ICEPIC In-Circuit Emulator	
ID Locations	
In-Circuit Serial Programming (ICSP)	
INDF Register	
Indirect Addressing	
FSR Register	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	
BTFSC	
BTFSS	
CALL	
CLRF	
CLRW CLRWDT	
COMF DECF	
DECF DECFSZ	
INCFINCFSZ	
INCESZ	
IORUW	
MOVF	
MOVE	
MOVEW	-
NOP	
RETFIE	
RETLW	-
RETURN	
RETORN	
RLF RRF	
SLEEP	
SLEEP SUBLW	
SUBLW	
SUBWF	
XORLW	
XORUV	
Summary Table	
Summary rable	130

INT Interrupt (RB0/INT). See Interrupt Sources	
	47
INTCON Register	
GIE Bit	
INTE Bit	
INTF Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit2	· ·
TOIE Bit	
TOIF Bit	
Inter-Integrated Circuit (I ² C)	
Internal Sampling Switch (Rss) Impedence	
Interrupt Sources119	
Block Diagram	
Interrupt-on-Change (RB7:RB4)	
RB0/INT Pin, External7, 8	3, 130
TMR0 Overflow	. 130
USART Receive/Transmit Complete	95
Interrupts	
Bus Collision Interrupt	24
Synchronous Serial Port Interrupt	
Interrupts, Context Saving During	
Interrupts, Enable Bits	
Global Interrupt Enable (GIE Bit)20). 129
Interrupt-on-Change (RB7:RB4) Enable	, -
(RBIE Bit)	130
Interrupt-on-Change (RB7:RB4) Enable	100
(RBIE Bit)	20
Peripheral Interrupt Enable (PEIE Bit)	
RB0/INT Enable (INTE Bit)	
TMR0 Overflow Enable (T0IE Bit)	20
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	400
(RBIF Bit)	. 130
Interrupt-on-Change (RB7:RB4) Flag	
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2	20, 31
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit)	20, 31 20
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2	20, 31 20
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20	20, 31 20
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20	20, 31 20), 130
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20	20, 31 20), 130
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20 K KEELOQ Evaluation and Programming Tools	20, 31 20), 130
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20 K KEELOQ Evaluation and Programming Tools	20, 31 20), 130 146
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20 K KEELOQ Evaluation and Programming Tools	20, 31 20), 130 146
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 7, 8 5, 126 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 7, 8 5, 126 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126 5, 126 5, 126 12 11
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126 5, 126 5, 126 12 11
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 26 26 126 12 11 143 145
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 26 26 12 126 126 126 144
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 26 26 12 126 126 127 144 143
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 26 26 12 126 126 127 144 143 144
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 26 26 12 146 145 145 144 143 144 89

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769294

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.