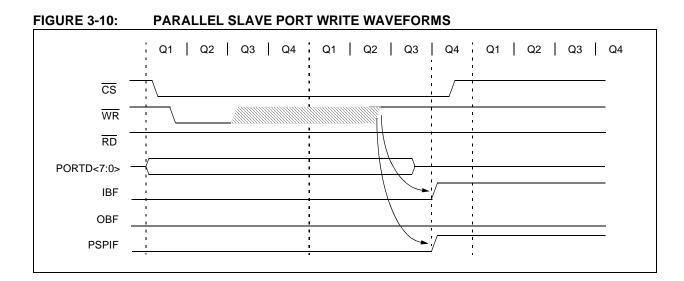


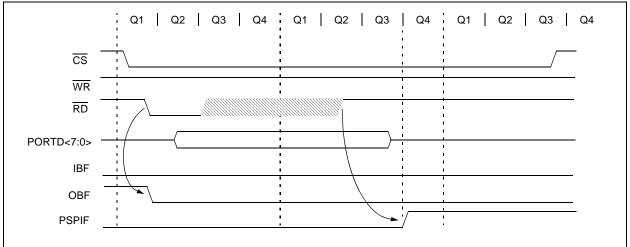
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 × 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f874-20-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-11: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port Data	Port Data Latch when written: Port pins when read							XXXX XXXX	uuuu uuuu
09h	PORTE						RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Directi	on Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

4.9 FLASH Program Memory Write Protection

The configuration word contains a bit that write protects the FLASH program memory, called WRT. This bit can only be accessed when programming the PIC16F87X device via ICSP. Once write protection is enabled, only an erase of the entire device will disable it. When enabled, write protection prevents any writes to FLASH program memory. Write protection does not affect program memory reads.

TABLE 4-1: READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY

Со	nfiguration	Bits	Manageral	Internal	Internal		ICSP Write	
CP1	CP0	WRT	Memory Location	Read	Write	ICSP Read	ICSP Write	
0	0	x	All program memory	Yes	No	No	No	
0	1	0	Unprotected areas	Yes	No	Yes	No	
0	1	0	Protected areas	Yes	No	No	No	
0	1	1	Unprotected areas	Yes	Yes	Yes	No	
0	1	1	Protected areas	Yes	No	No	No	
1	0	0	Unprotected areas	Yes	No	Yes	No	
1	0	0	Protected areas	Yes	No	No	No	
1	0	1	Unprotected areas	Yes	Yes	Yes	No	
1	0	1	Protected areas	Yes	No	No	No	
1	1	0	All program memory	Yes	No	Yes	Yes	
1	1	1	All program memory	Yes	Yes	Yes	Yes	

TABLE 4-2:	REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Dh	EEADR	EEPRON	Address	s Register	, Low Byt	е				xxxx xxxx	uuuu uuuu
10Fh	EEADRH	—	— — EEPROM Address, High Byte						xxxx xxxx	uuuu uuuu	
10Ch	EEDATA	EEPRON	EEPROM Data Register, Low Byte							xxxx xxxx	uuuu uuuu
10Eh	EEDATH	—	—	EEPRO	M Data Re	egister, Hig	h Byte			xxxx xxxx	uuuu uuuu
18Ch	EECON1	EEPGD	_	_	—	WRERR	WREN	WR	RD	x x000	x u000
18Dh	EECON2	EEPRON	EEPROM Control Register2 (not a physical register)							_	_
8Dh	PIE2	—	(1)		EEIE	BCLIE	—	_	CCP2IE	-r-0 00	-r-0 00
0Dh	PIR2	_	(1)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	-r-0 00

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

Note 1: These bits are reserved; always maintain these bits clear.

TABLE 5-1:	REGISTERS ASSOCIATED WITH TIMER0
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	Module's F	Register	•					XXXX XXXX	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

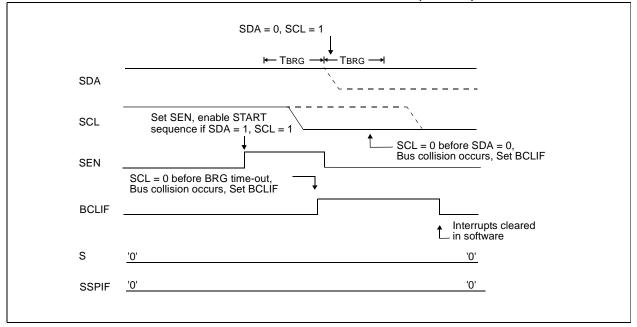
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

REGISTER 9-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WCOL SSPOV SSPM0 SSPEN CKP SSPM3 SSPM2 SSPM1 bit 7 bit 0 bit 7 WCOL: Write Collision Detect bit Master mode: 1 = A write to SSPBUF was attempted while the I2C conditions were not valid 0 = No collision Slave mode: 1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software) 0 = No collision bit 6 SSPOV: Receive Overflow Indicator bit In SPI mode: 1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register. (Must be cleared in software.) 0 = No overflowIn I²C mode: 1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.) 0 = No overflowSSPEN: Synchronous Serial Port Enable bit bit 5 In SPI mode, When enabled, these pins must be properly configured as input or output 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins In I²C mode, When enabled, these pins must be properly configured as input or output 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins bit 4 CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I²C Slave mode: SCK release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I²C Master mode: Unused in this mode bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin. $0110 = I^2C$ Slave mode, 7-bit address $0111 = I^2C$ Slave mode, 10-bit address 1000 = I²C Master mode, clock = Fosc / (4 * (SSPADD+1)) $1011 = I^2C$ Firmware Controlled Master mode (slave idle) 1110 = I²C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts enabled 1111 = I²C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1001, 1010, 1100, 1101 = Reserved

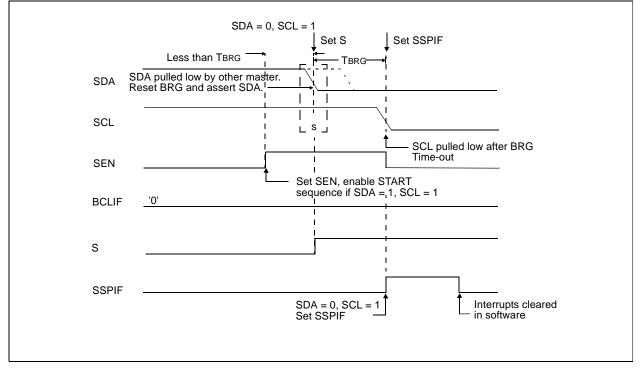
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
	bit 7							bit 0
bit 7	1 = Enable	eneral Call En e interrupt whe	en a genera			received in	the SSPSR	2
bit 6	ACKSTAT	Acknowledg	e Status bit	(In I ² C Maste	er mode onl	у)		
	1 = Acknow	<u>Transmit mod</u> wledge was n wledge was re	ot received					
bit 5	ACKDT: A	cknowledge [Data bit (In I ⁴	² C Master m	ode only)			
	Value that end of a re	knowledge		the user initi	ates an Ack	nowledge s	equence at	the
bit 4	ACKEN: A	cknowledge \$	Sequence E	nable bit (In	I ² C Master	mode only)		
	1 = Initiate Autom	Receive mode Acknowledge atically cleare wledge seque	e sequence ed by hardw		I SCL pins a	and transmit	ACKDT da	ta bit.
bit 3	RCEN: Re	ceive Enable es Receive mo	bit (In I ² C M	laster mode	only)			
bit 2	PEN: STC	P Condition I	Enable bit (I	n I ² C Master	r mode only)		
	1 = Initiate	ase Control: STOP condit condition idle		and SCL pir	ns. Automat	ically cleare	d by hardwa	are.
bit 1	1 = Initiate	epeated STAR Repeated ST/ ted START co	ART conditic	on on SDA an				/ hardware.
bit 0	1 = Initiate	RT Condition START cond condition idl	lition on SD/				ed by hardv	vare.
		For bits ACK mode, this bit writes to the \$	may not be	set (no spo				
	Logondi							
	Legend: R = Reada	blo bit	\\/ _ \\/.	itable bit		plemented k	hit road as f	0'
	K = Keaua		vv = vvi		0 = 0.000		n, reau as	0

'1' = Bit is set


'0' = Bit is cleared

REGISTER 9-3: SSPCON2: SYNC SERIAL PORT CONTROL REGISTER2 (ADDRESS 91h)

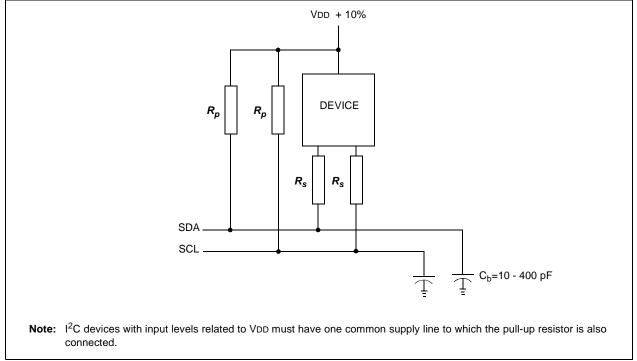

- n = Value at POR

x = Bit is unknown

9.3 Connection Considerations for I²C Bus

For standard-mode $I^{2}C$ bus devices, the values of resistors R_{p} and R_{s} in Figure 9-27 depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current)


The supply voltage limits the minimum value of resistor R_{p} , due to the specified minimum sink current of 3 mA at VOL max = 0.4V, for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VOL max = 0.4V at 3 mA, R_p min = $(5.5-0.4)/0.003 = 1.7 \text{ k}\Omega$. VDD as a function of R_p is shown in Figure 9-27. The desired noise margin of 0.1VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 9-27).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

NOTES:

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
	(ADCS1:ADCS0 = 11). To allow the con-
	version to occur during SLEEP, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	V <u>alue o</u> n MCLR, WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
1Eh	ADRESH	A/D Resul	A/D Result Register High Byte							xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Resul	t Register	Low Byt	e					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	—	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA	—	—	PORTA	Data Directio	n Register				11 1111	11 1111
05h	PORTA		—	 PORTA Data Latch when written: PORTA pins when read 					ad	0x 0000	0u 0000
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	IBOV PSPMODE — PORTE Data Direction bits					0000 -111	0000 -111
09h ⁽¹⁾	PORTE	—	—		—	—	RE2	RE1	RE0	xxx	uuu

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

14.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

14.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

14.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

14.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

14.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF8 (Comme	73/874/87 ercial, Indu		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F87 PIC16F87 (Comme		/877-20		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions			
	IPD	Power-down Current ^(3,5)								
D020		16LF87X	_	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D020		16F87X		10.5	42	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021		16LF87X	_	0.9	5	μΑ	VDD = 3.0V, WDT enabled, 0°C to +70°C			
D021		16F87X	_	1.5	16	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021A		16LF87X		0.9	5	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D021A		16F87X		1.5	19	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D023	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V			

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

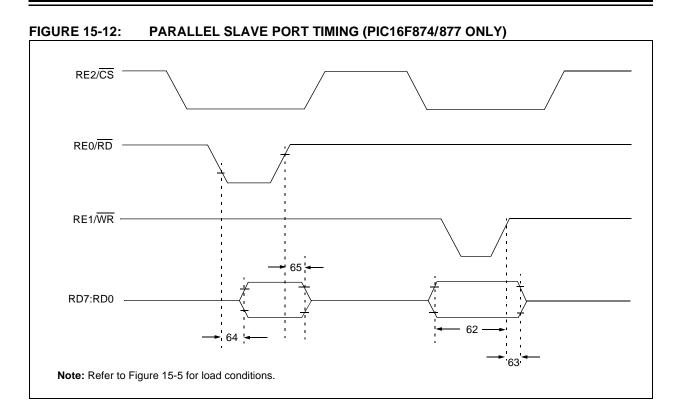
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	—	0.15Vdd	V	For entire VDD range	
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V		
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)	
		Ports RC3 and RC4		—				
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range	
D034A		with SMBus	-0.5	—	0.6	V	for VDD = 4.5 to 5.5V	
	Vih	Input High Voltage			r		1	
		I/O ports		—				
D040		with TTL buffer	2.0	—	Vdd	-	$4.5V \leq VDD \leq 5.5V$	
D040A			0.25VDD + 0.8V	_	Vdd	V	For entire VDD range	
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range	
D042		MCLR	0.8Vdd	—	Vdd	V		
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)	
D043		OSC1 (in RC mode) Ports RC3 and RC4	0.9Vdd		Vdd	V		
D044		with Schmitt Trigger buffer	0.7Vdd	—	Vdd	V	For entire VDD range	
D044A		with SMBus	1.4	—	5.5	V	for VDD = 4.5 to 5.5V	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = VSS, -40°С то +85°С	
	lı∟	Input Leakage Current ^(2, 3)		•				
D060		I/O ports	—	—	±1	μΑ	$Vss \le VPIN \le VDD$, Pin at hi-impedance	
D061		MCLR, RA4/T0CKI	_	_	±5	uΑ	$Vss \leq VPIN \leq VDD$	
D063		OSC1	—	_	±5	•	$Vss \le VPIN \le VDD$, XT, HS and LP osc configuration	


These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874/877 ONLY)

Parameter No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup time)		20 25	_	_	ns ns	Extended Range Only
63*	TwrH2dtl	$\overline{\text{WR}}^{\uparrow}$ or $\overline{\text{CS}}^{\uparrow}$ to data–in invalid (hold time)	Standard(F)	20		—	ns	
			Extended(LF)	35		—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		-	_	80 90	ns ns	Extended Range Only
65	TrdH2dtl	\overline{RD}^{\uparrow} or $\overline{CS}^{\downarrow}$ to data–out invalid		10	—	30	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented is **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

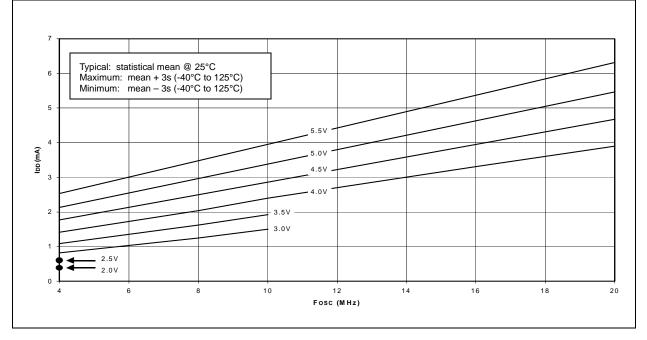
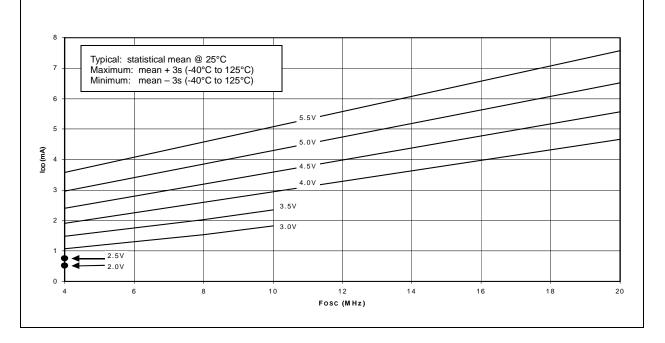
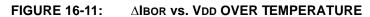
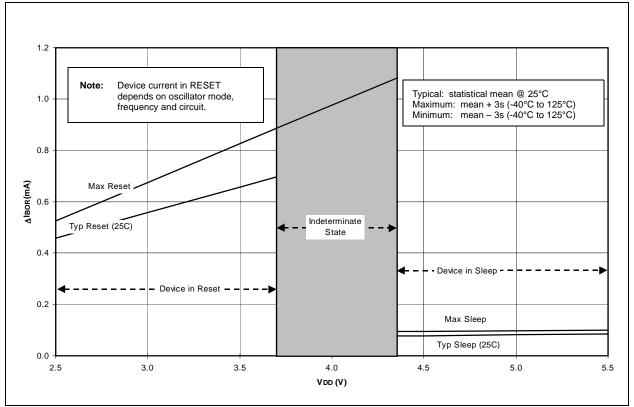
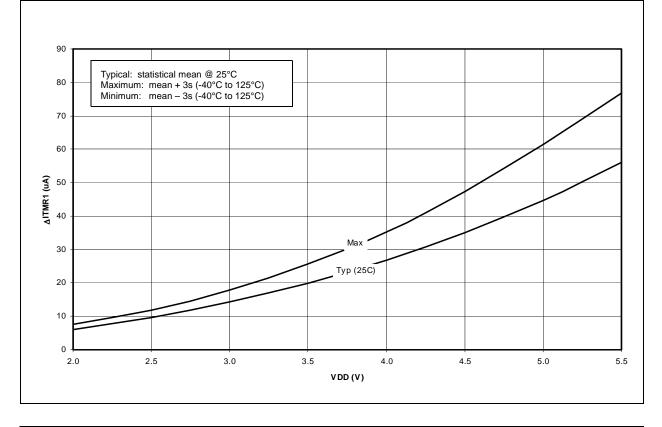
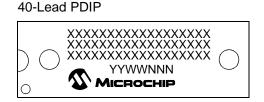
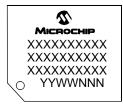




FIGURE 16-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE)


FIGURE 16-12: TYPICAL AND MAXIMUM △ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO 70°C, TIMER1 WITH OSCILLATOR, XTAL=32 kHZ, C1 AND C2=50 pF)

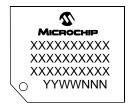
Package Marking Information (Cont'd)

44-Lead TQFP

Example

 \bigcirc

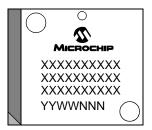
Example

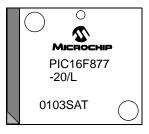

 $\lambda \lambda$

PIC16F877-04/P

0112SAA

MICROCHIP


44-Lead MQFP


Example

44-Lead PLCC

Example

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1:	CONVERSION		
	CONSIDERATIONS		

Characteristic	PIC16C7X	PIC16F87X		
Pins	28/40	28/40		
Timers	3	3		
Interrupts	11 or 12	13 or 14		
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)		
Frequency	Frequency 20 MHz			
Voltage	2.5V - 5.5V	2.0V - 5.5V		
A/D	8-bit	10-bit		
CCP	2	2		
Program Memory	4K, 8K EPROM	4K, 8K FLASH		
RAM	192, 368 bytes	192, 368 bytes		
EEPROM data	None	128, 256 bytes		
Other	_	In-Circuit Debugger, Low Voltage Programming		

INDEX

Α

A/D1	11
Acquisition Requirements1	
ADCON0 Register	
ADCON1 Register	
ADIF bit	
Analog Input Model Block Diagram1	
Analog Port Pins	
Associated Registers and Bits	
Block Diagram	
Calculating Acquisition Time1	
Configuring Analog Port Pins1	
Configuring the Interrupt1	
Configuring the Module1	
Conversion Clock	
Conversions1	
Delays1	
Effects of a RESET1	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedence	
Operation During SLEEP1	
Result Registers1	
Sampling Requirements1	
Source Impedence1	
Time Delays1	
Absolute Maximum Ratings	
ACK	
Acknowledge Data bit	
Acknowledge Pulse	
Acknowledge Sequence Enable bit	
Acknowledge Status bit	
ADRES Register	
Analog Port Pins. See A/D	• •
Analog-to-Digital Converter. See A/D	
Application Notes	
AN552 (Implementing Wake-up on Key Strokes	
Using PIC16CXXX)	31
AN556 (Implementing a Table Read)	
AN578 (Use of the SSP Module in the I2C	20
Multi-Master Environment)	73
Architecture	10
PIC16F873/PIC16F876 Block Diagram	5
PIC16F874/PIC16F877 Block Diagram	
Assembler	0
MPASM Assembler1	12
	43
В	
Banking, Data Memory 12,	18
Baud Rate Generator	
BCLIF	
BF74, 82,	
Block Diagrams	57
A/D1	13
A/D Converter	

 Analog Input Model
 114

 Baud Rate Generator
 79

 Capture Mode
 59

 Compare Mode
 60

 I²C Master Mode
 78

 I²C Module
 73

 I²C Slave Mode
 73

 Interrupt Logic
 129

 PIC16F873/PIC16F876
 5

PIC16F874/PIC16F877	6
PORTA	
RA3:RA0 and RA5 Pins	
RA4/T0CKI Pin	29
PORTB	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	31
PORTC	
Peripheral Output Override (RC 0:2, 5:7)	
Peripheral Output Override (RC 3:4)	
PORTD	
PORTD and PORTE (Parallel Slave Port)	
PORTE	36
PWM Mode	61
RESET Circuit	123
SSP (I ² C Mode)	73
SSP (SPI Mode)	
Timer0/WDT Prescaler	47
Timer1	52
Timer2	55
USART Asynchronous Receive	101
USART Asynchronous Receive (9-bit Mode)	103
USART Transmit	99
Watchdog Timer	131
BOR. See Brown-out Reset	
BRG	79
BRGH bit	
Brown-out Reset (BOR) 119, 123, 7	125, 126
BOR Status (BOR Bit)	25
Buffer Full bit, BF	74
Bus Arbitration	89
Bus Collision Section	89
Bus Collision During a Repeated START Condition	92
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	93
Bus Collision Interrupt Flag bit, BCLIF	24

С

Capture/Compare/PWM (CCP)	57
Associated Registers	
Capture, Compare and Timer1	62
PWM and Timer2	63
Capture Mode	59
Block Diagram	59
CCP1CON Register	58
CCP1IF	59
Prescaler	59
CCP Timer Resources	57
CCP1	
RC2/CCP1 Pin	7, 9
CCP2	
RC1/T1OSI/CCP2 Pin	7, 9
Compare	
Special Trigger Output of CCP1	60
Special Trigger Output of CCP2	60
Compare Mode	60
Block Diagram	60
Software Interrupt Mode	
Special Event Trigger	60
Interaction of Two CCP Modules (table)	57

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	To: Technical Publications Manager Total Pa	ges Sent
RE:	RE: Reader Response	
From	From: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: () FAX: ()
Appl	Application (optional):	
Wou	Would you like a reply?YN	
Devi	Device: PIC16F87X Literature Number: DS30292D	
Que	Questions:	
1. \	1. What are the best features of this document?	
_		
2. ł	2. How does this document meet your hardware and software development	needs?
-		
- 2 [2. Do you find the experimentian of this data sheet easy to follow? If not why	5
3. I	3. Do you find the organization of this data sheet easy to follow? If not, why?	
-		
4. \	4. What additions to the data sheet do you think would enhance the structure	e and subject?
-		
5. \	5. What deletions from the data sheet could be made without affecting the o	verall usefulness?
-		
6. I	6. Is there any incorrect or misleading information (what and where)?	
_		
-		
7. H	7. How would you improve this document?	
-		
- 8. H	 How would you improve our software, systems, and silicon products? 	