

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f876t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

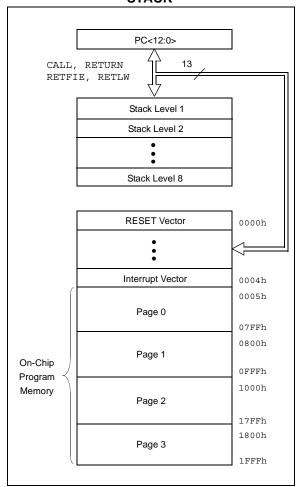
Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmi or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	24	41	I/O	ST/TTL ⁽³⁾	
RD4/PSP4	27	30	2	I/O	ST/TTL ⁽³⁾	
RD5/PSP5	28	31	3	I/O	ST/TTL ⁽³⁾	
RD6/PSP6	29	32	4	I/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾	
						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
Vss	12,31	13,34	6,29	Р	_	Ground reference for logic and I/O pins.
Vdd	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34		—	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input	0 = 0 — = N	utput lot used		I/O = inp TTL = T	out/output TL input	P = power ST = Schmitt Trigger input

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

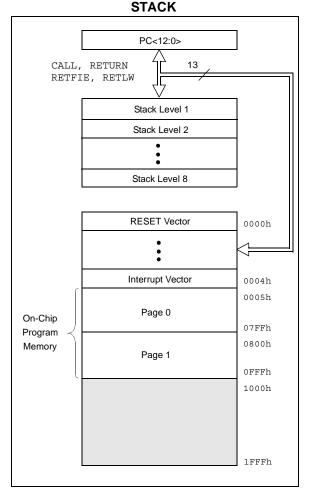

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are three memory blocks in each of the PIC16F87X MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The EEPROM data memory block is detailed in Section 4.0.

Additional information on device memory may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

FIGURE 2-1: PIC16F877/876 PROGRAM MEMORY MAP AND STACK



2.1 **Program Memory Organization**

The PIC16F87X devices have a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The PIC16F877/876 devices have $8K \times 14$ words of FLASH program memory, and the PIC16F873/874 devices have $4K \times 14$. Accessing a location above the physically implemented address will cause a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PIC16F874/873 PROGRAM MEMORY MAP AND

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)								
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	47
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
04h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27
05h	PORTA	_	_	PORTA Da	ta Latch whei	n written: POI	RTA pins whe	n read		0x 0000	29
06h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	31
07h	PORTC	PORTC D	ata Latch wh	en written: F	ORTC pins v	vhen read				xxxx xxxx	33
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				xxxx xxxx	35
09h ⁽⁴⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	36
0Ah ^(1,3)	PCLATH	_			Write Buffer	for the upper	r 5 bits of the I	Program Cou	unter	0 0000	26
0Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22
0Dh	PIR2	—	(5)	_	EEIF	BCLIF	—		CCP2IF	-r-0 00	24
0Eh	TMR1L	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	52
0Fh	TMR1H	Holding re	gister for the	Most Signifi	cant Byte of t	the 16-bit TM	R1 Register			xxxx xxxx	52
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51
11h	TMR2	Timer2 Mo	dule Registe	er						0000 0000	55
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transm	it Register				xxxx xxxx	70, 73
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					XXXX XXXX	57
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					XXXX XXXX	57
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	99
1Ah	RCREG	USART Re	eceive Data I	Register						0000 0000	101
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register2 (LSB)							xxxx xxxx	57
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	57
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58
1Eh	ADRESH	A/D Result	t Register Hi	gh Byte						xxxx xxxx	116
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

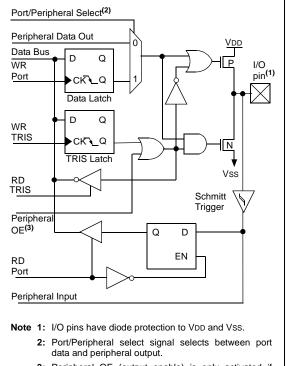
2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

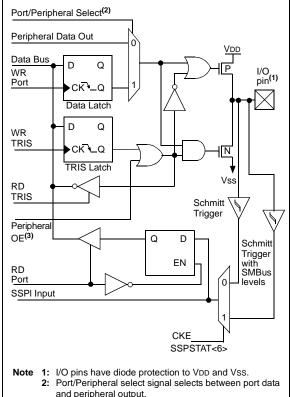
3.3 PORTC and the TRISC Register


PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When the I^2C module is enabled, the PORTC<4:3> pins can be configured with normal I^2C levels, or with SMBus levels by using the CKE bit (SSPSTAT<6>).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination, should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.


FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<2:0>, RC<7:5>

3: Peripheral OE (output enable) is only activated if peripheral select is active.

FIGURE 3-6:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<4:3>

 Peripheral OE (output enable) is only activated if peripheral select is active.

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset, or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 Mod	Timer2 Module's Register							0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	Timer2 Period Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POF BO	R,	Valu all o RES	ther
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 (000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	—	_	_	—	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	—	—	_	—	_	—	CCP2IE		0		0
87h	TRISC	PORTC D	Data Directio	n Register						1111 :	1111	1111	1111
11h	TMR2	Timer2 M	odule's Regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 M	odule's Perio	od Register						1111 :	1111	1111	1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 (0000	-000	0000
15h	CCPR1L	Capture/C	Compare/PW	/M Register	1 (LSB)					XXXX X	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/PW	/M Register	1 (MSB)					XXXX X	xxxx	uuuu	uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 (0000	00	0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register2 (LSB)								xxxx	uuuu	uuuu
1Ch	CCPR2H	Capture/C	Compare/PW	/M Register	2 (MSB)					XXXX X	xxxx	uuuu	uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 (0000	00	0000

TABLE 8-5 :	REGISTERS ASSOCIATED WITH PWM AND TIMER2
--------------------	---

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

9.2.3 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data. When an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

9.2.4 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	_	(2)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	-r-0 00
8Dh	PIE2	_	(2)	_	EEIE	BCLIE	_	—	CCP2IE	-r-0 00	-r-0 00
13h	SSPBUF	Synchrono	ous Serial Por	rt Receive I	Buffer/Trar	nsmit Reg	ister			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
93h	SSPADD	I ² C Slave	I ² C Slave Address/Master Baud Rate Register							0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 9-3: REGISTERS ASSOCIATED WITH I²C OPERATION

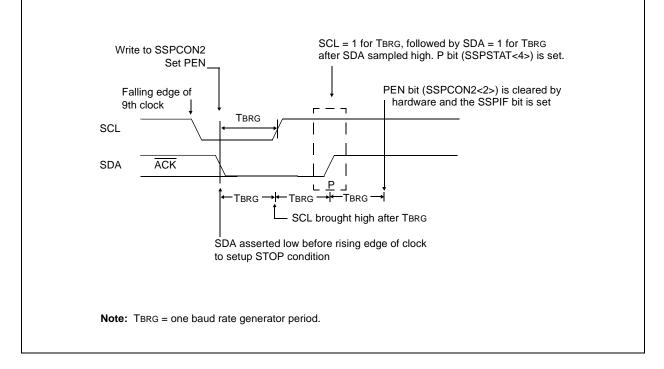
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in I²C mode.

Note 1: These bits are reserved on PIC16F873/876 devices; always maintain these bits clear.

2: These bits are reserved on these devices; always maintain these bits clear.

9.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to 0. When the baud rate generator times out, the SCL pin will be brought high, and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high


while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 9-17).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

9.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

PIC16F87X

NOTES:

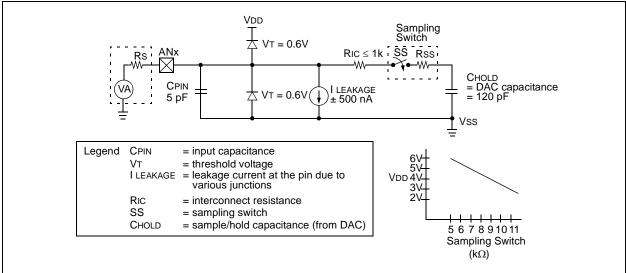
11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The maximum recommended impedance for analog sources is 10 k Ω . As the impedance is decreased, the acquisition time may be decreased.

EQUATION 11-1: ACQUISITION TIME

After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 11-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


To calculate the minimum acquisition time, TACQ, see the $PIC^{\textcircled{R}}$ MCU Mid-Range Reference Manual (DS33023).

TACQ	= Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
	= $TAMP + TC + TCOFF$
	$= 2\mu s + TC + [(Temperature -25^{\circ}C)(0.05\mu s/^{\circ}C)]$
TC	= CHOLD (RIC + RSS + RS) $In(1/2047)$
	= $-120 \text{pF} (1 \text{k}\Omega + 7 \text{k}\Omega + 10 \text{k}\Omega) \ln(0.0004885)$
	$= 16.47 \mu s$
TACQ	= $2\mu s + 16.47\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$
	$= 19.72 \mu s$
L	

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- **2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

FIGURE 11-2: ANALOG INPUT MODEL

12.0 SPECIAL FEATURES OF THE CPU

All PIC16F87X devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming
- Low Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87X devices have a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

Additional information on special features is available in the $PIC^{\mathbb{R}}$ MCU Mid-Range Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. The erased, or unprogrammed value of the configuration word is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾

CP1	CP0	DEBUG	—	WRT	CPD	LVP	BODEN	CP1	CP0	PWRTE	WDTE	F0SC1	F0SC0
bit13 bit 13-	12,		CP1:CP0: FLASH Program Memory Code Protection bits ⁽²⁾										bit0
bit 5-4		10 = 1F00 10 = 0F00 01 = 1000 01 = 0800 00 = 0000	11 = Code protection off 10 = 1F00h to 1FFFh code protected (PIC16F877, 876) 10 = 0F00h to 0FFFh code protected (PIC16F874, 873) 01 = 1000h to 1FFFh code protected (PIC16F877, 876) 01 = 0800h to 0FFFh code protected (PIC16F874, 873) 00 = 0000h to 1FFFh code protected (PIC16F877, 876) 00 = 0000h to 0FFFh code protected (PIC16F874, 873)										
bit 11		1 = In-Cir	DEBUG: In-Circuit Debugger Mode 1 = In-Circuit Debugger disabled, RB6 and RB7 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6 and RB7 are dedicated to the debugger.										
bit 10		Unimpler	nented:	Read as	'1'								
bit 9		1 = Unpro	WRT: FLASH Program Memory Write Enable 1 = Unprotected program memory may be written to by EECON control 0 = Unprotected program memory may not be written to by EECON control										
bit 8		CPD: Data EE Memory Code Protection 1 = Code protection off 0 = Data EEPROM memory code protected											
bit 7		1 = RB3/F	LVP : Low Voltage In-Circuit Serial Programming Enable bit 1 = RB3/PGM pin has PGM function, low voltage programming enabled 0 = RB3 is digital I/O, HV on MCLR must be used for programming										
bit 6		1 = BOR	BODEN: Brown-out Reset Enable bit ⁽³⁾ 1 = BOR enabled 0 = BOR disabled										
bit 3		1 = PWR	PWRTE : Power-up Timer Enable bit ⁽³⁾ 1 = PWRT disabled 0 = PWRT enabled										
bit 2		1 = WDT	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled										
bit 1-0		11 = RC 0 10 = HS 0 01 = XT 0	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator										

- **Note 1:** The erased (unprogrammed) value of the configuration word is 3FFFh.
 - 2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.
 - **3:** Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W register.					

INCF	CF Increment f		Inclusive OR W with f				
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)				
Status Affected: Z		Status Affected:	Z				
Description: The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		Description:	Inclusive OR the W register with register 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.				

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF873/874/876/877-04 (Commercial, Industrial)		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min Typ† Max Units Conditions						
	IDD	Supply Current ^(2,5)							
D010		16LF87X	—	0.6	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V		
D010		16F87X	—	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V		
D010A		16LF87X	—	20	35	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D013		16F87X	—	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V		
D015	∆IBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μΑ	BOR enabled, VDD = 5.0V		

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

PIC16F87X

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF873/874/876/877-04 (Commercial, Industrial)		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions		
-	IPD	Power-down Current ^(3,5)							
D020		16LF87X	_	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D020		16F87X	_	10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D021		16LF87X	_	0.9	5	μΑ	VDD = 3.0V, WDT enabled, 0°C to +70°C		
D021		16F87X	_	1.5	16	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D021A		16LF87X		0.9	5	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021A		16F87X		1.5	19	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C		
D023	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V		

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

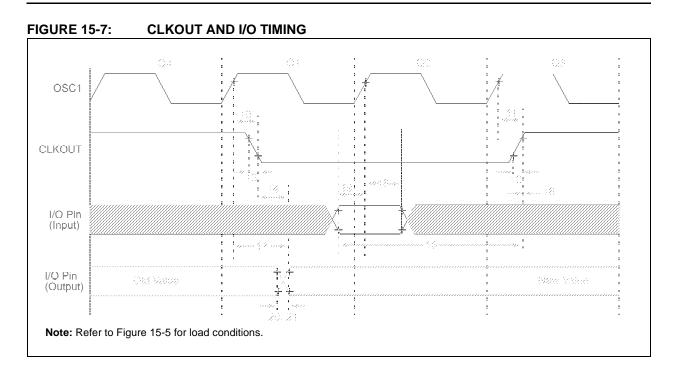
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended) (Continued)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 15.1)							
Param No.	Sym	Characteristic	Min Typ† Max		Units	Conditions			
	Vol	Output Low Voltage							
D080A		I/O ports	—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V		
D083A		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V		
	Voн	Output High Voltage							
D090A		I/O ports ⁽³⁾	Vdd - 0.7	—	_	V	Юн = -2.5 mA, VDD = 4.5V		
D092A		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—		V	Юн = -1.0 mA, VDD = 4.5V		
D150*	Vod	Open Drain High Voltage	—	—	8.5	V	RA4 pin		
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Сю	All I/O pins and OSC2 (RC mode)	_	_	50	pF			
D102	Св	SCL, SDA (I ² C mode)	—	—	400	pF			
		Data EEPROM Memory							
D120	ED	Endurance	100K	—	_	E/W	25°C at 5V		
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Using EECON to read/write VMIN = min. operating voltage		
D122	TDEW	······	_	4	8	ms			
		Program FLASH Memory							
D130	Eр	Endurance	1000	—		E/W	25°C at 5V		
D131	Vpr	VDD for read	VMIN	—	5.5	V	VMIN = min operating voltage		
D132A		VDD for erase/write	VMIN	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage		
D133	TPEW	Erase/Write cycle time	—	4	8	ms			


These parameters are characterized but not tested.

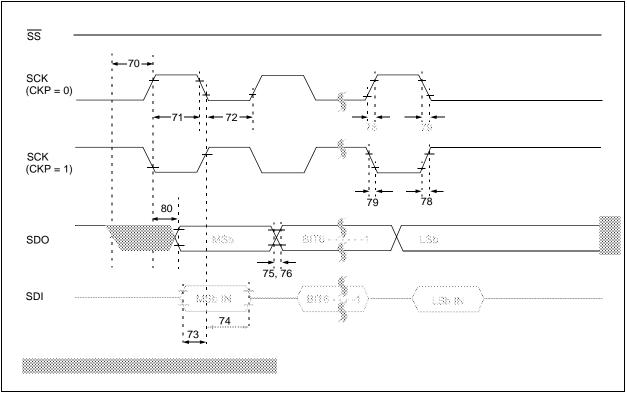
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

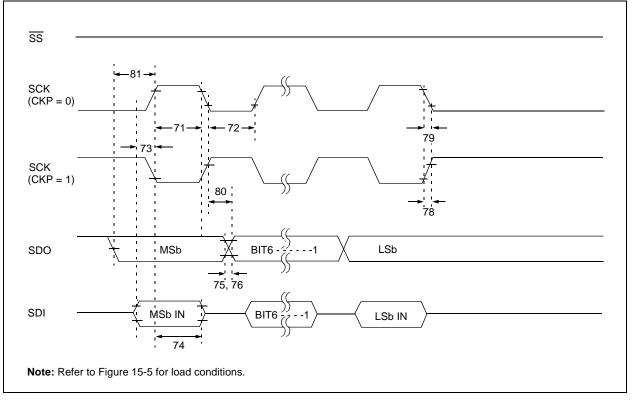
3: Negative current is defined as current sourced by the pin.

TABLE 15-2:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------


Param No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1 \uparrow to CLKOUT \downarrow		—	75	200	ns	(Note 1)
11*	TosH2ck H	OSC1↑ to CLKOUT↑		-	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		—	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT \downarrow to Port out vali	d	—	_	0.5TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKO	TT ↑	Tosc + 200	_	—	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT	· ↑	0	_	—	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid			100	255	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Standard (F)		100	_	—	ns	
		Port input invalid (I/O in hold time)	Extended (LF)	200	_	—	ns	
19*	TioV2osH	Port input valid to OSC1↑	(I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time Standard (F)		—	10	40	ns	
			Extended (LF)	—	_	145	ns	
21*	TioF	Port output fall time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
22††*	Tinp	INT pin high or low time		Тсү	—	_	ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	TCY	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

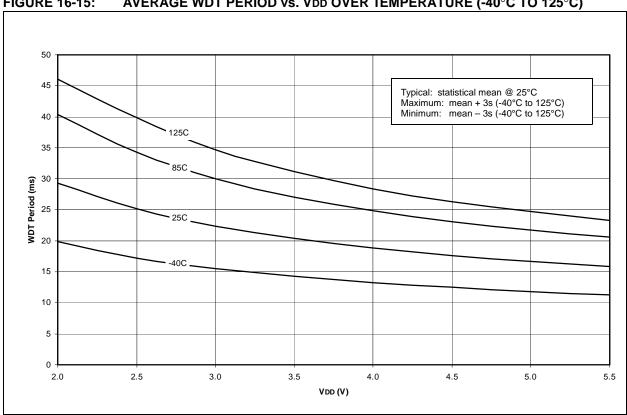
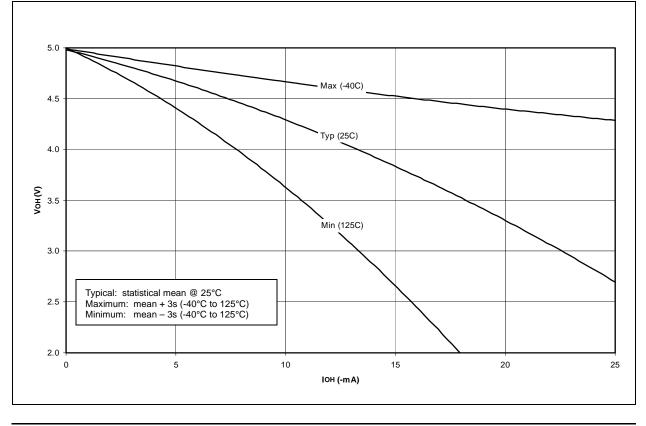


FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)



PIC16F87X

FIGURE 16-15: AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)

NOTES: