

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can be found in Section 4.0 of this data sheet.					
2.2.4						

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical r	egister)	0000 0000	27
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	47
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
04h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27
05h	PORTA	_	_	PORTA Da	ta Latch whe	n written: POI	RTA pins whe	n read		0x 0000	29
06h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	31
07h	PORTC	PORTC D	ata Latch wh	en written: F	ORTC pins v	vhen read				xxxx xxxx	33
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				xxxx xxxx	35
09h ⁽⁴⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	36
0Ah ^(1,3)	PCLATH	_			Write Buffer	for the upper	r 5 bits of the I	Program Cou	unter	0 0000	26
0Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22
0Dh	PIR2	—	(5)	_	EEIF	BCLIF	—		CCP2IF	-r-0 00	24
0Eh	TMR1L	Holding re	gister for the	Least Signif	ficant Byte of	the 16-bit TM	IR1 Register			xxxx xxxx	52
0Fh	TMR1H	Holding re	gister for the	Most Signifi	cant Byte of t	the 16-bit TM	R1 Register			xxxx xxxx	52
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51
11h	TMR2	Timer2 Mo	dule Registe	er						0000 0000	55
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transm	it Register				xxxx xxxx	70, 73
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					XXXX XXXX	57
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					XXXX XXXX	57
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96
19h	TXREG	USART Tr	USART Transmit Data Register						0000 0000	99	
1Ah	RCREG	USART Re	USART Receive Data Register							0000 0000	101
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register2 (LSB)							xxxx xxxx	57
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	57
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58
1Eh	ADRESH	A/D Result	t Register Hi	gh Byte						xxxx xxxx	116
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111

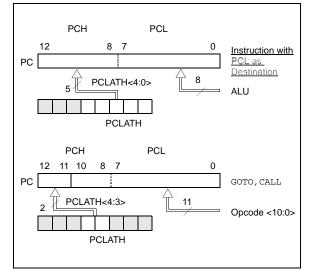
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.


4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16F87X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- **Note 1:** There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

All PIC16F87X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the return instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH register are
	unchanged after a RETURN or RETFIE
	instruction is executed. The user must
	rewrite the contents of the PCLATH regis-
	ter for any subsequent subroutine calls or
	GOTO instructions.

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG 0x500 BCF PCLATH,4						
	BSF PCLATH, 3	;Select page 1 ;(800h-FFFh)					
	CALL SUB1_P1 :	;Call subroutine in ;page 1 (800h-FFFh)					
SUB1 P1	ORG 0x900	;page 1 (800h-FFFh)					
2021_11	:	;called subroutine ;page 1 (800h-FFFh)					
	: RETURN	;return to ;Call subroutine ;in page 0 ;(000h-7FFh)					

TABLE 3-5:PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/ Compare2 output/PWM2 output.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data.

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	PORTC Data Direction Register 1111 1111				1111 1111	1111 1111			

Legend: x = unknown, u = unchanged

At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) Since the microcontroller does not execute instructions during the write cycle, the firmware does not necessarily have to check either EEIF, or WR, to determine if the write had finished.

EXAMPLE 4-4: FLASH PROGRAM WRITE

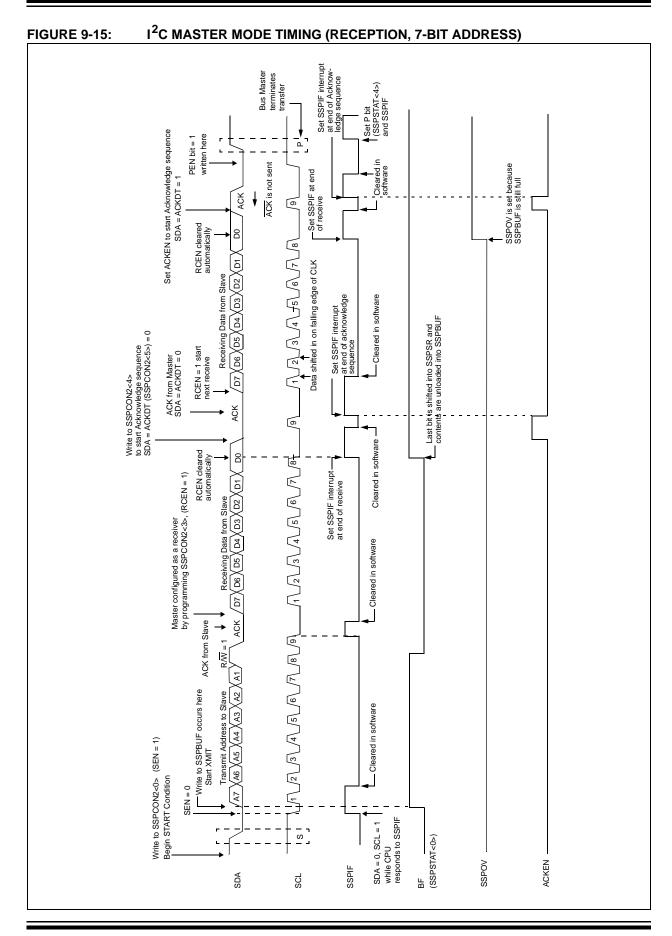
BSF	STATUS, RI	P1 ;
BCF		P0 ;Bank 2
MOVF	ADDRL, W	;Write address
MOVWF	EEADR	; of desired
MOVF	ADDRH, W	;program memory
MOVWF	EEADRH	;location
MOVF	VALUEL, W	;Write value to
MOVWF	EEDATA	;program at
MOVF	VALUEH, W	;desired memory
MOVWF	EEDATH	;location
BSF	STATUS, R	P0 ;Bank 3
BSF	EECON1, EE	PGD ;Point to Program memory
BSF	EECON1, WI	REN ;Enable writes
		;Only disable interrupts
BCF	INTCON, G	IE ; if already enabled,
		;otherwise discard
MOVLW	0x55	;Write 55h to
MOVWF	EECON2	; EECON2
MOVLW	0xAA	;Write AAh to
MOVWF	EECON2	; EECON2
BSF	EECON1, W	R ;Start write operation
NOP		;Two NOPs to allow micro
NOP		;to setup for write
		;Only enable interrupts
BSF	INTCON, G	IE ;if using interrupts,
		;otherwise discard
BCF	EECON1, W	REN ;Disable writes

4.6 Write Verify

The PIC16F87X devices do not automatically verify the value written during a write operation. Depending on the application, good programming practice may dictate that the value written to memory be verified against the original value. This should be used in applications where excessive writes can stress bits near the specified endurance limits.

4.7 Protection Against Spurious Writes

There are conditions when the device may not want to write to the EEPROM data memory or FLASH program memory. To protect against these spurious write conditions, various mechanisms have been built into the PIC16F87X devices. On power-up, the WREN bit is cleared and the Power-up Timer (if enabled) prevents writes.


The write initiate sequence, and the WREN bit together, help prevent any accidental writes during brown-out, power glitches, or firmware malfunction.

4.8 Operation While Code Protected

The PIC16F87X devices have two code protect mechanisms, one bit for EEPROM data memory and two bits for FLASH program memory. Data can be read and written to the EEPROM data memory, regardless of the state of the code protection bit, CPD. When code protection is enabled and CPD cleared, external access via ICSP is disabled, regardless of the state of the program memory code protect bits. This prevents the contents of EEPROM data memory from being read out of the device.

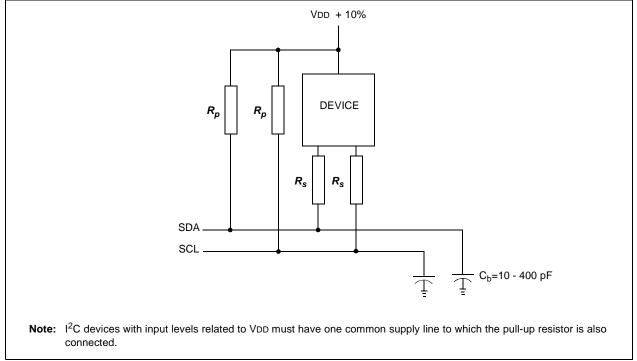
The state of the program memory code protect bits, CP0 and CP1, do not affect the execution of instructions out of program memory. The PIC16F87X devices can always read the values in program memory, regardless of the state of the code protect bits. However, the state of the code protect bits and the WRT bit will have different effects on writing to program memory. Table 4-1 shows the effect of the code protect bits and the WRT bit on program memory.

Once code protection has been enabled for either EEPROM data memory or FLASH program memory, only a full erase of the entire device will disable code protection.

9.3 Connection Considerations for I²C Bus

For standard-mode $I^{2}C$ bus devices, the values of resistors R_{p} and R_{s} in Figure 9-27 depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current)


The supply voltage limits the minimum value of resistor R_{p} , due to the specified minimum sink current of 3 mA at VOL max = 0.4V, for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VOL max = 0.4V at 3 mA, R_p min = $(5.5-0.4)/0.003 = 1.7 \text{ k}\Omega$. VDD as a function of R_p is shown in Figure 9-27. The desired noise margin of 0.1VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 9-27).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
	(ADCS1:ADCS0 = 11). To allow the con-
	version to occur during SLEEP, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	V <u>alue o</u> n MCLR, WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
1Eh	ADRESH	A/D Resul	ult Register High Byte						xxxx xxxx	uuuu uuuu	
9Eh	ADRESL	A/D Resul	t Register	Low Byt	e					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	—	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA	—	—	PORTA	Data Directio	n Register				11 1111	11 1111
05h	PORTA		—	PORTA Data Latch when written: PORTA pins when read				0x 0000	0u 0000		
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ta Directio	n bits	0000 -111	0000 -111
09h ⁽¹⁾	PORTE	—	—		—	—	RE2	RE1	RE0	xxx	uuu

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

12.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The MCLR pin must be at a logic high level (VIHMC).

12.13.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or peripheral interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write (PIC16F874/877 only).
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP Capture mode interrupt.
- 4. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 5. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 7. USART RX or TX (Synchronous Slave mode).
- 8. A/D conversion (when A/D clock source is RC).
- 9. EEPROM write operation completion

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

PIC16F87X

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.					

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
Status Affected:	None				

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \le f \le 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$						
Status Affected:	None						
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						

RLF	Rotate Left f through Carry							
Syntax:	[<i>label</i>] RLF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.							

SLEEP

Syntax:	[label] SLEEP				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$				
Status Affected:	TO, PD				
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.				

RETURN	Return from Subroutine						
Syntax:	[label] RETURN						
Operands:	None						
Operation:	$TOS\toPC$						
Status Affected:	None						
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.						

RRF	Rotate Right f through Carry							
Syntax:	[<i>label</i>] RRF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.							
	C Register f							

SUBLW	Subtract W from Literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \text{ - } (W) \rightarrow (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.					

SUBWF	Subtract W from f					
Syntax:	[<i>label</i>] SUBWF f,d					
Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					

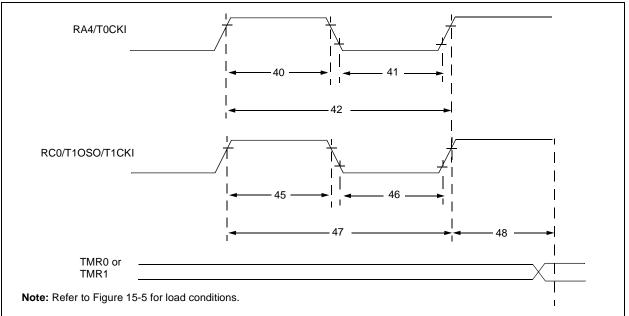
PIC16F87X

NOTES:

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

PIC16LF873/874/876/877-04 (Commercial, Industrial)		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic/ Device	Min	Min Typ† Max Units Conditions			
	Vdd	Supply Voltage					
D001		16LF87X	2.0		5.5	V	LP, XT, RC osc configuration (DC to 4 MHz)
D001		16F87X	4.0	_	5.5	V	LP, XT, RC osc configuration
D001A			4.5		5.5	V	HS osc configuration
			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V	
D003	Vpor	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled

Legend: Rows with standard voltage device data only are shaded for improved readability.


- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

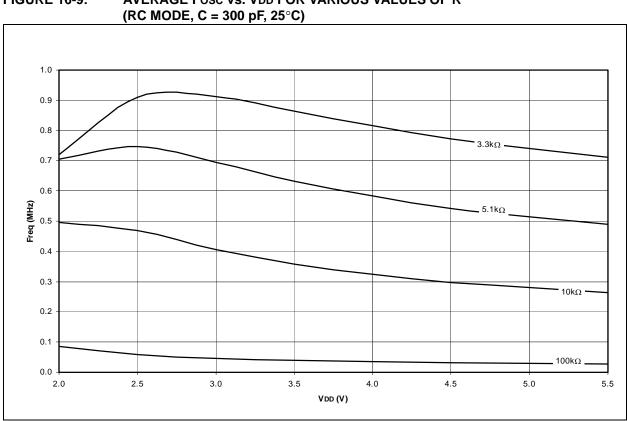
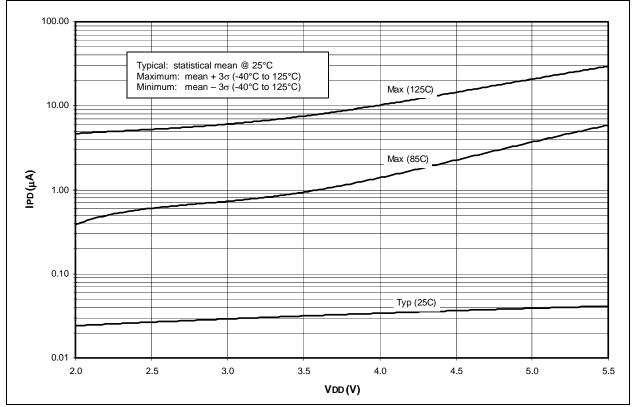


TABLE 15-4:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5TCY + 20	_	_	ns	Must also meet	
				With Prescaler	10	_	_	ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet	
				With Prescaler	10	_	_	ns	parameter 42	
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	_	_	ns		
				With Prescaler	Greater of:	—	—	ns	N = prescale value	
					20 or <u>TCY + 40</u>				(2, 4,, 256)	
					N					
45*	Tt1H	T1CKI High Time	Synchronous, Pr	escaler = 1	0.5Tcy + 20	—	I	-	Must also meet	
			Synchronous,	Standard(F)	15		I	ns	parameter 47	
			Prescaler = $2,4,8$	Extended(LF)	25		_	ns		
			Asynchronous	Standard(F)	30		_	ns		
				Extended(LF)	50	_	-	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Pr	escaler = 1	0.5TCY + 20	—	—	ns	Must also meet	
			Synchronous,	Standard(F)	15		_	ns	parameter 47	
			Prescaler = 2,4,8	Extended(LF)	25	—		ns		
			Asynchronous	Standard(F)	30	—		ns		
				Extended(LF)	50	—		ns		
47*	Tt1P	T1CKI input	Synchronous	Standard(F)	Greater of:	—	—	ns	N = prescale value	
		period			30 or <u>Tcy + 40</u>				(1, 2, 4, 8)	
					N					
				Extended(LF)	Greater of:				N = prescale value	
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)	
				-	N					
			Asynchronous	Standard(F)	60		_	ns		
				Extended(LF)	100	—	—	ns		
	Ft1	Timer1 oscillator ir (oscillator enabled		0	DC	-	200	kHz		
48	TCKEZtmr1	Delay from externa	2Tosc	—	7Tosc	_				


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 16-9: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R

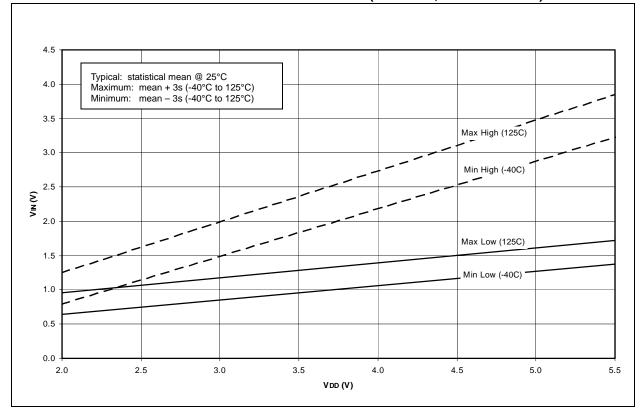
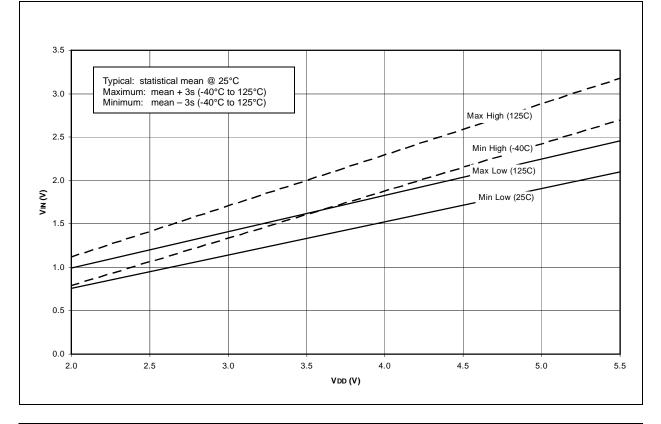
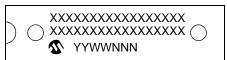



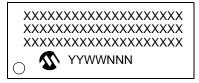
FIGURE 16-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO 125°C)



© 1998-2013 Microchip Technology Inc.

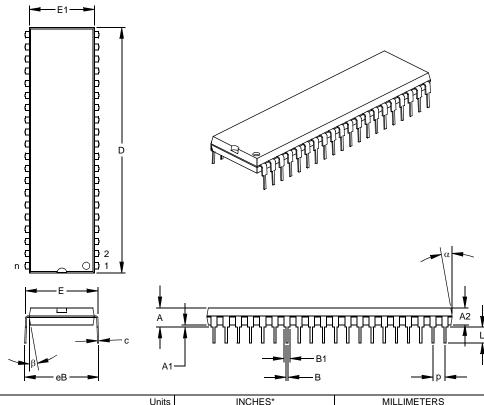
17.0 PACKAGING INFORMATION

17.1 Package Marking Information


28-Lead PDIP (Skinny DIP)

Example

28-Lead SOIC


Example

Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom β		5	10	15	5	10	15
* 0 / 11' D /							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

W

Wake-up from SLEEP 119, 132
Interrupts 125, 126
MCLR Reset126
Timing Diagram133
WDT Reset 126
Watchdog Timer (WDT) 119, 131
Block Diagram131
Enable (WDTE Bit)131
Postscaler. See Postscaler, WDT
Programming Considerations131
RC Oscillator131
Time-out Period131
WDT Reset, Normal Operation 123, 125, 126
WDT Reset, SLEEP 123, 125, 126
Waveform for General Call Address Sequence
WCOL
WCOL Status Flag80
Write Collision Detect bit, WCOL67
Write Verify
Data EEPROM and FLASH Program Memory45
WWW, On-Line Support4

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events