

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f873t-20-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:		
Bank 0													
00h ⁽³⁾	INDF	Addressin	Addressing this location uses contents of FSR to address data memory (not a physical register)										
01h	TMR0	Timer0 Mc	dule Registe	ər						xxxx xxxx	47		
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26		
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18		
04h ⁽³⁾	FSR	Indirect Da	ata Memory	Address Poir	nter					xxxx xxxx	27		
05h	PORTA		_	PORTA Da	ta Latch whe	n written: POI	RTA pins whe	n read		0x 0000	29		
06h	PORTB	PORTB Da	ata Latch wh	en written: F	ORTB pins v	hen read				xxxx xxxx	31		
07h	PORTC	PORTC D	ata Latch wh	en written: F	ORTC pins v	vhen read				xxxx xxxx	33		
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				XXXX XXXX	35		
09h ⁽⁴⁾	PORTE		_		_	_	RE2	RE1	RE0	xxx	36		
0Ah ^(1,3)	PCLATH		_		Write Buffer	for the upper	r 5 bits of the l	Program Cou	unter	0 0000	26		
0Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20		
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22		
0Dh	PIR2	_	(5)	—	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	24		
0Eh	TMR1L	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 Register										
0Fh	TMR1H	Holding re	gister for the	Most Signif	icant Byte of	the 16-bit TM	R1 Register			xxxx xxxx	52		
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51		
11h	TMR2	Timer2 Mo	dule Registe	ər						0000 0000	55		
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55		
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive E	Suffer/Transm	it Register				xxxx xxxx	70, 73		
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67		
15h	CCPR1L	Capture/C	ompare/PW	M Register1	(LSB)					xxxx xxxx	57		
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					xxxx xxxx	57		
17h	CCP1CON		—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58		
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96		
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	99		
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	101		
1Bh	CCPR2L	Capture/C	ompare/PW	M Register2	(LSB)					xxxx xxxx	57		
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	57		
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58		
1Eh	ADRESH	A/D Resul	t Register Hi	gh Byte						xxxx xxxx	116		
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	SUPATILS	PD 0	
BCF	STATUS,	RI U RD1	, • Banku
DCF	SIAIOS,	KE I	, Baliko
CLRF	PORTA		; Initialize PORTA by
			; clearing output
			; data latches
BSF	STATUS,	RP0	; Select Bank 1
MOVLW	0x06		; Configure all pins
MOVWF	ADCON1		; as digital inputs
MOVLW	0xCF		; Value used to
			; initialize data
			; direction
MOVWF	TRISA		; Set RA<3:0> as inputs
			; RA<5:4> as outputs
			; TRISA<7:6>are always
			; read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN

4.9 FLASH Program Memory Write Protection

The configuration word contains a bit that write protects the FLASH program memory, called WRT. This bit can only be accessed when programming the PIC16F87X device via ICSP. Once write protection is enabled, only an erase of the entire device will disable it. When enabled, write protection prevents any writes to FLASH program memory. Write protection does not affect program memory reads.

TABLE 4-1: READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY

Со	nfiguration	Bits	MomenyLeastion	Internal	Internal		
CP1	CP0	WRT	Memory Location	Read	Write	ICSP Read	ICSP write
0	0	x	All program memory	Yes	No	No	No
0	1	0	Unprotected areas	Yes	No	Yes	No
0	1	0	Protected areas	Yes	No	No	No
0	1	1	Unprotected areas	Yes	Yes	Yes	No
0	1	1	Protected areas	Yes	No	No	No
1	0	0	Unprotected areas	Yes	No	Yes	No
1	0	0	Protected areas	Yes	No	No	No
1	0	1	Unprotected areas	Yes	Yes	Yes	No
1	0	1	Protected areas	Yes	No	No	No
1	1	0	All program memory	Yes	No	Yes	Yes
1	1	1	All program memory	Yes	Yes	Yes	Yes

