

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f873t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF		
	bit 7							bit 0		
bit 7	GIE: Globa	al Interrupt E	nable bit							
	 1 = Enables all unmasked interrupts 0 = Disables all interrupts 									
h :+ C				L:4						
bit 6	-	pheral Interr	•		-					
		s all unmas		•	5					
bit 5		0 Overflow	=							
		s the TMR0								
	0 = Disable	es the TMR) interrupt							
bit 4		/INT Externa	•							
		es the RB0/II es the RB0/I								
bit 3		Port Change		•						
bit 0		s the RB po	•							
		es the RB po								
bit 2	TOIF: TMR	0 Overflow I	Interrupt Fla	ag bit						
					eared in softwa	re)				
		register did								
bit 1		/INT Externa	•	•		1	>			
		30/INT exter	•	•	must be cleared	a in softwa	re)			
bit 0		Port Change	•							
		•	•	•	l state; a misma	tch conditi	ion will cont	nue to set		
		•		nd the mism	atch condition a	and allow t	he bit to be	cleared		
		be cleared in of the RB7:R	,	ve changed	stato					
			una hiris ila	e changeu	SIGIE					
	Legend:									
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	oit, read as '	0'		
	- n = Value			Bit is set	'0' = Bit is c		x = Bit is u			
								-		

2.2.2.5 PIR1 Register

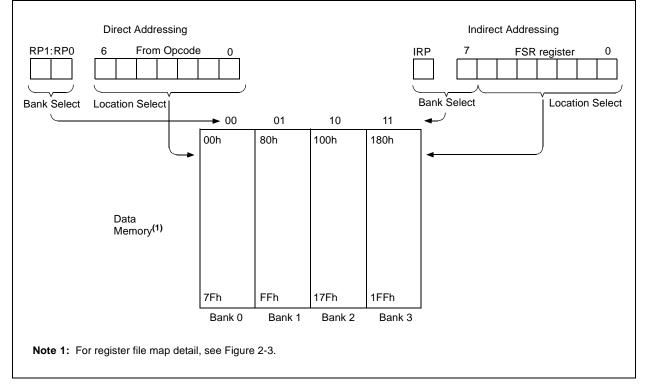
The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF				
	bit 7							bit 0				
bit 7		or a write o	peration has		rupt Flag bit e (must be c	leared in sof	ítware)					
bit 6	1 = An A/D	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete										
bit 5	1 = The US	RCIF : USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empty										
bit 4	TXIF: USAI 1 = The US	TXIF : USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full										
bit 3	1 = The SSI from the • SPI - A • I ² C S	P interrupt o e Interrupt S A transmiss Slave A transmiss		s occurred, a tine. The co n has taken	and must be nditions that place.	cleared in so		e returning				
 A transmission/reception has taken place. The initiated START condition was completed by the SSP module. The initiated STOP condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP m A START condition occurred while the SSP module was idle (Multi-I A STOP condition occurred while the SSP module was idle (Multi-I 								r system).				
bit 2		 0 = No SSP interrupt condition has occurred. CCP1IF: CCP1 Interrupt Flag bit 										
	1 = A TMR 0 = No TMF <u>Compare m</u> 1 = A TMR 0 = No TMF <u>PWM mode</u>	CCP11F: CCP1 Interrupt Flag bit Capture mode: 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare mode: 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM mode: Unused in this mode										
bit 1	1 = TMR2 t	o PR2 mate	2 Match Inte ch occurred natch occur	(must be cle	it eared in soft	ware)						
bit 0	1 = TMR1 r	egister ove	ow Interrupt rflowed (mu not overflow	st be cleare	d in software	e)						
	Note 1: P	SPIF is res	erved on PI	C16F873/87	76 devices; a	always maint	ain this bit c	lear.				
	Legend:											
	R = Reada	ole bit	W = Writat		U = Unimp	lemented bit	t, read as '0'					
	- n = Value	at POR	'1' = Bit is	set	'0' = Bit is	cleared	x = Bit is ur	nknown				

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

2.5 Indirect Addressing, INDF and FSR Registers


The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-6. A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTINUE			
	:		;yes continue

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM ⁽³⁾	bit3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 3-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

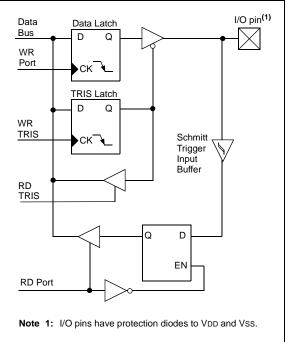
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

3.5 PORTE and TRISE Register

PORTE and TRISE are not implemented on the PIC16F873 or PIC16F876.

PORTE has three pins (RE0/RD/AN5, RE1/WR/AN6, and RE2/CS/AN7) which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

The PORTE pins become the I/O control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make certain that the TRISE<2:0> bits are set, and that the pins are configured as digital inputs. Also ensure that ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.


Register 3-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected for analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs, and read as '0'.

FIGURE 3-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	$\frac{I/O}{RD}$ port pin or read control input in Parallel Slave Port mode or analog input: 1 = Idle
REU/RD/ANS	bito	51/112 /	 a line a Read operation. Contents of PORTD register are output to PORTD I/O pins (if chip selected)
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	 I/O port pin or write control input in Parallel Slave Port mode or analog input: WR 1 = Idle 0 = Write operation. Value of PORTD I/O pins is latched into PORTD register (if chip selected)
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	I/O port pin or chip select control input in Parallel Slave Port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

TABLE 3-9:PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
09h	PORTE	—	—	_	—	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE [Data Direc	tion Bits	0000 -111	0000 -111
9Fh	ADCON1	ADFM	—		_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

REGISTER 0-1:	CUPICON	CCPTCON REGISTER/CCP2CON REGISTER (ADDRESS: 1/11/1011)										
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0				
	bit 7							bit 0				
bit 7-6	•	Unimplemented: Read as '0'										
bit 5-4			Least Sign	ificant bits								
	<u>Capture m</u> Unused	ode:										
	<u>Compare n</u> Unused	node:										
		<u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.										
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits								
	0100 = Ca 0101 = Ca 0110 = Ca 0111 = Ca 1000 = Co 1001 = Co 1010 = Co una 1011 = Co res	 CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM disabled (resets CCPx module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled) 11xx = PWM mode 										
	Legend:											
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented l	bit, read as	ʻ0'				

'1' = Bit is set

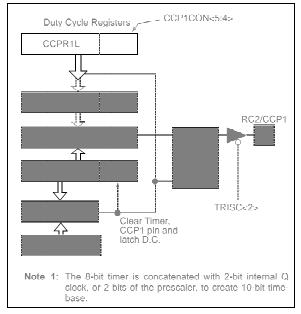
- n = Value at POR

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

x = Bit is unknown

'0' = Bit is cleared

8.3 PWM Mode (PWM)


In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

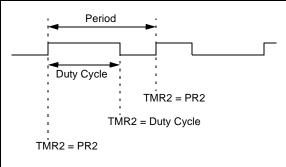

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 8.3.3.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 7.1) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle =(CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitch-free PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the formula:

Resolution =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

9.1 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

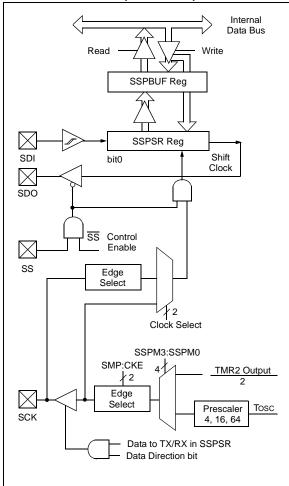
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)


Figure 9-4 shows the block diagram of the MSSP module when in SPI mode.

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set and register ADCON1 (see Section 11.0: A/D Module) must be set in a way that pin RA5 is configured as a digital I/O

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

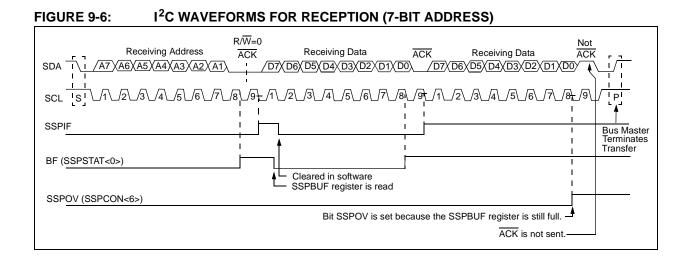
FIGURE 9-1: MSSP BLOCK DIAGRAM (SPI MODE)

TABLE 9-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on: MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	ous Serial	Port Recei	ve Buff	er/Transm	it Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode. **Note 1:** These bits are reserved on PCI16F873/876 devices; always maintain these bits clear.

	its as Data s Received	SSPSR $ ightarrow$ SSPBUF	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		ruise	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	Yes	No	Yes		


TABLE 9-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

9.2.1.3 Slave Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, the SCL pin should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-7). An SSP interrupt is generated for each data transfer byte. The SSPIF flag bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte transfer. The SSPIF flag bit is set on the falling edge of the ninth clock pulse.

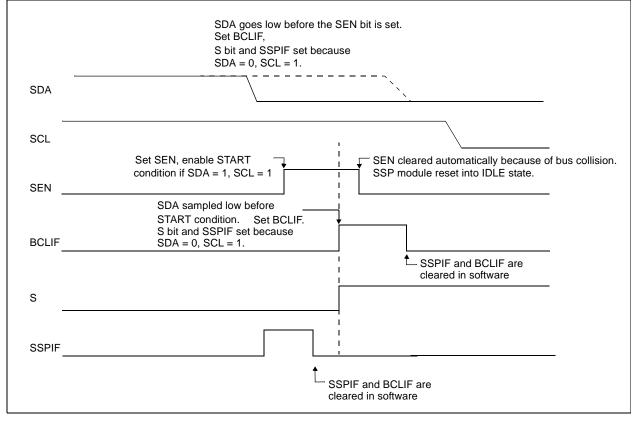
As a slave-transmitter, the \overline{ACK} pulse from the master receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. When the not \overline{ACK} is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting the CKP bit.

9.2.18.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 9-20).
- b) SCL is sampled low before SDA is asserted low (Figure 9-21).

During a START condition, both the SDA and the SCL pins are monitored. If either the SDA pin <u>or</u> the SCL pin is already low, then these events all occur:


- the START condition is aborted,
- and the BCLIF flag is set,
- <u>and</u> the SSP module is reset to its IDLE state (Figure 9-20).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 9-22). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0. During this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated START, or STOP conditions.

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1	·/~~~~/			-		<u>;</u> ~~~~~~		
CLKOUT ⁽⁴⁾	\/\		<u> </u>	Tost(2)	/	\	¦/ \	
INT pin	· · ·	1		· ·		1 1	1 I 1 I	
INTF Flag (INTCON<1>)		י י י י	4	/		Interrupt Latency	(2)	
GIE bit (INTCON<7>)	1 I 1 I 1 I 1 I 1 I	i 	Processor i	n		·	1 1 1 1 1 1	ו ו ו ו
INSTRUCTIO	N FLOW			· ·		1	1 1 1 1	1
PC	Х РС Х	PC+1	ХР	C+2	PC+2	X PC + 2	<u>X 0004h X</u>	0005h
Instruction { Fetched {	Inst(PC) = SLEEP	Inst(PC + 1)		1	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction	Inst(PC - 1)	SLEEP		, , ,	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
2: Tost	HS or LP oscillator n τ = 1024Tosc (drawi = '1' assumed. In th	ing not to scale)						

F

If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

12.14 In-Circuit Debugger

When the DEBUG bit in the configuration word is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB® ICD. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 12-8 shows which features are consumed by the background debugger.

TABLE 12-8: DE	BUGGER RESOURCES
----------------	------------------

I/O pins	RB6, RB7
Stack	1 level
Program Memory	Address 0000h must be NOP
	Last 100h words
Data Memory	0x070 (0x0F0, 0x170, 0x1F0) 0x1EB - 0x1EF

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip, or one of the third party development tool companies.

12.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

12.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

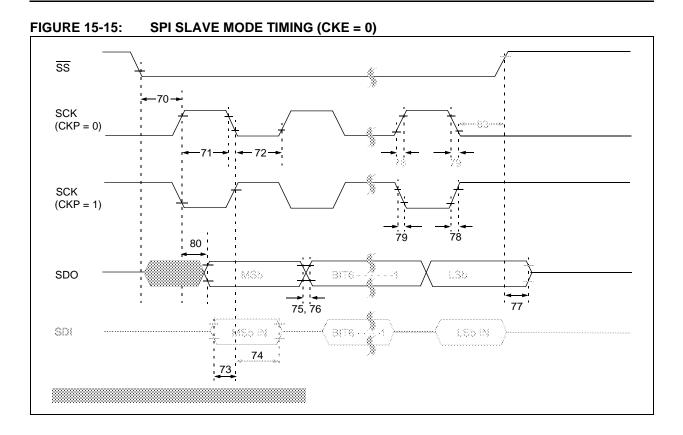
RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	C
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

SLEEP

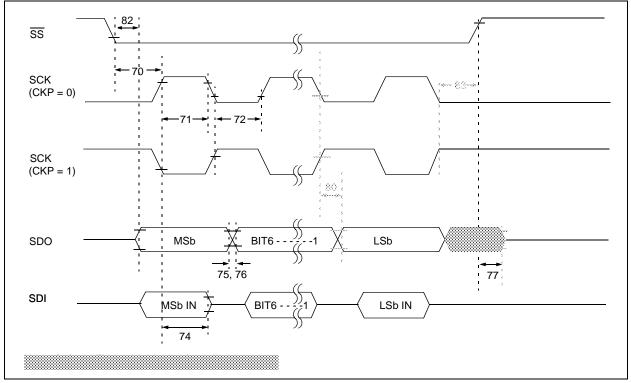
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
	C Register f


SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \text{ - } (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.


SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.

XORWF	Exclusive OR W with f			
Syntax:	[<i>label</i>] XORWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .XOR. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

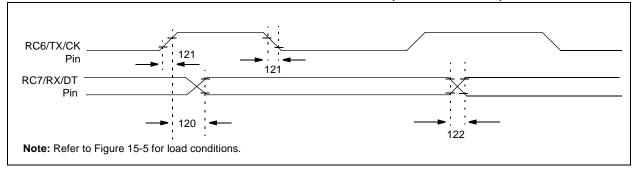

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit lit- eral 'k'. The result is placed in the W register.

FIGURE 15-19: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

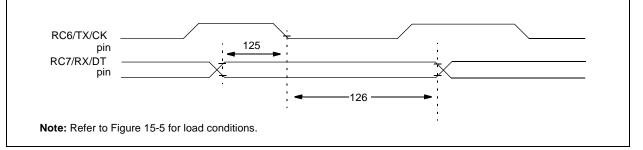


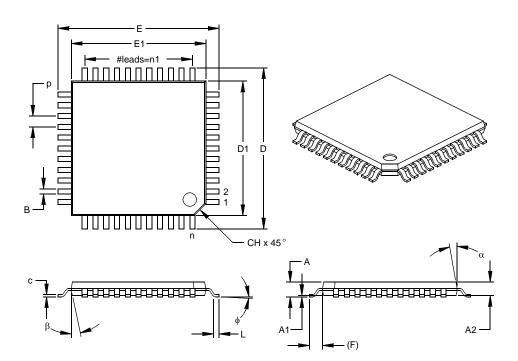
TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	Standard(F)	_	_	80	ns	
		Clock high to data out valid	Extended(LF)	_	-	100	ns	
121	Tckrf	Clock out rise time and fall time (Master mode)	Standard(F)	_	_	45	ns	
			Extended(LF)	_	—	50	ns	
122	Tdtrf	Data out rise time and fall time	Standard(F)	—	—	45	ns	
			Extended(LF)	_		50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-20: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			MILLIMETERS*			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44		
Pitch	р		.031			0.80		
Pins per Side	n1		11			11		
Overall Height	А	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039		1.00			
Foot Angle	φ	0	3.5	7	0	3.5	7	
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.012	.015	.017	0.30	0.38	0.44	
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-026 Drawing No. C04-076

Bus Collision During a Repeated	
START Condition (Case 1)	2
Bus Collision During a Repeated	
START Condition (Case2)92	2
Bus Collision During a START	
Condition (SCL = 0)	
Bus Collision During a STOP Condition	
Bus Collision for Transmit and Acknowledge	
Capture/Compare/PWM	2 2
I ² C Bus Data	כ 1
I ² C Bus START/STOP bits	n D
I ² C Master Mode First START Bit Timing	
I ² C Master Mode Reception Timing	
I ² C Master Mode Transmission Timing83	3
Master Mode Transmit Clock Arbitration	В
Power-up Timer164	4
Repeat START Condition81	
RESET164	
SPI Master Mode70	
SPI Slave Mode (CKE = 1)	
SPI Slave Mode Timing (CKE = 0)	
Start-up Timer164 STOP Condition Receive or Transmit	
Time-out Sequence on Power-up	
Timer0	
Timer1	
USART Asynchronous Master Transmission	
USART Asynchronous Reception	
USART Synchronous Receive 173	
USART Synchronous Reception 108	
USART Synchronous Transmission 106, 173	
USART, Asynchronous Reception104	
Wake-up from SLEEP via Interrupt	
Watchdog Timer	
TMR0	
TMR0 Register	
TMR1CS dit	
TMR1H Register	
TMR1L	
TMR1L Register	
TMR1ON bit	
TMR2	
TMR2 Register15	5
TMR2ON bit55	5
TOUTPS0 bit55	
TOUTPS1 bit	
TOUTPS2 bit	
TOUTPS3 bit	
TRISA Register	
TRISB Register	
TRISC Register	
TRISE Register	
IBF Bit	
IBOV Bit	
OBF Bit	
PSPMODE Bit	
TXREG	В

TXSTA Register	
BRGH Bit	
CSRC Bit	
SYNC Bit	
TRMT Bit	
TX9 Bit	
TX9D Bit	
TXEN Bit	

U

UA	66
Universal Synchronous Asynchronous Receiver	
Transmitter. See USART	
Update Address, UA	66
USART	95
Address Detect Enable (ADDEN Bit)	96
Asynchronous Mode	
Asynchronous Receive	
Associated Registers	
Block Diagram	
Asynchronous Receive (9-bit Mode)	
Associated Registers	
Block Diagram	
Timing Diagram	
Asynchronous Receive with Address Detect.	101
SeeAsynchronous Receive (9-bit Mode).	
Asynchronous Reception	102
Asynchronous Transmitter	
Baud Rate Generator (BRG)	
Baud Rate Formula	
Baud Rates, Asynchronous Mode (BRGH=0).	
High Baud Rate Select (BRGH Bit)	
Sampling	
Clock Source Select (CSRC Bit)	97
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Mode Select (SYNC Bit)	95
Overrun Error (OERR Bit)	
RC6/TX/CK Pin	
RC7/RX/DT Pin	
RCSTA Register	
Receive Data, 9th bit (RX9D Bit)	
Receive Enable, 9-bit (RX9 Bit)	
Serial Port Enable (SPEN Bit)9	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode	
Synchronous Master Reception	
Associated Registers	
Synchronous Master Transmission	
Associated Registers	
Synchronous Slave Mode	
Synchronous Slave Reception	
Associated Registers	
Synchronous Slave Transmit	108
Associated Registers	108
Transmit Block Diagram	
Transmit Data, 9th Bit (TX9D)	
Transmit Enable (TXEN Bit)	95
Transmit Enable, Nine-bit (TX9 Bit)	95
Transmit Shift Register Status (TRMT Bit)	95
TXSTA Register	95