

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PIC [®] MCU Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 instructions	35 instructions	35 instructions	35 instructions

		-		-			\	- /		1			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:		
Bank 2	Bank 2												
100h ⁽³⁾	INDF	Addressin	g this locatio	egister)	0000 0000	27							
101h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	47		
102h ⁽³⁾	PCL	Program C	Counter's (PC	C) Least Sigr	nificant Byte					0000 0000	26		
103h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18		
104h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27		
105h	—	Unimplem	ented							—			
106h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	31		
107h	—	Unimplem	ented							—	—		
108h	—	Unimplem	ented							—	—		
109h	—	Unimplem	ented							—	_		
10Ah ^(1,3)	PCLATH	—	_	_	Write Buffer	for the upper	r 5 bits of the I	Program Cou	Inter	0 0000	26		
10Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20		
10Ch	EEDATA	EEPROM	EEPROM Data Register Low Byte										
10Dh	EEADR	EEPROM	Address Reo	gister Low B	yte					xxxx xxxx	41		
10Eh	EEDATH	—	_	EEPROM [Data Register	High Byte				XXXX XXXX	41		
10Fh	EEADRH	—	—	—	EEPROM A	ddress Regis	ter High Byte			XXXX XXXX	41		
Bank 3	-												
180h ⁽³⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical r	egister)	0000 0000	27		
181h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	19		
182h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signi	ficant Byte				-	0000 0000	26		
183h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18		
184h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27		
185h	—	Unimplem	ented							—	—		
186h	TRISB	PORTB Da	ata Direction	Register						1111 1111	31		
187h	—	Unimplem	ented							—	—		
188h	—	Unimplem	ented							—	—		
189h	—	Unimplem	ented							—	—		
18Ah ^(1,3)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter							0 0000	26			
18Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20		
18Ch	EECON1	EEPGD	_	_	_	WRERR	WREN	WR	RD	x x000	41, 42		
18Dh	EECON2	EEPROM	Control Regi	ster2 (not a	physical regis	ster)					41		
18Eh	—	Reserved	Reserved maintain clear										
18Fh	—	Reserved maintain clear									—		

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)
------------	-----------------------------------	-------------

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose

contents are transferred to the upper byte of the program counter. 2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.2.2.2 OPTION_REG Register

The OPTION_REG Register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for
	the TMR0 register, assign the prescaler to
	the Watchdog Timer.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 **RBPU:** PORTB Pull-up Enable bit bit 7 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values bit 6 **INTEDG:** Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 1:1 1:2 1:2 001 1:4 010 1:4 1:8 011 1:8 1:16 1:16 100 1:32 101 1:32 1:64 110 1:128 1:64 111 1:128 1:256 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset, or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POI BO	on: R, R	Valu all c RES	e on other ETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2 Timer2 Module's Register										0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2 Timer2 Period Register									1111	1111	1111	1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

8.0 CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Both the CCP1 and CCP2 modules are identical in operation, with the exception being the operation of the special event trigger. Table 8-1 and Table 8-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 Module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match and will reset Timer1.

CCP2 Module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. The special event trigger is generated by a compare match and will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023) and in application note AN594, "Using the CCP Modules" (DS00594).

TABLE 8-1: CCP MODE - TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 8-2:INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt)
PWM	Capture	None
PWM	Compare	None

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

The type of event is configured by control bits CCP1M3:CCP1M0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	move value and CCP \ensuremath{ON}
MOVWF	CCP1CON	;	Load CCP1CON with this
		;	value

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h) REGISTER 9-1: R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP D/A Р R/W BF CKE S UA bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4) SPI mode: For CKP = 0 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK For CKP = 1 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK In I²C Master or Slave mode: 1 = Input levels conform to SMBus spec 0 = Input levels conform to I²C specs **D/A**: Data/Address bit (I²C mode only) bit 5 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address bit 4 P: STOP bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last bit 2 **R/W**: Read/Write bit Information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit. In I²C Slave mode: 1 = Read0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit BF: Buffer Full Status bit Receive (SPI and I²C modes): 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only): 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

9.2.18.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data'0'). If, however, SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs, because no two masters can assert SDA at exactly the same time.

If, however, SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data'1' during the Repeated START condition.

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low, the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete (Figure 9-23).

FIGURE 9-23: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 9-24: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

9.3 Connection Considerations for I²C Bus

For standard-mode $I^{2}C$ bus devices, the values of resistors R_{p} and R_{s} in Figure 9-27 depend on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current)

The supply voltage limits the minimum value of resistor R_{p} , due to the specified minimum sink current of 3 mA at VOL max = 0.4V, for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VOL max = 0.4V at 3 mA, R_p min = $(5.5-0.4)/0.003 = 1.7 \text{ k}\Omega$. VDD as a function of R_p is shown in Figure 9-27. The desired noise margin of 0.1VDD for the low level limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 9-27).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

11.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next

FIGURE 11-3: A/D CONVERSION TAD CYCLES

acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-4: A/D RESULT JUSTIFICATION

PIC16F87X

FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-8: SLOW RISE TIME (MCLR TIED TO VDD)

TABLE 13-2: PIC16F87X INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode)	Status	Neter				
		Description		MSb			LSb	Affected	Notes				
	BYTE-ORIENTED FILE REGISTER OPERATIONS												
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2				
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2				
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2				
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z					
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2				
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2				
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3				
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2				
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3				
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2				
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2				
MOVWF	f	Move W to f	1	00	0000	lfff	ffff						
NOP	-	No Operation	1	00	0000	0xx0	0000						
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2				
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2				
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2				
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2				
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2				
		BIT-ORIENTED FILE REGIST		ATION	IS								
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2				
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2				
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3				
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3				
		LITERAL AND CONTROL	OPERAT	IONS					r				
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z					
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z					
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD					
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk						
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z					
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk						
RETFIE	-	Return from interrupt	2	00	0000	0000	1001						
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk						
RETURN	-	Return from Subroutine	2	00	0000	0000	1000						
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD					
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z					
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z					
Note 1:	When an I/	O register is modified as a function of itself (e.g.,	MOVF POP	RTB, 1	1), the v	alue use	ed will b	e that value	present				

 When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

PIC16LF8 (Comme	73/874/87 ercial, Indu	' 6/877-04 strial)	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)			Standa Operat	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions			
	Vdd	Supply Voltage								
D001		16LF87X	2.0	—	5.5	V	LP, XT, RC osc configuration (DC to 4 MHz)			
D001		16F87X	4.0	_	5.5	V	LP, XT, RC osc configuration			
D001A			4.5		5.5	V	HS osc configuration			
			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	_	V				
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details			
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		—	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled			

Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

			Standard	Oper	ating Co	nditior	ns (unless otherwise stated)				
			Uperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
DC CHA	RACTER	RISTICS	$0^{\circ}C \le IA \le +70^{\circ}C$ for commercial								
			(Section 15.1)								
Daram				0.1)							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions				
	VIL	Input Low Voltage									
		I/O ports									
D030		with TTL buffer	Vss	—	0.15Vdd	V	For entire VDD range				
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$				
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V					
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V					
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)				
		Ports RC3 and RC4		—							
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range				
D034A		with SMBus	-0.5	—	0.6	V	for VDD = 4.5 to 5.5V				
	Vih	Input High Voltage									
		I/O ports									
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$				
D040A			0.25Vdd	—	Vdd	V	For entire VDD range				
			+ 0.8V								
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range				
D042		MCLR	0.8Vdd	—	Vdd	V					
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)				
D043		OSC1 (in RC mode)	0.9Vdd	—	Vdd	V					
		Ports RC3 and RC4									
D044		with Schmitt Trigger buffer	0.7Vdd	—	Vdd	V	For entire VDD range				
D044A		with SMBus	1.4	—	5.5	V	for $VDD = 4.5$ to $5.5V$				
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = VSS,				
	Lo.	(0, 0)					-40°C TO +85°C				
	IIL	Input Leakage Current ^(2, 3)									
D060		I/O ports	—	—	±1	μA	$Vss \leq VPIN \leq VDD,$				
							Pin at hi-impedance				
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \le VPIN \le VDD$				
D063		OSC1	—	—	±5	μA	$Vss \le VPIN \le VDD, XT, HS$				
	-						and LP osc configuration				

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

15.5 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	e letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase	e letters and their meanings:	1	
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 15-5: LOAD CONDITIONS

	TABLE 15-4:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--	-------------	---

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet
				With Prescaler	10	Ι		ns	parameter 42
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	Ι		ns	
				With Prescaler	Greater of:	—	_	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
			-		N				
45*	Tt1H	T1CKI High Time	Synchronous, Pro	escaler = 1	0.5TCY + 20	—		ns	Must also meet
			Synchronous,	Standard(F)	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25	—	—	ns	
			Asynchronous	Standard(F)	30	—	—	ns	
				Extended(LF)	50			ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Pro	escaler = 1	0.5Tcy + 20	-	_	ns	Must also meet
			Synchronous,	Standard(F)	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25			ns	
			Asynchronous	Standard(F)	30	Ι		ns	
				Extended(LF)	50	-	_	ns	
47*	Tt1P	T1CKI input	Synchronous	Standard(F)	Greater of:			ns	N = prescale value
		period			30 or <u>Tcy + 40</u>				(1, 2, 4, 8)
					N				
				Extended(LF)	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	Standard(F)	60			ns	
	E.A			Extended(LF)	100		—	ns	
	Ft1	Timer1 oscillator in	put frequency ran	ige	DC	-	200	kHz	
40		(oscillator enabled by setting bit T1OSCEN)		07		77.0 4			
48	TCKEZtmr1	Delay from externa	al clock edge to th	ner increment	210SC	—	/ IOSC	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16F87X

FIGURE 16-15: AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)

Package Marking Information (Cont'd)

44-Lead TQFP

Example

 \bigcirc

Example

 $\lambda \lambda$

PIC16F877-04/P

0112SAA

MICROCHIP

44-Lead MQFP

Example

44-Lead PLCC

Example

SPI	
Master Mode	70
Master Mode Timing	70
Serial Clock	
Serial Data In	
Serial Data Out	
Serial Peripheral Interface (SPI)	65
Slave Mode Timing	71
Slave Mode Timing Diagram	71
Slave Select	
SPI Clock	
SPI Mode	
SPI Clock Edge Select, CKE	
SPI Data Input Sample Phase Select, SMI	P66
SPI Mode	
Associated Registers	72
SPI Module	
Slave Mode	71
<u>SS</u>	
SSP	
Block Diagram (SPI Mode)	69
RA5/SS/AN4 Pin	7.8
RC3/SCK/SCL Pin	7 9
RC4/SDI/SDA Pin	7 9
RC5/SDO Pin	7 C
SPI Mode	
	73 74
SSPRIJE	70,73
SSPCON2	
SSDSD	
SSF I C SSB I ² C Operation	73
SSFTC Operation	
SSF Module	70
SPI Master Mode	70
SSPCONT Register	
SSP Overnow Detect bit, SSPOV	
SSPBUF Register	
SSPCON Register	15
SSPCON1	
SSPCON2 Register	
SSPEN	67
SSPIF	
SSPM3:SSPM0	67
SSPOV	
SSPSTAT	73
SSPSTAT Register	
Stack	
Overflows	
Underflow	
START bit (S)	66
START Condition Enable bit	68
STATUS Register	
C Bit	
DC Bit	18
IRP Bit	18
PD Bit	
<u>RP</u> 1:RP0 Bits	18
TO Bit	
Z Bit	
STOP bit (P)	66
STOP Condition Enable bit	68

Synchronous Serial Port Synchronous Serial Port Enable bit, SSPEN Synchronous Serial Port Interrupt Synchronous Serial Port Mode Select bits, SSPM3:SSPM0	. 65 . 67 . 22 . 67
т	
T1CKPS0 bit	. 51
T1CON Register	. 17 17 51
T1SYNC bit	. 51
T2CKPS1 bit	. 55 ′, 55
TAD	115
Time-Out Sequence	. 47
Associated Registers	. 49
Clock Source Edge Select (T0SE Bit)	. 19
Clock Source Select (TOCS Bit)	. 19
Interrupt	. 47
Overflow Enable (T0IE Bit)	. 20
Overflow Flag (T0IF Bit)20,	130
Overflow Interrupt	130
Prescaler RA4/TOCKI Pin, External Clock	. 48
TOCKI	48
WDT Prescaler Block Diagram	. 47
Timer1	. 51
Associated Registers	. 54
Asynchronous Counter Mode	. 53
Reading and Writing to	. 53
Counter Operation	. 52
Operation in Timer Mode	. 52
Öscillator	. 53
Capacitor Selection	. 53
Prescaler	. 54
RC0/T10S0/T1CKI Pin	7,9
RC1/1105I/CCP2 PIN Resetting of Timer1 Registers	7,9 54
Resetting Timer1 using a CCP Trigger Output	. 53
Synchronized Counter Mode	. 52
T1CON	. 51
T1CON Register	. 51
	. 53
Timer?	. 55
Associated Registers	. 56
Block Diagram	. 55
Output	. 56
Postscaler	. 55
Prescaler	. 55
Timing Diagrams	. 55
A/D Conversion	175
Acknowledge Sequence Timing	. 86
Baud Rate Generator with Clock Arbitration	. 80
BRG Reset Due to SDA Collision	. 91
Brown-out Keset	164
START Condition Timina	. 90