|--|

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Dh	EEADR	EEPROM	1 Address	s Register	, Low Byt	е				xxxx xxxx	uuuu uuuu
10Fh	EEADRH	—	_	—	EEPRON	/I Address,	High Byte	;		xxxx xxxx	uuuu uuuu
10Ch	EEDATA	EEPROM	1 Data Re	egister, Lo	ow Byte					xxxx xxxx	uuuu uuuu
10Eh	EEDATH	—	_	EEPRO	M Data Re	egister, Hig	h Byte			xxxx xxxx	uuuu uuuu
18Ch	EECON1	EEPGD	_	—	_	WRERR	WREN	WR	RD	x x000	x u000
18Dh	EECON2	EEPROM	1 Control	Register2	2 (not a ph	_	-				
8Dh	PIE2	_	(1)	—	EEIE	BCLIE	—	—	CCP2IE	-r-0 00	-r-0 00
0Dh	PIR2	—	(1)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	-r-0 00

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

Note 1: These bits are reserved; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	Module's F	Registe	r					xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

FIGURE 9-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8 bits are shifted into SSPSR and the address is compared against SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 9-8).

FIGURE 9-8: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

9.3 Connection Considerations for I²C Bus

For standard-mode I^2C bus devices, the values of resistors R_p and R_s in Figure 9-27 depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current)

The supply voltage limits the minimum value of resistor R_{p} , due to the specified minimum sink current of 3 mA at VOL max = 0.4V, for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VOL max = 0.4V at 3 mA, R_p min = $(5.5-0.4)/0.003 = 1.7 \text{ k}\Omega$. VDD as a function of R_p is shown in Figure 9-27. The desired noise margin of 0.1VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 9-27).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

12.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions. For additional information, refer to Application Note, AN007, "Power-up Trouble Shooting", (DS00007).

12.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (if PWRT is enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or Wake-up from SLEEP.

12.7 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: The PWRT delay starts (if enabled) when a POR Reset occurs. Then OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F87X device operating in parallel.

Table 12-5 shows the RESET conditions for the STA-TUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

12.9 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a BOR occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable and is, therefore, not valid at any time.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oscillator Configuration	Power	-up	Brown out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms		72 ms	_	

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

Register	Devices			Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt	
W	873	874	876	877	XXXX XXXX	սսսս սսսս	uuuu uuuu
INDF	873	874	876	877	N/A	N/A	N/A
TMR0	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	873	874	876	877	0000h	0000h	PC + 1 ⁽²⁾
STATUS	873	874	876	877	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	873	874	876	877	0x 0000	0u 0000	uu uuuu
PORTB	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	873	874	876	877	xxx	uuu	uuu
PCLATH	873	874	876	877	0 0000	0 0000	u uuuu
INTCON	873	874	876	877	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu ⁽¹⁾
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu(1)
TMR1L	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	873	874	876	877	00 0000	uu uuuu	uu uuuu
TMR2	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
T2CON	873	874	876	877	-000 0000	-000 0000	-uuu uuuu
SSPBUF	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR1L	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	873	874	876	877	00 0000	00 0000	uu uuuu
RCSTA	873	874	876	877	0000 000x	0000 000x	uuuu uuuu
TXREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
RCREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR2L	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR2H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP2CON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
ADRESH	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	873	874	876	877	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISA	873	874	876	877	11 1111	11 1111	uu uuuu
TRISB	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISC	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISD	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISE	873	874	876	877	0000 -111	0000 -111	uuuu -uuu
PIE1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1	·/~~~~/			-		<u>;</u> ~~~~~~		
CLKOUT ⁽⁴⁾	\/\		<u> </u>	Tost(2)	/	\	¦/ \	
INT pin	· · ·	1		· ·		1 1	1 I 1 I	
INTF Flag (INTCON<1>)		י י י י	4	/		Interrupt Latency	(2)	
GIE bit (INTCON<7>)	1 I 1 I 1 I 1 I	i 	Processor i	n		·	1 1 1 1 1 1	ו ו ו ו
INSTRUCTIO	N FLOW			· ·		1	1 1 1 1	1
PC	Х РС Х	PC+1	ХР	C+2	PC+2	X PC + 2	<u>X 0004h X</u>	0005h
Instruction { Fetched {	Inst(PC) = SLEEP	Inst(PC + 1)		1	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction	Inst(PC - 1)	SLEEP		, , ,	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, 1 2: Tos	HS or LP oscillator n r = 1024Tosc (drawi	node assumed. ing not to scale)	This delay v	vill not be th	here for RC osc n	node.		

F

If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

12.14 In-Circuit Debugger

When the DEBUG bit in the configuration word is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB® ICD. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-8 shows which features are consumed by the background debugger.

I/O pins	RB6, RB7		
Stack	1 level		
Program Memory	Address 0000h must be NOP		
	Last 100h words		
Data Memory	0x070 (0x0F0, 0x170, 0x1F0) 0x1EB - 0x1EF		

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip, or one of the third party development tool companies.

12.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

12.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

13.0 INSTRUCTION SET SUMMARY

Each PIC16F87X instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F87X instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
то	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 13-2 lists the instructions recognized by the MPASMTM assembler.

Figure 13-1 shows the general formats that the instructions can have.

Note:	То	maintain	upward	compatibility	with		
	future PIC16F87X products, do not use						
	OP	FION and T	TRIS inst	ructions.			

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file re	gist	er op	eratio	ons		
13	8	1	6		0	
OPCODE		d		f (FILE #)		
d = 0 for desti	nati	on W				
d = 1 for desti	nati	on f				
f = 7-bit file re	egist	ter ad	dres	S		
Bit-oriented file regi	ister	oper	ation	S		
13	10	9	7	6	0	
OPCODE		b (Bl	T #)	f (FILE #)		
h – 3-hit hit ar	dro	ee				
f = 7-bit file re	egist	ter ad	dres	S		
	0					
l iteral and control of	pper	ations	\$			
	, p 0.		-			
General						
13		8	7		0	
OPCODE				k (literal)		
k = 8-bit immediate value						
CALL and GOTO instructions only						
OPCODE K (literal)						
k = 11-bit imn	k = 11-bit immediate value					

A description of each instruction is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

PIC16F87X

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the <u>prescaler of</u> the WDT. Status bits TO and PD are set.

CLRF	Clear f		
Syntax:	[<i>label</i>] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

COMF	Complement f			
Syntax:	[label] COMF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(\overline{f}) \rightarrow (destination)$			
Status Affected:	Z			
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.			

CLRW	Clear W		
Syntax:	[label] CLRW		
Operands:	None		
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	W register is cleared. Zero bit (Z) is set.		

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended) (Continued)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 15.1)							
Param No.	Sym	Characteristic	Conditions						
	Vol	Output Low Voltage							
D080A		I/O ports		—	0.6	V	IOL = 7.0 mA, VDD = 4.5V		
D083A		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V		
	Voн	Output High Voltage							
D090A		I/O ports ⁽³⁾	VDD - 0.7	_		V	Юн = -2.5 mA, VDD = 4.5V		
D092A		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	_	V	IOH = -1.0 mA, VDD = 4.5V		
D150*	Vod	Open Drain High Voltage	—	—	8.5	V	RA4 pin		
		Capacitive Loading Specs on Output Pins							
D100	Cosc2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Сю	All I/O pins and OSC2 (RC mode)		_	50	pF			
D102	Св	SCL, SDA (I ² C mode)	—	—	400	pF			
		Data EEPROM Memory							
D120	ED	Endurance	100K		_	E/W	25°C at 5V		
D121	Vdrw	VDD for read/write	VMIN		5.5	V	Using EECON to read/write VMIN = min. operating voltage		
D122	TDEW	Erase/write cycle time	—	4	8	ms			
		Program FLASH Memory							
D130	Eр	Endurance	1000		—	E/W	25°C at 5V		
D131	Vpr	VDD for read	VMIN	—	5.5	V	VMIN = min operating voltage		
D132A		VDD for erase/write	VMIN		5.5	V	Using EECON to read/write, VMIN = min. operating voltage		
D133	TPEW	Erase/Write cycle time	—	4	8	ms			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 15-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (MASTER &</u> <u>SLAVE)</u> Clock high to data out valid	Standard(F)	_		80	ns	
			Extended(LF)	—	—	100	ns	
121	Tckrf	Clock out rise time and fall time (Master mode)	Standard(F)	—	—	45	ns	
			Extended(LF)	—	—	50	ns	
122	Tdtrf	Data out rise time and fall time	Standard(F)	—	_	45	ns	
			Extended(LF)	—	—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-20: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK \downarrow (DT setup time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

© 1998-2013 Microchip Technology Inc.

FIGURE 16-13: TYPICAL AND MAXIMUM AlwDT vs. VDD OVER TEMPERATURE

© 1998-2013 Microchip Technology Inc.

PIC16F87X

FIGURE 16-20: MINIMUM AND MAXIMUM VIN vs. Vdd, (TTL INPUT, -40°C TO 125°C)

SPI	
Master Mode	70
Master Mode Timing	70
Serial Clock	
Serial Data In	
Serial Data Out	
Serial Peripheral Interface (SPI)	65
Slave Mode Timing	71
Slave Mode Timing Diagram	71
Slave Select	
SPI Clock	
SPI Mode	
SPI Clock Edge Select, CKE	
SPI Data Input Sample Phase Select, SMI	P66
SPI Mode	
Associated Registers	72
SPI Module	
Slave Mode	71
<u>SS</u>	
SSP	
Block Diagram (SPI Mode)	69
RA5/SS/AN4 Pin	7.8
RC3/SCK/SCL Pin	7 9
RC4/SDI/SDA Pin	7 9
RC5/SDO Pin	7 C
SPI Mode	
	73 74
SSPRIJE	70,73
SSPCON2	
SSDSD	
SSF I C SSB I ² C Operation	73
SSFTC Operation	
SSF Module	70
SPI Master Mode	70
SSPCONT Register	
SSP Overnow Detect bit, SSPOV	
SSPBUF Register	
SSPCON Register	15
SSPCON1	
SSPCON2 Register	
SSPEN	67
SSPIF	
SSPM3:SSPM0	67
SSPOV	
SSPSTAT	73
SSPSTAT Register	
Stack	
Overflows	
Underflow	
START bit (S)	66
START Condition Enable bit	68
STATUS Register	
C Bit	
DC Bit	18
IRP Bit	18
PD Bit	
<u>RP</u> 1:RP0 Bits	
TO Bit	
Z Bit	
STOP bit (P)	66
STOP Condition Enable bit	68

Synchronous Serial Port Synchronous Serial Port Enable bit, SSPEN Synchronous Serial Port Interrupt Synchronous Serial Port Mode Select bits, SSPM3:SSPM0	. 65 . 67 . 22 . 67
т	
T1CKPS0 bit	. 51
T1CON Register	. 17 17 51
T1SYNC bit	. 51
T2CKPS1 bit	. 55 ′, 55
TAD	115
Time-Out Sequence	
Associated Registers	. 49
Clock Source Edge Select (T0SE Bit)	. 19
Clock Source Select (TOCS Bit)	. 19
Interrupt	. 47
Overflow Enable (T0IE Bit)	. 20
Overflow Flag (T0IF Bit)20,	130
Overflow Interrupt	130
Prescaler RA4/TOCKI Pin, External Clock	. 48
TOCKI	48
WDT Prescaler Block Diagram	. 47
Timer1	. 51
Associated Registers	. 54
Asynchronous Counter Mode	. 53
Reading and Writing to	. 53
Counter Operation	. 52
Operation in Timer Mode	. 52
Öscillator	. 53
Capacitor Selection	. 53
Prescaler	. 54
RC0/T10S0/T1CKI Pin	7,9
RC1/1105I/CCP2 PIN Resetting of Timer1 Registers	7,9 54
Resetting Timer1 using a CCP Trigger Output	. 53
Synchronized Counter Mode	. 52
T1CON	. 51
T1CON Register	. 51
	. 53
Timer?	. 55
Associated Registers	. 56
Block Diagram	. 55
Output	. 56
Postscaler	. 55
Prescaler	. 55
Timing Diagrams	. 55
A/D Conversion	175
Acknowledge Sequence Timing	. 86
Baud Rate Generator with Clock Arbitration	. 80
BRG Reset Due to SDA Collision	. 91
Brown-out Keset	164
START Condition Timina	. 90

NOTES: