

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f874t-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	the TMR0 register, assign the prescaler to
	the Watchdog Timer.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 **RBPU:** PORTB Pull-up Enable bit bit 7 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values bit 6 **INTEDG:** Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 1:1 1:2 1:2 001 1:4 010 1:4 1:8 011 1:8 1:16 1:16 100 1:32 101 1:32 1:64 110 1:128 1:64 111 1:128 1:256 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	_	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Write operations have two control bits, WR and WREN, and two status bits, WRERR and EEIF. The WREN bit is used to enable or disable the write operation. When WREN is clear, the write operation will be disabled. Therefore, the WREN bit must be set before executing a write operation. The WR bit is used to initiate the write operation. It also is automatically cleared at the end of the write operation. The interrupt flag EEIF is used to determine when the memory write completes. This flag must be cleared in software before setting the WR bit. For EEPROM data memory, once the WREN bit and the WR bit have been set, the desired memory address in EEADR will be erased, followed by a write of the data in EEDATA. This operation takes place in parallel with the microcontroller continuing to execute normally. When the write is complete, the EEIF flag bit will be set. For program memory, once the WREN bit and the WR bit have been set, the microcontroller will cease to execute instructions. The desired memory location pointed to by EEADRH:EEADR will be erased. Then, the data value in EEDATH:EEDATA will be programmed. When complete, the EEIF flag bit will be set and the microcontroller will continue to execute code.

The WRERR bit is used to indicate when the PIC16F87X device has been reset during a write operation. WRERR should be cleared after Power-on Reset. Thereafter, it should be checked on any other RESET. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset, during normal operation. In these situations, following a RESET, the user should check the WRERR bit and rewrite the memory location, if set. The contents of the data registers, address registers and EEPGD bit are not affected by either MCLR Reset, or WDT Timeout Reset, during normal operation.

	R/W-x	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0				
	EEPGD	—	—	—	WRERR	WREN	WR	RD				
	bit 7							bit 0				
bit 7	EEPGD: Pr	EEPGD: Program/Data EEPROM Select bit										
	1 = Access	ses program	memory									
	0 = Access	ses data me	mory				`					
		innot be cha	ingea while	a read or w	rite operation is	in progres	is)					
bit 6-4	Unimplem	ented: Rea	d as '0'									
bit 3	WRERR: E	EPROM Er	ror Flag bit									
1 = A write operation is prematurely terminated (any MCL R Reset or any WDT Reset during normal operation)												
	0 = The write operation completed											
bit 2	WREN: EE	PROM Writ	e Enable bi	t								
	1 = Allows write cycles											
	0 = Inhibits	write to the	EEPROM									
bit 1	WR: Write	Control bit										
	1 = Initiates a write cycle. (The bit is cleared by hardware once write is complete. The Wf can only be set (not cleared) in software.)											
	0 = Write cycle to the EEPROM is complete											
bit 0	RD: Read	Control bit										
	1 = Initiates an EEPROM read. (RD is cleared in hardware. The RD bit can only be set (not cleared) in software.)											
	0 = Does not initiate an EEPROM read											
	Legend:											
	R = Reada	uble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '	0'				
	- n = Value	at POR	'1' = F	3it is set	'0' = Bit is c	leared	x = Bit is ur	nknown				

REGISTER 4-1: EECON1 REGISTER (ADDRESS 18Ch)

4.2 Reading the EEPROM Data Memory

Reading EEPROM data memory only requires that the desired address to access be written to the EEADR register and clear the EEPGD bit. After the RD bit is set, data will be available in the EEDATA register on the very next instruction cycle. EEDATA will hold this value until another read operation is initiated or until it is written by firmware.

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEDATA. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

BSF	STATUS,	RP1	i
BCF	STATUS,	RP0	;Bank 2
MOVF	ADDR, W		;Write address
MOVWF	EEADR		;to read from
BSF	STATUS,	RP0	;Bank 3
BCF	EECON1,	EEPGD	; Point to Data memory
BSF	EECON1,	RD	;Start read operation
BCF	STATUS,	RP0	;Bank 2
MOVF	EEDATA,	W	;W = EEDATA

EXAMPLE 4-1: EEPROM DATA READ

4.3 Writing to the EEPROM Data Memory

There are many steps in writing to the EEPROM data memory. Both address and data values must be written to the SFRs. The EEPGD bit must be cleared, and the WREN bit must be set, to enable writes. The WREN bit should be kept clear at all times, except when writing to the EEPROM data. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.

Writes to EEPROM data memory must also be prefaced with a special sequence of instructions, that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruptions. The firmware should verify that a write is not in progress, before starting another cycle. The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- Write the address to EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 4-2:	EEPROM DATA WRITE

BSF	STATUS, RPI	;
BSF	STATUS, RPO	;Bank 3
BTFSC	EECON1, WR	;Wait for
GOTO	\$-1	;write to finish
BCF	STATUS, RPO	;Bank 2
MOVF	ADDR, W	;Address to
MOVWF	EEADR	;write to
MOVF	VALUE, W	;Data to
MOVWF	EEDATA	;write
BSF	STATUS, RPO	;Bank 3
BCF	EECON1, EEPGD	;Point to Data memory
BSF	EECON1, WREN	;Enable writes
		;Only disable interrupts
BCF	INTCON, GIE	;if already enabled,
		;otherwise discard
MOVLW	0x55	;Write 55h to
MOVWF	EECON2	;EECON2
MOVLW	0xAA	;Write AAh to
MOVWF	EECON2	;EECON2
BSF	EECON1, WR	;Start write operation
		;Only enable interrupts
BSF	INTCON, GIE	; if using interrupts,
		;otherwise discard
BCF	EECON1, WREN	;Disable writes

4.9 FLASH Program Memory Write Protection

The configuration word contains a bit that write protects the FLASH program memory, called WRT. This bit can only be accessed when programming the PIC16F87X device via ICSP. Once write protection is enabled, only an erase of the entire device will disable it. When enabled, write protection prevents any writes to FLASH program memory. Write protection does not affect program memory reads.

TABLE 4-1: READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY

Configuration Bits		Bits	MomenyLeastion	Internal	Internal		
CP1	CP0	WRT	Memory Location	Read	Write	ICSP Read	ICSP write
0	0	x	All program memory	Yes	No	No	No
0	1	0	Unprotected areas	Yes	No	Yes	No
0	1	0	Protected areas	Yes	No	No	No
0	1	1	Unprotected areas	Yes	Yes	Yes	No
0	1	1	Protected areas	Yes	No	No	No
1	0	0	Unprotected areas	Yes	No	Yes	No
1	0	0	Protected areas	Yes	No	No	No
1	0	1	Unprotected areas	Yes	Yes	Yes	No
1	0	1	Protected areas	Yes	No	No	No
1	1	0	All program memory	Yes	No	Yes	Yes
1	1	1	All program memory	Yes	Yes	Yes	Yes

|--|

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Dh	EEADR	EEPROM	1 Address	s Register	, Low Byt	е				xxxx xxxx	uuuu uuuu
10Fh	EEADRH	—	_	—	EEPROM Address, High Byte						uuuu uuuu
10Ch	EEDATA	EEPROM	1 Data Re	ta Register, Low Byte							uuuu uuuu
10Eh	EEDATH	—	_	EEPRO	EEPROM Data Register, High Byte					xxxx xxxx	uuuu uuuu
18Ch	EECON1	EEPGD	_	—	_	WRERR	WREN	WR	RD	x x000	x u000
18Dh	EECON2	EEPROM	1 Control	Register2 (not a physical register)						_	-
8Dh	PIE2	_	(1)	—	EEIE	BCLIE	—	—	CCP2IE	-r-0 00	-r-0 00
0Dh	PIR2	—	(1)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	-r-0 00

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

Note 1: These bits are reserved; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	Module's F	Registe	r					xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset, or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						xxxx xxxx	uuuu uuuu		
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						xxxx xxxx	uuuu uuuu		
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

9.2.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data, when required (slavetransmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the MSSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

If the BF bit is set, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF and SSPOV are set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, is shown in timing parameter #100 and parameter #101 of the electrical specifications.

9.2.1.1 Addressing

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- The SSPSR register value is loaded into the SSPBUF register on the falling edge of the 8th SCL pulse.
- b) The buffer full bit, BF, is set on the falling edge of the 8th SCL pulse.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the 9th SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte.

For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF and UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with the second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Note:	Following the Repeated START condition
	(step 7) in 10-bit mode, the user only
	needs to match the first 7-bit address. The
	user does not update the SSPADD for the
	second half of the address.

9.2.1.2 Slave Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set. This is an error condition due to user firmware.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSPBUF is updated.

9.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I^2C module is in the IDLE state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG, while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared and the baud rate generator will not be reloaded, leaving the SDA pin held low. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated START condition occurs if:
 - SDA is sampled low when SCL goes from low to high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode), or eight bits of data (7-bit mode).

9.2.10.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 9-13: REPEAT START CONDITION WAVEFORM

TABLE 13-2: PIC16F87X INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	9	Status	Notos
		Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REGIST		ATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	ONS					r
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:	Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present								

 When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

PIC16F87X

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.					

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$						
Status Affected:	None						
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow PD \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.					

RRF	Rotate Right f through Carry					
Syntax:	[<i>label</i>] RRF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	See description below					
Status Affected:	С					
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.					
	C Register f					

SUBLW	Subtract W from Literal							
Syntax:	[<i>label</i>] SUBLW k							
Operands:	$0 \leq k \leq 255$							
Operation:	$k - (W) \to (W)$							
Status Affected:	C, DC, Z							
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.							

SUBWF	Subtract W from f						
Syntax:	[label] SUBWF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(f) - (W) \rightarrow (destination)						
Status Affected:	C, DC, Z						
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.						

15.0 ELECTRICAL CHARACTERISTICS

Absolute	Maximum	Ratings	t

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14 V
Voltage on RA4 with respect to Vss	0 to +8.5 V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Ioκ (Vo < 0 or Vo > VoD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD -	VOH) x IOH} + Σ (VOI x IOL)
2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80	mA, may cause latch-up.

- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873/876 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

DC CHA	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic Min Typ† Max Units				Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083		OSC2/CLKOUT (RC osc config)	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Voн	Output High Voltage			•		
D090		I/O ports ⁽³⁾	Vdd - 0.7		—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	Юн = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D150*	Vod	Open-Drain High Voltage			8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	_		15	рF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (RC mode)	—	—	50	pF	
D102	Св	SCL, SDA (I ² C mode)	_	_	400	pF	
	_	Data EEPROM Memory			r		
D120	ED	Endurance	100K	—		E/W	25°C at 5V
D121	VDRW	VDD for read/write	VMIN	_	5.5	V	Using EECON to read/write VMIN = min. operating voltage
D122	TDEW	Erase/write cycle time	_	4	8	ms	
B 4 6 6	_	Program FLASH Memory	1000		1		
D130	EP		1000	_		E/VV	25°C at 5V
D131	VPR	VDD for read	VMIN	_	5.5	V	VMIN = min operating voltage
D132A		י טט וטר erase/write	VMIN	_	5.5	V	VMIN = min. operating voltage
D133	TPEW	Erase/Write cycle time	—	4	8	ms	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	10	MHz	HS osc mode (-10)
			4	—	20	MHz	HS osc mode (-20)
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	—	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100		_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 15-4:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	Ι		ns	parameter 42
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	Ι		ns	
				With Prescaler	Greater of:	—	_	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
			-		N				
45*	Tt1H	T1CKI High Time	Synchronous, Pro	escaler = 1	0.5TCY + 20	—		ns	Must also meet
			Synchronous,	Standard(F)	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25	—	—	ns	
			Asynchronous	Standard(F)	30	—	—	ns	
				Extended(LF)	50			ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Pro	escaler = 1	0.5Tcy + 20		_	ns	Must also meet
			Synchronous,	Standard(F)	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25			ns	
			Asynchronous	Standard(F)	30	Ι		ns	
				Extended(LF)	50	-	_	ns	
47*	Tt1P	T1CKI input	Synchronous	Standard(F)	Greater of:			ns	N = prescale value
		period			30 or <u>Tcy + 40</u>				(1, 2, 4, 8)
					N				
				Extended(LF)	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	Standard(F)	60	_	_	ns	
	E.A			Extended(LF)	100		—	ns	
	Ft1	Timer1 oscillator in	input frequency range		DC	-	200	kHz	
10		(oscillator enabled	by setting bit 11C	07		77.0 4	L		
48	ICKEZtmr1	Delay from externa	al clock edge to th	ner increment	210SC	—	/ IOSC	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-17: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD=3V, -40°C TO 125°C)

PWM Mode61
Block Diagram61
Duty Cycle61
Example Frequencies/Resolutions (Table)62
PWM Period61
Special Event Trigger and A/D Conversions60
CCP. See Capture/Compare/PWM
CCP1CON
CCP2CON
CCPR1H Register 15, 17, 57
CCPR1L Register 17, 57
CCPR2H Register
CCPR2L Register 15, 17
CCPxM0 bit58
CCPxM1 bit58
CCPxM2 bit58
CCPxM3 bit58
CCPxX bit
CCPxY bit58
CKE
CKP67
Clock Polarity Select bit, CKP67
Code Examples
Call of a Subroutine in Page 1 from Page 026
EEPROM Data Read43
EEPROM Data Write43
FLASH Program Read44
FLASH Program Write45
Indirect Addressing27
Initializing PORTA29
Saving STATUS, W and PCLATH Registers
Code Protected Operation
Data EEPROM and FLASH Program Memory45
Code Protection
Computed GOTO
Configuration Bits119
Configuration Word120
Conversion Considerations

D

D/Ā	66
Data EEPROM	41
Associated Registers	46
Code Protection	45
Reading	43
Special Functions Registers	41
Spurious Write Protection	45
Write Verify	45
Writing to	43
Data Memory	12
Bank Select (RP1:RP0 Bits)	12, 18
General Purpose Registers	12
Register File Map	13, 14
Special Function Registers	15
Data/Address bit, D/A	66
DC and AC Characteristics Graphs and Tables .	
DC Characteristics	
Commercial and Industrial	152–156
Extended	157–160
Development Support	143
Device Differences	
Device Overview	5
Direct Addressing	27

Е

Electrical Characteristics	149
Errata	4
External Clock Input (RA4/TUCKI). See Timeru	
External Interrupt Input (RB0/INT). See Interrupt Source	es
F	
Firmware Instructions	135
ELASH Program Memory	/1

FLASH Program Memory	41
Associated Registers	46
Code Protection	45
Configuration Bits and Read/Write State	46
Reading	44
Special Function Registers	41
Spurious Write Protection	45
Write Protection	46
Write Verify	45
Writing to	44
FSR Register15,	16, 17, 27
-	

G

General Call Address Sequence	76
General Call Address Support	76
General Call Enable bit	68

L

-	
I/O Ports	29
I ² C	73
I ² C Bus	
Connection Considerations	94
Sample Device Configuration	94
I ² C Master Mode Reception	84
I ² C Master Mode Repeated START Condition	81
I ² C Mode Selection	73
I ² C Module	
Acknowledge Sequence Timing	86
Addressing	74
Associated Registers	77
Baud Rate Generator	79
Block Diagram	78
BRG Block Diagram	79
BRG Reset due to SDA Collision	91
BRG Timing	80
Bus Arbitration	89
Asknowledge	69 00
Acknowledge	69 02
Repeated START Condition Timing	92
	02
(Case I) Repeated START Condition Timing	92
(Case2)	92
START Condition	 90
START Condition Timing	90.91
STOP Condition	93
STOP Condition Timing (Case1)	93
STOP Condition Timing (Case2)	93
Transmit Timing	89
Bus Collision Timing	89
Clock Arbitration	88
Clock Arbitration Timing (Master Transmit)	88
Conditions to not give ACK Pulse	74
General Call Address Support	76
Master Mode	78
Master Mode 7-bit Reception Timing	85
Master Mode Block Diagram	78

PIC16F87X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X <u>/XX XXX</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F877 - 20/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301. b) PIC16I E876 - 04/SO = Industrial temp. SOIC
Device	PIC16F87X ⁽¹⁾ , PIC16F87XT ⁽²⁾ ; VDD range 4.0V to 5.5V PIC16LF87X ⁽¹⁾ , PIC16LF87XT ⁽²⁾ ; VDD range 2.0V to 5.5V	 c) PIC16F877 - 10E/P = Extended VDD limits. c) PIC16F877 - 10E/P = Extended temp., PDIP package, 10MHz, normal VDD limits.
Frequency Range	04 = 4 MHz 10 = 10 MHz 20 = 20 MHz	
Temperature Range	blank = 0° C to +70°C (Commercial) I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package	PQ = MQFP (Metric PQFP) PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny plastic DIP P = PDIP L = PLCC	Note 1: F = CMOS FLASH LF = Low Power CMOS FLASH 2: T = in tape and reel - SOIC, PLCC, MQFP, TQFP packages only.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.