

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K × 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PIC [®] MCU Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 instructions	35 instructions	35 instructions	35 instructions

FIC	GU	RF	2-3	-
			<u> </u>	

PIC16F877/876 REGISTER FILE MAP

	File Address	ŀ	File Address		File Address		Addre
Indirect addr.(*)) _{00h}	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181
PCL	02h	PCI	82h	PCL	102h	PCI	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	8/h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h	TORTE	107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
	09h	TRISE ⁽¹⁾	80h		109h		189
PCLATH	0Ah	PCLATH	84h	PCLATH	10Ah	PCLATH	184
	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18F
PIR1	0Ch	PIF1	8Ch	FEDATA	10Ch	EECON1	180
PIR2	0Dh	PIF2	8Dh	EEADR	10Dh	EECON2	180
TMR1I	0Eh	PCON	8Eh	FEDATH	10Eh	Reserved ⁽²⁾	185
TMR1H	0Fh	10011	8Fh	EEADRH	10Fh	Reserved ⁽²⁾	185
T1CON	10h		Q0h		110h	110001100	190
TMR2	11h	SSPCON2	01h		111h		191
T2CON	12h	PR2	97h		112h		192
SSPBUE	13h	SSPADD	9211 93h		113h		193
SSPCON	14h	SSPSTAT	9311 97h		114h		194
CCPR1I	15h	00101/11	95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose	118h	Purpose	198
TXREG	19h	SPBRG	aah	16 Bytes	119h	16 Bytes	190
RCREG	1Ah	OF BIXO	۹۵h	10 Dytes	11Ah	TO Dytoo	194
CCPR2I	1Bh		9Rh		11Bh		19F
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		190
	1Eh	ADRESI	9Dh QEh		11Eh		195
	1Fh		QEh		11Fh		19E
ADCONU	20h	ADCONT	A0h		120h		1A0
General Purpose Register 96 Bvtes		General Purpose Register 80 Bytes	FFh	General Purpose Register 80 Bytes	16Eb	General Purpose Register 80 Bytes	1EF
	7Fh	accesses 70h-7Fh	F0h	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F0 1FF
D 1 2		Bank 1		Bank 2		Bank 3	

2: These registers are reserved, maintain these registers clear.

NOTES:

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2	bit2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input.

TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA			RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA		—	PORTA	PORTA Data Direction Register						11 1111
9Fh	ADCON1	ADFM	—			PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes, where PCFG3:PCFG0 = 0100,0101, 011x, 1101, 1110, 1111.

NOTES:

PIC16F87X

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0			
	bit 7							bit 0			
bit 7-6	Unimplem	ented: Rea	d as '0'								
bit 5-4	CCPxX:CCPxY: PWM Least Significant bits										
	<u>Capture mode</u> : Unused										
	<u>Compare mode:</u> Unused <u>PWM mode:</u> These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.										
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits							
	0000 = Ca	pture/Comp	are/PWM d	isabled (rese	ets CCPx mod	dule)					
	0100 = Ca	pture mode	, every fallir	ig edge							
	0101 = Ca	pture mode	, every risin	g edge							
	0110 = Ca	nture mode	every 4011	rising edge							
	1000 = Co	mpare mod	e, set outpu	t on match (CCPxIF bit is	set)					
	1001 = Co	mpare mod	e, clear outp	out on match	(CCPxIF bit	is set)					
	1010 = Co r una	mpare mode	e, generate	software inte	errupt on mate	ch (CCPxIF	bit is set, C	CPx pin is			
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)										
	11xx = PWM mode										
								1			
	Legend:										
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented b	oit, read as	0'			

'1' = Bit is set

- n = Value at POR

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

x = Bit is unknown

'0' = Bit is cleared

FIGURE 9-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8 bits are shifted into SSPSR and the address is compared against SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 9-8).

FIGURE 9-8: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

9.2.9 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the START condition, and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware. The baud rate generator is suspended, leaving the SDA line held low, and the START condition is complete.

Note: If, at the beginning of START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag (BCLIF) is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

9.2.9.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

FIGURE 9-12: FIRST START BIT TIMING

PIC16F87X

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x					
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D					
	bit 7							bit 0					
bit 7	SPEN: Ser	ial Port Ena	ble bit										
	1 = Serial p	oort enabled	(configures	RC7/RX/D	I and RC6/I	X/CK pins a	is serial port	t pins)					
hit 6		0 = 3 Genar point disabled RX9 : 9-bit Receive Enable bit											
DIL U	1 = Selects	9-bit recept	tion										
	0 = Selects	s 8-bit recept	tion										
bit 5	SREN: Sin	gle Receive	Enable bit										
	Asynchron	<u>ous mode:</u>											
	Don't care												
	Synchrono	<u>us mode - m</u> a aingla raa	<u>naster:</u>										
	1 = Enable 0 = Disable	s single rece	eive										
	This bit is c	cleared after	reception is	s complete.									
	<u>Synchrono</u>	us mode - sl	lave:										
	Don't care	Don't care											
bit 4	CREN: Co	ntinuous Re	ceive Enabl	e bit									
	Asynchron	<u>ous mode:</u>											
	1 = Enable 0 = Disable	s continuou: es continuou	s receive										
	Synchrono	us mode:											
	1 = Enable	s continuous	s receive un	til enable bi	t CREN is cle	eared (CRE	N overrides	SREN)					
	0 = Disable	es continuou	s receive										
bit 3	ADDEN: A	ddress Dete	ect Enable b	it									
	Asynchron	<u>ous mode 9-</u>	<u>-bit (RX9 = ´</u>	<u>1):</u> ablasinterru	امحما اممر	of the reaction	a huffaruuh						
	$\perp = \text{Enable}$ RSR<8	s address de l> is set	etection, ena	ables Interru	ipt and load	of the receiv	e butter wh	en					
	0 = Disable	es address d	letection, all	bytes are re	eceived, and	ninth bit ca	n be used a	s parity bit					
bit 2	FERR: Fra	ming Error b	oit										
	1 = Framin	g error (can	be updated	by reading	RCREG reg	ister and rec	ceive next va	alid byte)					
	0 = No frar	ning error											
bit 1		errun Error	bit	hu olooring l									
	1 = Overru	rrun error	be cleared	by cleaning i									
bit 0	RX9D: 9th	bit of Recei	ived Data (c	an be parity	bit but mus	t be calcula	ted by user i	firmware)					
2						. se calculu							
	Legend:												
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit. read as	'0'					

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

- n = Value at POR

x = Bit is unknown

10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
99h	SPBRG	Baud Rat	0000 0000	0000 0000							

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

When setting up an Asynchronous Transmission, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	insmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	SPBRG Baud Rate Generator Register									0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

12.2 **Oscillator Configurations**

12.2.1 **OSCILLATOR TYPES**

The PIC16F87X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- Crystal/Resonator • XT
- High Speed Crystal/Resonator HS
- RC Resistor/Capacitor

12.2.2 **CRYSTAL OSCILLATOR/CERAMIC** RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F87X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 12-2).

FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP **OSC CONFIGURATION)**

3: RF varies with the crystal chosen.

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC **CONFIGURATION**) OSC1 Clock from Ext. System PIC16F87X OSC2 Open

TABLE 12-1: CERAMIC RESONATORS

Ranges Tested:									
Mode	Freq.	OSC1	OSC2						
XT	455 kHz	68 - 100 pF	68 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	10 - 68 pF	10 - 68 pF						
	16.0 MHz	10 - 22 pF	10 - 22 pF						

These values are for design guidance only. See notes following Table 12-2.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	$\pm 0.3\%$						
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$						
4.0 MHz	Murata Erie CSA4.00MG	$\pm 0.5\%$						
8.0 MHz	Murata Erie CSA8.00MT	$\pm 0.5\%$						
16.0 MHz	Murata Erie CSA16.00MX	$\pm 0.5\%$						
All resonators used did not have built-in capacitors.								

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	10	MHz	HS osc mode (-10)
			4	—	20	MHz	HS osc mode (-20)
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
				_	—	μS	LP osc mode
	Oscillator Period		250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	—	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100		_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 15-11: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym		Characteristic					Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time		Standard(F)	10	_	_	ns	
			With Prescaler	Extended(LF)	20	_		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	l	ns	
	input high time			Standard(F)	10	_		ns	
			With Prescaler	Extended(LF)	20	-		ns	
52*	TccP	CCP1 and CCP2 in	<u>3Tcy + 40</u> N			ns	N = prescale value (1, 4 or 16)		
53*	TccR	CCP1 and CCP2 c	output rise time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 of	output fall time	Standard(F)	_	10	25	ns	
				Extended(LF)	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874/877 ONLY)

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup ti	ata in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup time)				ns ns	Extended Range Only
63*	TwrH2dtl	$\overline{\text{WR}}^{\uparrow}$ or $\overline{\text{CS}}^{\uparrow}$ to data–in invalid (hold time)	Standard(F)	20	_	—	ns	
			Extended(LF)	35	—		ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		_		80 90	ns ns	Extended Range Only
65	TrdH2dtI	RD↑ or CS↓ to data–out invalid		10	_	30	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Parameter No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
90	Tsu:sta	START condition	100 kHz mode	4700	—	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	—	_		START condition
91	Thd:sta	START condition	100 kHz mode	4000	—		ns	After this period, the first clock
		Hold time	400 kHz mode	600	—			pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	—		ns	
		Setup time	400 kHz mode	600		_		
93	Thd:sto	STOP condition	100 kHz mode	4000		_	ns	
		Hold time	400 kHz mode	600	—	_		

TABLE 15-8:	I ² C BUS START/STOP BITS REQUIREMENTS
-------------	---

FIGURE 15-18: I²C BUS DATA TIMING

TABLE 15-12:PIC16F87X-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)PIC16F87X-10 (EXTENDED)PIC16F87X-20 (COMMERCIAL, INDUSTRIAL)PIC16LF87X-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characterist	Characteristic		Тур†	Max	Units	Conditions
A01	NR	Resolution	—	—	10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A03	EIL	Integral linearity error	—	_	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$	
A04	Edl	Differential linearity err	or	—	—	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset error		—	—	< ± 2	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A07	Egn	Gain error		_	—	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	_	Monotonicity ⁽³⁾		—	guaranteed	_	_	$V\text{SS} \leq V\text{AIN} \leq V\text{REF}$
A20	Vref	Reference voltage (VREF+ - VREF-)		2.0	—	Vdd + 0.3	V	Absolute minimum electrical spec. To ensure 10-bit accuracy.
A21	VREF+	Reference voltage Higl	h	AVDD - 2.5V		AVDD + 0.3V	V	
A22	Vref-	Reference voltage low		AVss - 0.3V		VREF+ - 2.0V	V	
A25	VAIN	Analog input voltage		Vss - 0.3 V	—	Vref + 0.3 V	V	
A30	Zain	Recommended impeda analog voltage source	ance of	_	—	10.0	kΩ	
A40	IAD	A/D conversion	Standard	—	220	_	μΑ	Average current consumption
		current (VDD)	Extended	—	90	_	μΑ	when A/D is on (Note 1)
A50	IREF	VREF input current (No	te 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 11.1.
				—	—	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented is **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

FIGURE 16-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE)

17.0 PACKAGING INFORMATION

17.1 Package Marking Information

28-Lead PDIP (Skinny DIP)

Example

28-Lead SOIC

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS			
Dimension I	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Notes: