

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f874-20i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-4: PIC16F874/873 REGISTER FILE MAP

,	File Address	A	File ddress	/	File Address				
Indirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h		
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h		
PCL	02h	PCL	82h	PCL	102h	PCL	182h		
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h		
FSR	04h	FSR	84h	FSR	104h	FSR	184h		
PORTA	05h	TRISA	85h		105h		185h		
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h		
PORTC	07h	TRISC	87h		107h		187h		
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h		
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h		
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah		
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh		
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Cł		
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dł		
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh		
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh		
T1CON	10h		90h		110h		190h		
TMR2	11h	SSPCON2	91h						
T2CON	12h	PR2	92h						
SSPBUF	13h	SSPADD	93h						
SSPCON	14h	SSPSTAT	94h						
CCPR1L	15h		95h						
CCPR1H	16h		96h						
CCP1CON	17h		97h						
RCSTA	18h	TXSTA	98h						
TXREG	19h	SPBRG	99h						
RCREG	1Ah		9Ah						
CCPR2L	1Bh		9Bh						
CCPR2H	1Ch		9Ch						
CCP2CON	1Dh		9Dh						
ADRESH	1Eh	ADRESL	9Eh						
ADCON0	1Fh	ADCON1	9Fh		1206		1A0h		
	20h		A0h		120h				
General Purpose Register		General Purpose Register		accesses 20h-7Fh		accesses A0h - FFh			
96 Bytes		96 Bytes		2011 11 11	16Fh 170h		1EFt 1F0h		
	754				1756		4		
Bank 0	J 7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFł		
* Not a Note 1: These	physical reg e registers	data memory locat gister. are not implemen are reserved, mai	ted on the	e PIC16F873.					

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x								
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF								
	bit 7							bit 0								
bit 7	GIE: Globa	al Interrupt E	nable bit													
		s all unmas		ots												
h :+ C		es all interru		L:4												
bit 6	-	pheral Interr	•		-											
	 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts 															
bit 5		0 Overflow	=													
		s the TMR0														
	0 = Disable	es the TMR) interrupt													
bit 4		/INT Externa	•													
		es the RB0/II es the RB0/I														
bit 3		Port Change		•												
bit 0		s the RB po	•													
		es the RB po														
bit 2	TOIF: TMR	0 Overflow I	Interrupt Fla	ag bit												
					eared in softwa	re)										
		register did														
bit 1		/INT Externa	•	•		1	>									
		30/INT exter	•	•	must be cleared	a in softwa	re)									
bit 0		Port Change	•													
		•	•	•	l state; a misma	tch conditi	ion will cont	nue to set								
		•		nd the mism	atch condition a	and allow t	he bit to be	cleared								
		be cleared in of the RB7:R	,	ve changed	stato											
			una hiris ila	e changeu	SIGIE											
	Legend:															
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	oit, read as '	0'								
	- n = Value			Bit is set	'0' = Bit is c		x = Bit is u									

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
_		—	—	—		POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3/PGM ⁽³⁾	bit3	TTL	Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6/PGC	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock.
RB7/PGD	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data.

TABLE 3-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h, 186h	TRISB	PORTB	ORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

REGISTER 5-1: OPTION REG REGISTER

DANA

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

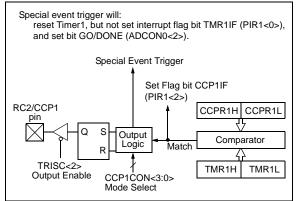
The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF1, MOVWF1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1 R/W-1		R/W-1				
	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7	RBPU											
bit 6	INTEDG											
bit 5	1 = Transit	R0 Clock Sou tion on T0CK al instruction o	l pin									
bit 4	1 = Increm	R0 Source Ed nent on high-t nent on low-to	o-low trans	sition on TOC	•							
bit 3	 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 											
bit 2-0	PS2:PS0:	Prescaler Ra	ite Select b	oits								
	Bit Value	TMR0 Rate	WDT Rat	e								
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128											
	Legend:											
	R = Reada	able bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '()'				
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown				
ily Reference	To avoid an unintended device RESET, the instruction sequence shown in the PIC [®] MCU Mid-Range Fam- ily Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.											

Note:


8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- Remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the PORTC I/O data latch.

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

PIC16F87X

8.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFFh	0xFFh	0xFFh	0x3Fh	0x1Fh	0x17h
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 8-4: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

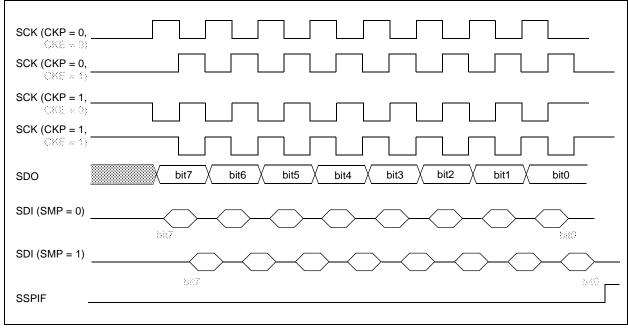
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	_	_	_	—	—	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	—	CCP2IE								0
87h	TRISC	PORTC D	ata Direct	tion Registe	er					1111 1111	1111 1111
0Eh	TMR1L	Holding R	egister for	r the Least	Significant E	Byte of the 1	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	egister for	r the Most S	Significant B	yte of the 16	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/C	ompare/F	WM Regist	ter1 (LSB)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/F	WM Regist	ter1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register2 (LSB)							xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/C	Capture/Compare/PWM Register2 (MSB)								uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

 $\label{eq:legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.$

Note 1: The PSP is not implemented on the PIC16F873/876; always maintain these bits clear.

9.1.1 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 9-5) is to broad-cast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI module is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor".

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then, would give waveforms for SPI communication as shown in Figure 9-6, Figure 9-8 and Figure 9-9, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

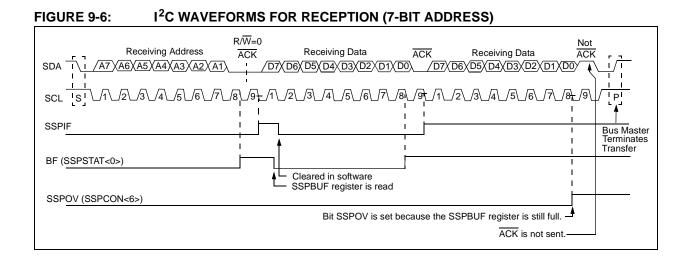
- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5.0 MHz.

Figure 9-6 shows the waveforms for Master mode. When CKE = 1, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 9-2: SPI MODE TIMING, MASTER MODE

	its as Data s Received	SSPSR $ ightarrow$ SSPBUF	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		ruise	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	Yes	No	Yes		


TABLE 9-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

9.2.1.3 Slave Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and the SCL pin is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, the SCL pin should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-7). An SSP interrupt is generated for each data transfer byte. The SSPIF flag bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte transfer. The SSPIF flag bit is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. When the not \overline{ACK} is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then the SCL pin should be enabled by setting the CKP bit.

TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	F	Fosc = 20 MHz			osc = 16 N	IHz	Fosc = 10 MHz			
RATE (K)	RATE		% SPBRG ERROR value (decimal)		% KBAUD ERROR		KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	-	-	-	
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129	
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64	
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15	
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7	
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4	
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4	
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2	
HIGH	1.221	-	255	0.977	-	255	0.610	-	255	
LOW	312.500	-	0	250.000	-	0	156.250	-	0	

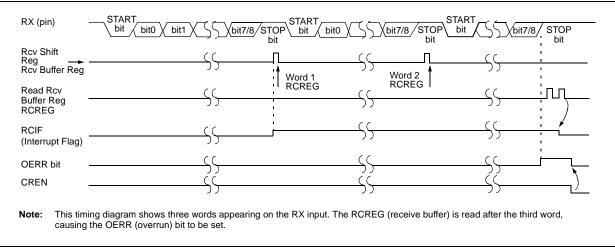

DAUD	Fosc = 4 MHz			Fosc = 3.6864 MHz			
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	0.300	0	207	0.3	0	191	
1.2	1.202	0.17	51	1.2	0	47	
2.4	2.404	0.17	25	2.4	0	23	
9.6	8.929	6.99	6	9.6	0	5	
19.2	20.833	8.51	2	19.2	0	2	
28.8	31.250	8.51	1	28.8	0	1	
33.6	-	-	-	-	-	-	
57.6	62.500	8.51	0	57.6	0	0	
HIGH	0.244	-	255	0.225	-	255	
LOW	62.500	-	0	57.6	-	0	

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 20 MHz			F	osc = 16 M	Hz	Fosc = 10 MHz		
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	-	255	3.906	-	255	2.441	-	255
LOW	1250.000	-	0	1000.000		0	625.000	-	0

BAUD	Fosc = 4 MHz			Fosc = 3.6864 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	
1.2	1.202	0.17	207	1.2	0	191	
2.4	2.404	0.17	103	2.4	0	95	
9.6	9.615	0.16	25	9.6	0	23	
19.2	19.231	0.16	12	19.2	0	11	
28.8	27.798	3.55	8	28.8	0	7	
33.6	35.714	6.29	6	32.9	2.04	6	
57.6	62.500	8.51	3	57.6	0	3	
HIGH	0.977	-	255	0.9	-	255	
LOW	250.000	-	0	230.4	-	0	

FIGURE 10-5: ASYNCHRONOUS RECEPTION

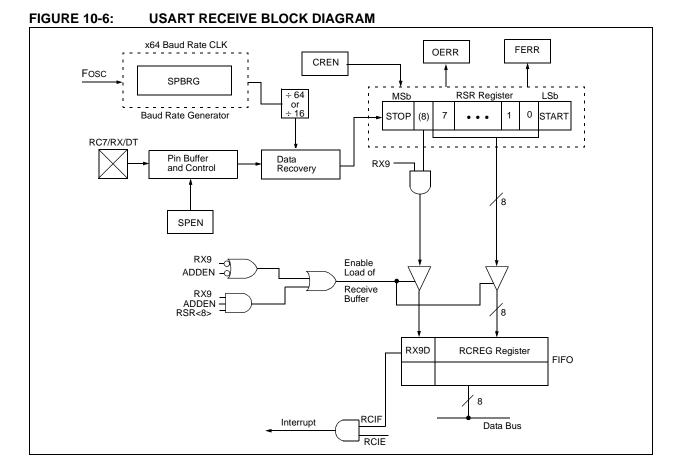
When setting up an Asynchronous Reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	x000 0000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Receive Register								0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h SPBRG Baud Rate Generator Register						0000 0000	0000 0000				

TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION


Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

10.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

When setting up an Asynchronous Reception with Address Detect Enabled:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.

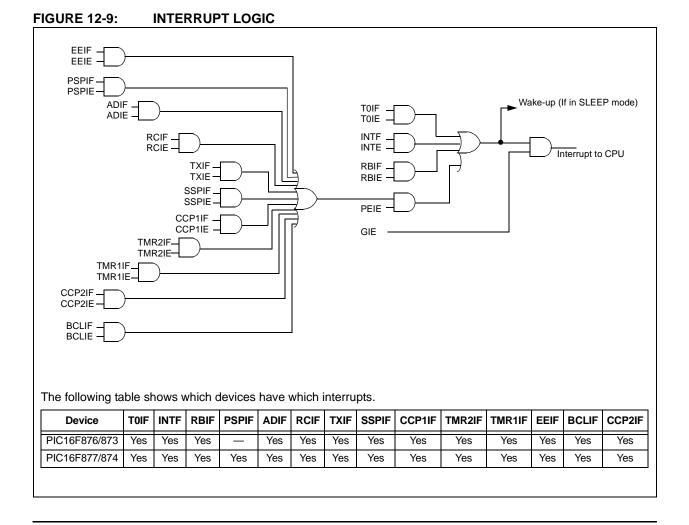
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register, to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer, and interrupt the CPU.

12.10 Interrupts

The PIC16F87X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

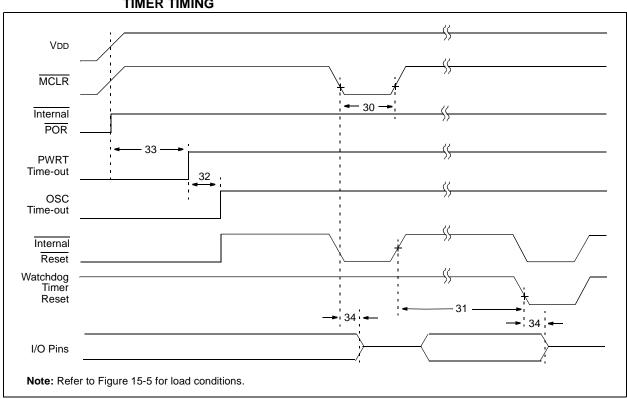
The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

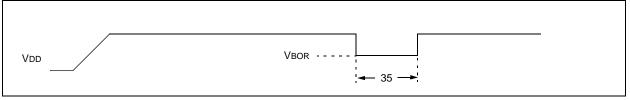
For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

© 1998-2013 Microchip Technology Inc.


15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †	Absolute	Maximum	Ratings †
----------------------------	----------	---------	-----------

Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14 V
Voltage on RA4 with respect to Vss	0 to +8.5 V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD -	Voh) x Ioh} + Σ (Vol x Iol)
2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80	mA <u>, may cause latch-up</u> .


- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873/876 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 15-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-9: BROWN-OUT RESET TIMING

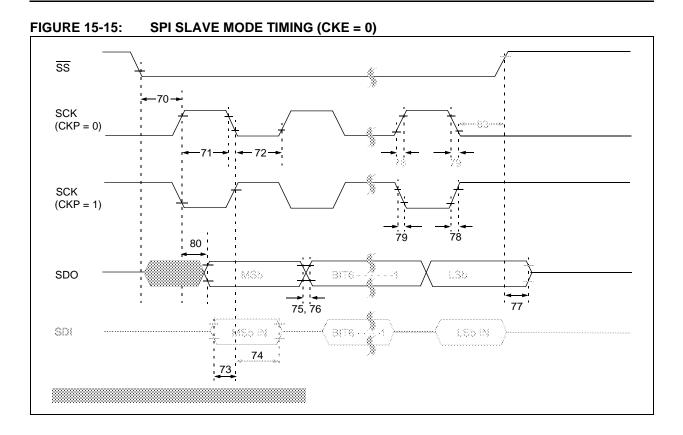
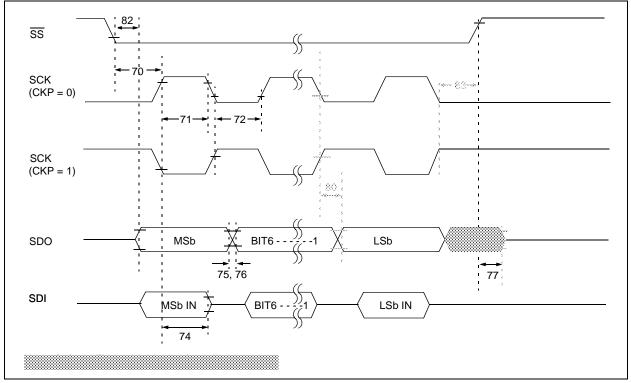
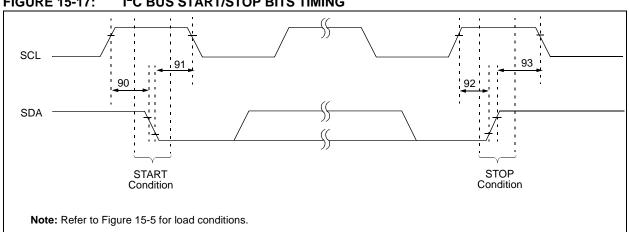


TABLE 15-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS


Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	-	_	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.1	μS	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$VDD \le VBOR (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



Param No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсу	—	—	ns		
71*	TscH	SCK input high time (Slave mode)		TCY + 20	—	—	ns	
72*	TscL	SCK input low time (Slave mode)		Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK	100	_	—	ns		
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK e	100	_	—	ns		
75*	TdoR	SDO data output rise time	Standard(F) Extended(LF)		10 25	25 50	ns ns	
76*	TdoF	SDO data output fall time			10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance		10	_	50	ns	
78*	TscR	SCK output rise time (Master mode)	Standard(F) Extended(LF)		10 25	25 50	ns ns	
79*	TscF	SCK output fall time (Master mode)			10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	Standard(F) Extended(LF)	_	_	50 145	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсу	_	—	ns		
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edg	е	_	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_	—	ns	

TABLE 15-7: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

I²C BUS START/STOP BITS TIMING FIGURE 15-17:

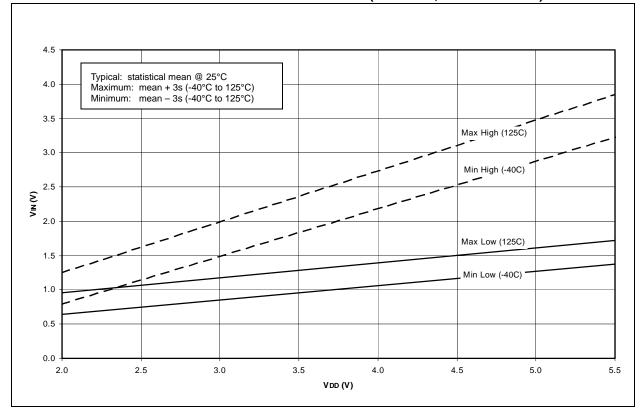
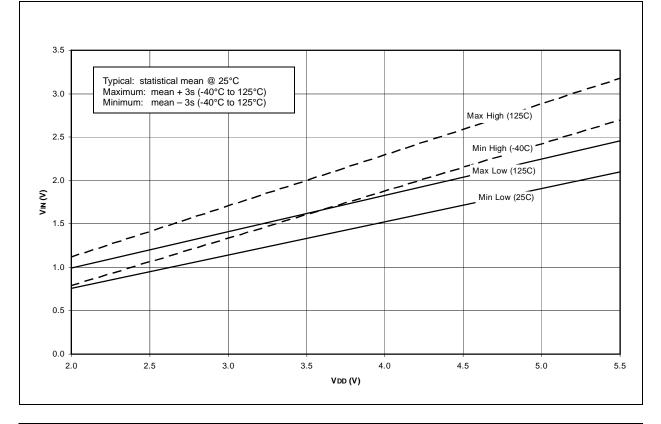



FIGURE 16-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO 125°C)

© 1998-2013 Microchip Technology Inc.

INDEX

Α

A/D1	11
Acquisition Requirements1	
ADCON0 Register	
ADCON1 Register	
ADIF bit	
Analog Input Model Block Diagram1	
Analog Port Pins	
Associated Registers and Bits	
Block Diagram	
Calculating Acquisition Time1	
Configuring Analog Port Pins1	
Configuring the Interrupt1	
Configuring the Module1	
Conversion Clock	
Conversions1	
Delays1	
Effects of a RESET1	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedence	
Operation During SLEEP1	
Result Registers1	
Sampling Requirements1	
Source Impedence1	
Time Delays1	
Absolute Maximum Ratings	
ACK	
Acknowledge Data bit	
Acknowledge Pulse	
Acknowledge Sequence Enable bit	
Acknowledge Status bit	
ADRES Register	
Analog Port Pins. See A/D	• •
Analog-to-Digital Converter. See A/D	
Application Notes	
AN552 (Implementing Wake-up on Key Strokes	
Using PIC16CXXX)	31
AN556 (Implementing a Table Read)	
AN578 (Use of the SSP Module in the I2C	20
Multi-Master Environment)	73
Architecture	10
PIC16F873/PIC16F876 Block Diagram	5
PIC16F874/PIC16F877 Block Diagram	5
Assembler	0
MPASM Assembler1	12
	40
В	
Banking, Data Memory 12,	18
Baud Rate Generator	
BCLIF	
BF	
Block Diagrams	57
A/D1	13
A/D Converter	

 Analog Input Model
 114

 Baud Rate Generator
 79

 Capture Mode
 59

 Compare Mode
 60

 I²C Master Mode
 78

 I²C Module
 73

 I²C Slave Mode
 73

 Interrupt Logic
 129

 PIC16F873/PIC16F876
 5

PIC16F874/PIC16F877	6
PORTA	
RA3:RA0 and RA5 Pins	
RA4/T0CKI Pin	29
PORTB	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	31
PORTC	
Peripheral Output Override (RC 0:2, 5:7)	
Peripheral Output Override (RC 3:4)	
PORTD	
PORTD and PORTE (Parallel Slave Port)	
PORTE	36
PWM Mode	61
RESET Circuit	123
SSP (I ² C Mode)	73
SSP (SPI Mode)	
Timer0/WDT Prescaler	47
Timer1	52
Timer2	55
USART Asynchronous Receive	101
USART Asynchronous Receive (9-bit Mode)	103
USART Transmit	99
Watchdog Timer	131
BOR. See Brown-out Reset	
BRG	79
BRGH bit	
Brown-out Reset (BOR) 119, 123, 7	125, 126
BOR Status (BOR Bit)	25
Buffer Full bit, BF	74
Bus Arbitration	89
Bus Collision Section	89
Bus Collision During a Repeated START Condition	92
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	93
Bus Collision Interrupt Flag bit, BCLIF	24

С

Capture/Compare/PWM (CCP)	57
Associated Registers	
Capture, Compare and Timer1	62
PWM and Timer2	63
Capture Mode	59
Block Diagram	59
CCP1CON Register	58
CCP1IF	59
Prescaler	59
CCP Timer Resources	57
CCP1	
RC2/CCP1 Pin	7, 9
CCP2	
RC1/T1OSI/CCP2 Pin	7, 9
Compare	
Special Trigger Output of CCP1	60
Special Trigger Output of CCP2	60
Compare Mode	60
Block Diagram	60
Software Interrupt Mode	
Special Event Trigger	60
Interaction of Two CCP Modules (table)	57

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	To: Technical Publications Manager T	otal Pages Sent	
RE:	RE: Reader Response		
From	From: Name		
	Company		
	Address		
	City / State / ZIP / Country		
Telephone: () FAX: ()			
Application (optional):			
Would you like a reply?YN			
Device: PIC16F87X Literature Number: DS30292D			
Questions:			
1. What are the best features of this document?			
_			
2. ł	2. How does this document meet your hardware and software development needs?		
-			
- 2 [2 Do you find the ergenization of this data sheet easy to follow? If no	t. utb./2	
3. I	B. Do you find the organization of this data sheet easy to follow? If not, why?		
-			
4. \	What additions to the data sheet do you think would enhance the structure and subject?		
-			
5. \	. What deletions from the data sheet could be made without affecting the overall usefulness?		
-			
6. I	6. Is there any incorrect or misleading information (what and where)?		
_			
-			
7. H	How would you improve this document?		
-			
- 8. H	8. How would you improve our software, systems, and silicon product	ts?	
	······································		