Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 4MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 33 | | Program Memory Size | 14KB (8K x 14) | | Program Memory Type | FLASH | | EEPROM Size | 256 x 8 | | RAM Size | 368 x 8 | | Voltage - Supply (Vcc/Vdd) | 4V ~ 5.5V | | Data Converters | A/D 8x10b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LCC (J-Lead) | | Supplier Device Package | 44-PLCC (16.59x16.59) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16f877-04e-l | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## PIC16F87X #### **Table of Contents** | 1.0 | Device Overview | 5 | |------------------|---|-----| | 2.0 | Memory Organization | 11 | | 3.0 | I/O Ports | | | 4.0 | Data EEPROM and FLASH Program Memory | 41 | | 5.0 | Timer0 Module | 47 | | 6.0 | Timer1 Module | 51 | | 7.0 | Timer2 Module | 55 | | 8.0 | Capture/Compare/PWM Modules | 57 | | 9.0 | Master Synchronous Serial Port (MSSP) Module | | | 10.0 | Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART) | 95 | | 11.0 | Analog-to-Digital Converter (A/D) Module | 111 | | 12.0 | Special Features of the CPU | 119 | | 13.0 | Instruction Set Summary | 135 | | 14.0 | Development Support | 143 | | | Electrical Characteristics | | | | DC and AC Characteristics Graphs and Tables | | | 17.0 | Packaging Information | 189 | | | endix A: Revision History | | | Appe | endix B: Device Differences | 197 | | Appe | endix C: Conversion Considerations | 198 | | | (| | | | ine Support | | | | der Response | 208 | | PIC ₁ | 6F87X Product Identification System | 209 | #### TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). #### Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - Microchip's Worldwide Web site; http://www.microchip.com - · Your local Microchip sales office (see last page) - The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277 When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using. #### **Customer Notification System** Register on our web site at www.microchip.com/cn to receive the most current information on all of our products. ### 2.2 Data Memory Organization The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits. | RP1:RP0 | Bank | |---------|------| | 00 | 0 | | 01 | 1 | | 10 | 2 | | 11 | 3 | Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access. | Note: | EEPROM Data Memory description can be | |-------|--| | | found in Section 4.0 of this data sheet. | # 2.2.1 GENERAL PURPOSE REGISTER FILE The register file can be accessed either directly, or indirectly through the File Select Register (FSR). TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Details
on
page: | |-----------------------|------------|-------------|----------------|---------------|----------------|--------------|-------------------|----------------|----------|--------------------------|------------------------| | Bank 2 | | | | | | | | | | | | | 100h ⁽³⁾ | INDF | Addressing | g this locatio | n uses conte | nts of FSR to | address data | a memory (no | t a physical r | egister) | 0000 0000 | 27 | | 101h | TMR0 | Timer0 Mo | dule Registe | er | | | | | | xxxx xxxx | 47 | | 102h ⁽³⁾ | PCL | Program C | Counter's (PC | C) Least Sign | ificant Byte | | | | | 0000 0000 | 26 | | 103h ⁽³⁾ | STATUS | IRP | RP1 | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 18 | | 104h ⁽³⁾ | FSR | Indirect Da | ata Memory A | Address Poir | nter | | | | | xxxx xxxx | 27 | | 105h | _ | Unimplem | ented | | | | | | | _ | 1 | | 106h | PORTB | PORTB Da | ata Latch wh | en written: P | ORTB pins w | hen read | | | | xxxx xxxx | 31 | | 107h | _ | Unimplem | ented | | | | | | | _ | _ | | 108h | _ | Unimplem | ented | | | | | | | _ | 1 | | 109h | _ | Unimplem | ented | | | | | | | _ | | | 10Ah ^(1,3) | PCLATH | | 1 | I | Write Buffer | for the uppe | r 5 bits of the I | Program Cou | ınter | 0 0000 | 26 | | 10Bh ⁽³⁾ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 20 | | 10Ch | EEDATA | EEPROM | Data Registe | er Low Byte | | | | | | xxxx xxxx | 41 | | 10Dh | EEADR | EEPROM | Address Reg | gister Low By | /te | | | | | xxxx xxxx | 41 | | 10Eh | EEDATH | | 1 | EEPROM D | Data Register | High Byte | | | | xxxx xxxx | 41 | | 10Fh | EEADRH | _ | _ | _ | EEPROM A | ddress Regis | ter High Byte | | | xxxx xxxx | 41 | | Bank 3 | | | | | | | | | | | | | 180h ⁽³⁾ | INDF | Addressing | g this locatio | n uses conte | nts of FSR to | address data | a memory (no | t a physical r | egister) | 0000 0000 | 27 | | 181h | OPTION_REG | RBPU | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 | 1111 1111 | 19 | | 182h ⁽³⁾ | PCL | Program C | Counter (PC) | Least Signi | ficant Byte | | | | | 0000 0000 | 26 | | 183h ⁽³⁾ | STATUS | IRP | RP1 | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 18 | | 184h ⁽³⁾ | FSR | Indirect Da | ata Memory A | Address Poir | nter | | | | | xxxx xxxx | 27 | | 185h | _ | Unimplem | ented | | | | | | | _ | _ | | 186h | TRISB | PORTB Da | ata Direction | Register | | | | | | 1111 1111 | 31 | | 187h | _ | Unimplem | ented | | | | | | | _ | _ | | 188h | _ | Unimplem | ented | | | | | | | _ | _ | | 189h | _ | Unimplem | ented | | | | | | | _ | _ | | 18Ah ^(1,3) | PCLATH | _ | - | | Write Buffer | for the uppe | r 5 bits of the I | Program Cou | ınter | 0 0000 | 26 | | 18Bh ⁽³⁾ | INTCON | GIE | PEIE | T0IE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 20 | | 18Ch | EECON1 | EEPGD | | _ | _ | WRERR | WREN | WR | RD | x x000 | 41, 42 | | 18Dh | EECON2 | EEPROM | Control Regi | ster2 (not a | physical regis | ster) | | | | | 41 | | 18Eh | _ | Reserved | maintain clea | ar | | | | | | 0000 0000 | | | 18Fh | _ | Reserved | maintain clea | ar | | | | | | 0000 0000 | - | Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter. - 2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear. - 3: These registers can be addressed from any bank. - 4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'. - 5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear. #### 2.2.2.1 STATUS Register The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled.
These bits are set or cleared according to the device logic. Furthermore, the $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary." Note: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples. #### REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h) | R/W-0 | R/W-0 | R/W-0 | R-1 | R-1 | R/W-x | R/W-x | R/W-x | |-------|-------|-------|-----|-----|-------|-------|-------| | IRP | RP1 | RP0 | TO | PD | Z | DC | С | | bit 7 | | | | | | | bit 0 | bit 7 IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) bit 6-5 RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes bit 4 **TO**: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred bit 3 **PD**: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high, or low order bit of the source register. Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown TABLE 3-3: PORTB FUNCTIONS | Name | Bit# | Buffer | Function | |------------------------|------|-----------------------|--| | RB0/INT | bit0 | TTL/ST ⁽¹⁾ | Input/output pin or external interrupt input. Internal software programmable weak pull-up. | | RB1 | bit1 | TTL | Input/output pin. Internal software programmable weak pull-up. | | RB2 | bit2 | TTL | Input/output pin. Internal software programmable weak pull-up. | | RB3/PGM ⁽³⁾ | bit3 | TTL | Input/output pin or programming pin in LVP mode. Internal software programmable weak pull-up. | | RB4 | bit4 | TTL | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. | | RB5 | bit5 | TTL | Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. | | RB6/PGC | bit6 | TTL/ST ⁽²⁾ | Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming clock. | | RB7/PGD | bit7 | TTL/ST ⁽²⁾ | Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin. Internal software programmable weak pull-up. Serial programming data. | Legend: TTL = TTL input, ST = Schmitt Trigger input - **Note 1:** This buffer is a Schmitt Trigger input when configured as the external interrupt. - 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode. - **3:** Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices. TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on all other RESETS | |-----------|------------|-------|-------------------------------|-------|-------|-------|-------|-------|-----------|--------------------------|---------------------------| | 06h, 106h | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | xxxx xxxx | uuuu uuuu | | 86h, 186h | TRISB | PORTB | PORTB Data Direction Register | | | | | | 1111 1111 | 1111 1111 | | | 81h, 181h | OPTION_REG | RBPU | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 | 1111 1111 | 1111 1111 | Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB. ## PIC16F87X #### 3.6 Parallel Slave Port The Parallel Slave Port (PSP) is not implemented on the PIC16F873 or PIC16F876. PORTD operates as an 8-bit wide Parallel Slave Port or microprocessor port, when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is asynchronously readable and writable by the external world through RD control input pin RE0/RD and WR control input pin RE1/WR. The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG3:PCFG0 (ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O. There are actually two 8-bit latches: one for data output, and one for data input. The user writes 8-bit data to the PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the external device is controlling the direction of data flow. A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low. When either the $\overline{\text{CS}}$ or $\overline{\text{WR}}$ lines become high (level triggered), the Input Buffer Full (IBF) status flag bit (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 3-10). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if a second write to the PSP is attempted when the previous byte has not been read out of the buffer. A read from the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ lines are first detected low. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 3-11), indicating that the PORTD latch is waiting to be read by the external bus. When either the $\overline{\text{CS}}$ or $\overline{\text{RD}}$ pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware. When not in PSP mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware. An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>). FIGURE 3-9: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE #### 6.1 Timer1 Operation in Timer Mode Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync. #### 6.2 Timer1 Counter Operation Timer1 may operate in either a Synchronous, or an Asynchronous mode, depending on the setting of the TMR1CS bit. When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment. FIGURE 6-1: TIMER1 INCREMENTING EDGE # 6.3 Timer1 Operation in Synchronized Counter Mode Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared. If T1SYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter. In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment. FIGURE 6-2: TIMER1 BLOCK DIAGRAM #### REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh) | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-------|-------|--------|--------|--------|--------| | _ | _ | CCPxX | CCPxY | CCPxM3 | CCPxM2 | CCPxM1 | CCPxM0 | | bit 7 | | | | | | | bit 0 | bit 7-6 Unimplemented: Read as '0' bit 5-4 CCPxX:CCPxY: PWM Least Significant bits Capture mode: Unused Compare mode: Unused PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL. bit 3-0
CCPxM3:CCPxM0: CCPx Mode Select bits 0000 = Capture/Compare/PWM disabled (resets CCPx module) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCPxIF bit is set) 1001 = Compare mode, clear output on match (CCPxIF bit is set) 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected) 1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled) 11xx = PWM mode Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### 8.2 Compare Mode In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is: - · Driven high - · Driven low - · Remains unchanged The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set. # FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM #### 8.2.1 CCP PIN CONFIGURATION The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit. Note: Clearing the CCP1CON register will force the RC2/CCP1 compare output latch to the default low level. This is not the PORTC I/O data latch. #### 8.2.2 TIMER1 MODE SELECTION Timer1 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work. #### 8.2.3 SOFTWARE INTERRUPT MODE When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled). #### 8.2.4 SPECIAL EVENT TRIGGER In this mode, an internal hardware trigger is generated, which may be used to initiate an action. The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1. The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled). **Note:** The special event trigger from the CCP1and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>). #### 8.3 PWM Mode (PWM) In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output. Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch. Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode. For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 8.3.3. # FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period). FIGURE 8-4: PWM OUTPUT #### 8.3.1 PWM PERIOD The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula: PWM frequency is defined as 1 / [PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle: - · TMR2 is cleared - The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set) - The PWM duty cycle is latched from CCPR1L into CCPR1H Note: The Timer2 postscaler (see Section 7.1) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output. #### 8.3.2 PWM DUTY CYCLE The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time: CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register. The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitch-free PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the formula: Resolution = $$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$ bits **Note:** If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared. ### 9.2 MSSP I²C Operation The MSSP module in I²C mode, fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware, to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing. Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment." A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency. FIGURE 9-5: I²C SLAVE MODE BLOCK DIAGRAM Two pins are used for data transfer. These are the SCL pin, which is the clock, and the SDA pin, which is the data. The SDA and SCL pins are automatically configured when the I²C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>). The MSSP module has six registers for I^2C operation. They are the: - SSP Control Register (SSPCON) - SSP Control Register2 (SSPCON2) - SSP Status Register (SSPSTAT) - Serial Receive/Transmit Buffer (SSPBUF) - SSP Shift Register (SSPSR) Not directly accessible - SSP Address Register (SSPADD) The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected: - I²C Slave mode (7-bit address) - I²C Slave mode (10-bit address) - I²C Master mode, clock = OSC/4 (SSPADD +1) - I²C firmware modes (provided for compatibility to other mid-range products) Before selecting any I²C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate TRIS bits. Selecting an I²C mode by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I²C mode. Pull-up resistors must be provided externally to the SCL and SDA pins for the proper operation of the I²C module. The CKE bit (SSPSTAT<6:7>) sets the levels of the SDA and SCL pins in either Master or Slave mode. When CKE = 1, the levels will conform to the SMBus specification. When CKE = 0, the levels will conform to the I^2 C specification. The SSPSTAT register gives the status of the data transfer. This information includes detection of a START (S) or STOP (P) bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. SSPBUF is the register to which the transfer data is written to, or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost. The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 $\,^{0}$ A9 A8 $\,^{0}$). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0). TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0) | BAUD | Fosc = 20 MHz | | | F | osc = 16 N | lHz | Fosc = 10 MHz | | | |-------------|---------------|------------|-----------------------------|---------|------------|-----------------------------|---------------|------------|-----------------------------| | RATE
(K) | KBAUD | %
ERROR | SPBRG
value
(decimal) | KBAUD | %
ERROR | SPBRG
value
(decimal) | KBAUD | %
ERROR | SPBRG
value
(decimal) | | 0.3 | - | - | - | - | - | - | - | - | - | | 1.2 | 1.221 | 1.75 | 255 | 1.202 | 0.17 | 207 | 1.202 | 0.17 | 129 | | 2.4 | 2.404 | 0.17 | 129 | 2.404 | 0.17 | 103 | 2.404 | 0.17 | 64 | | 9.6 | 9.766 | 1.73 | 31 | 9.615 | 0.16 | 25 | 9.766 | 1.73 | 15 | | 19.2 | 19.531 | 1.72 | 15 | 19.231 | 0.16 | 12 | 19.531 | 1.72 | 7 | | 28.8 | 31.250 | 8.51 | 9 | 27.778 | 3.55 | 8 | 31.250 | 8.51 | 4 | | 33.6 | 34.722 | 3.34 | 8 | 35.714 | 6.29 | 6 | 31.250 | 6.99 | 4 | | 57.6 | 62.500 | 8.51 | 4 | 62.500 | 8.51 | 3 | 52.083 | 9.58 | 2 | | HIGH | 1.221 | - | 255 | 0.977 | - | 255 | 0.610 | - | 255 | | LOW | 312.500 | - | 0 | 250.000 | - | 0 | 156.250 | - | 0 | | DALID | | Fosc = 4 M | Hz | Fosc = 3.6864 MHz | | | | |---------------------|--------|------------|-----------------------------|-------------------|------------|-----------------------------|--| | BAUD
RATE
(K) | KBAUD | %
ERROR | SPBRG
value
(decimal) | KBAUD | %
ERROR | SPBRG
value
(decimal) | | | 0.3 | 0.300 | 0 | 207 | 0.3 | 0 | 191 | | | 1.2 | 1.202 | 0.17 | 51 | 1.2 | 0 | 47 | | | 2.4 |
2.404 | 0.17 | 25 | 2.4 | 0 | 23 | | | 9.6 | 8.929 | 6.99 | 6 | 9.6 | 0 | 5 | | | 19.2 | 20.833 | 8.51 | 2 | 19.2 | 0 | 2 | | | 28.8 | 31.250 | 8.51 | 1 | 28.8 | 0 | 1 | | | 33.6 | - | - | - | - | - | - | | | 57.6 | 62.500 | 8.51 | 0 | 57.6 | 0 | 0 | | | HIGH | 0.244 | - | 255 | 0.225 | - | 255 | | | LOW | 62.500 | - | 0 | 57.6 | - | 0 | | ### TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1) | BAUD | F | osc = 20 M | Hz | F | osc = 16 M | Hz | Fosc = 10 MHz | | | |-------------|----------|------------|-----------------------------|----------|------------|-----------------------------|---------------|------------|-----------------------------| | RATE
(K) | KBAUD | %
ERROR | SPBRG
value
(decimal) | KBAUD | %
ERROR | SPBRG
value
(decimal) | KBAUD | %
ERROR | SPBRG
value
(decimal) | | 0.3 | - | - | - | - | - | - | - | - | - | | 1.2 | - | - | - | - | - | - | - | - | - | | 2.4 | - | - | - | - | - | - | 2.441 | 1.71 | 255 | | 9.6 | 9.615 | 0.16 | 129 | 9.615 | 0.16 | 103 | 9.615 | 0.16 | 64 | | 19.2 | 19.231 | 0.16 | 64 | 19.231 | 0.16 | 51 | 19.531 | 1.72 | 31 | | 28.8 | 29.070 | 0.94 | 42 | 29.412 | 2.13 | 33 | 28.409 | 1.36 | 21 | | 33.6 | 33.784 | 0.55 | 36 | 33.333 | 0.79 | 29 | 32.895 | 2.10 | 18 | | 57.6 | 59.524 | 3.34 | 20 | 58.824 | 2.13 | 16 | 56.818 | 1.36 | 10 | | HIGH | 4.883 | - | 255 | 3.906 | - | 255 | 2.441 | - | 255 | | LOW | 1250.000 | - | 0 | 1000.000 | | 0 | 625.000 | - | 0 | | BAUD | F | osc = 4 MH | łz | Fosc = 3.6864 MHz | | | | | | |-------------|---------|------------|-----------------------------|-------------------|------------|-----------------------------|--|--|--| | RATE
(K) | KBAUD | %
ERROR | SPBRG
value
(decimal) | KBAUD | %
ERROR | SPBRG
value
(decimal) | | | | | 0.3 | - | - | - | - | - | - | | | | | 1.2 | 1.202 | 0.17 | 207 | 1.2 | 0 | 191 | | | | | 2.4 | 2.404 | 0.17 | 103 | 2.4 | 0 | 95 | | | | | 9.6 | 9.615 | 0.16 | 25 | 9.6 | 0 | 23 | | | | | 19.2 | 19.231 | 0.16 | 12 | 19.2 | 0 | 11 | | | | | 28.8 | 27.798 | 3.55 | 8 | 28.8 | 0 | 7 | | | | | 33.6 | 35.714 | 6.29 | 6 | 32.9 | 2.04 | 6 | | | | | 57.6 | 62.500 | 8.51 | 3 | 57.6 | 0 | 3 | | | | | HIGH | 0.977 | - | 255 | 0.9 | - | 255 | | | | | LOW | 250.000 | - | 0 | 230.4 | - | 0 | | | | TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on all
other
RESETS | |------------------------|--------|------------------------------|-----------|---------|-------|-------|--------|--------|--------|--------------------------|---------------------------------| | 0Bh, 8Bh,
10Bh,18Bh | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | R0IF | 0000 000x | 0000 000u | | 0Ch | PIR1 | PSPIF ⁽¹⁾ | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000 | 0000 0000 | | 18h | RCSTA | SPEN | RX9 | SREN | CREN | _ | FERR | OERR | RX9D | 0000 -00x | 0000 -00x | | 19h | TXREG | USART Tr | ansmit Re | egister | | | | | | 0000 0000 | 0000 0000 | | 8Ch | PIE1 | PSPIE ⁽¹⁾ | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 0000 | 0000 0000 | | 98h | TXSTA | CSRC | TX9 | TXEN | SYNC | _ | BRGH | TRMT | TX9D | 0000 -010 | 0000 -010 | | 99h | SPBRG | Baud Rate Generator Register | | | | | | | | | 0000 0000 | Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear. FIGURE 10-9: SYNCHRONOUS TRANSMISSION FIGURE 10-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN) # 10.3.2 USART SYNCHRONOUS MASTER RECEPTION Once synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information. When setting up a Synchronous Master Reception: - 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1). - 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. - 3. Ensure bits CREN and SREN are clear. - 4. If interrupts are desired, then set enable bit RCIE. - 5. If 9-bit reception is desired, then set bit RX9. - 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN. - 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set. - Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception. - Read the 8-bit received data by reading the RCREG register. - If any error occurred, clear the error by clearing bit CREN. - 11. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set. TABLE 10-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on all other RESETS | |------------------------|--------|----------------------|-----------|-----------|-----------|-------|--------|--------|--------|--------------------------|---------------------------| | 0Bh, 8Bh,
10Bh,18Bh | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | R0IF | 0000 000x | 0000 000u | | 0Ch | PIR1 | PSPIF ⁽¹⁾ | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000 | 0000 0000 | | 18h | RCSTA | SPEN | RX9 | SREN | CREN | _ | FERR | OERR | RX9D | 0000 -00x | 0000 -00x | | 1Ah | RCREG | USART R | eceive Re | gister | | | | | | 0000 0000 | 0000 0000 | | 8Ch | PIE1 | PSPIE ⁽¹⁾ | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 0000 | 0000 0000 | | 98h | TXSTA | CSRC | TX9 | TXEN | SYNC | - | BRGH | TRMT | TX9D | 0000 -010 | 0000 -010 | | 99h | SPBRG | Baud Rate | e Generat | 0000 0000 | 0000 0000 | | | | | | | Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear. # 12.0 SPECIAL FEATURES OF THE CPU All PIC16F87X devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are: - · Oscillator Selection - RESET - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) - Interrupts - Watchdog Timer (WDT) - SLEEP - · Code Protection - ID Locations - In-Circuit Serial Programming - · Low Voltage In-Circuit Serial Programming - · In-Circuit Debugger PIC16F87X devices have a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options. Additional information on special features is available in the $PIC^{\textcircled{\tiny{\$}}}$ MCU Mid-Range Reference Manual, (DS33023). #### 12.1 Configuration Bits The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. The erased, or unprogrammed value of the configuration word is 3FFFh. These bits are mapped in program memory location 2007h. It is important to note that address 2007h is beyond the user program memory space, which can be accessed only during programming. ### REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)(1) | | | | | | | | | | | | | | ı | |---------------------|-----
--|--|------------|-----------|----------|---|---------|-----|-------|------|-------|-------| | CP1 | CP0 | DEBUG | _ | WRT | CPD | LVP | BODEN | CP1 | CP0 | PWRTE | WDTE | F0SC1 | F0SC0 | | bit13 | | | | | | | | | | | | | bit0 | | bit 13-1
bit 5-4 | 2, | CP1:CP0: FLASH Program Memory Code Protection bits ⁽²⁾ 11 = Code protection off 10 = 1F00h to 1FFFh code protected (PIC16F877, 876) 10 = 0F00h to 0FFFh code protected (PIC16F874, 873) 01 = 1000h to 1FFFh code protected (PIC16F877, 876) 01 = 0800h to 0FFFh code protected (PIC16F874, 873) 00 = 0000h to 1FFFh code protected (PIC16F877, 876) 00 = 0000h to 0FFFh code protected (PIC16F874, 873) | | | | | | | | | | | | | bit 11 | | | cuit Debu | ugger dis | abled, R | B6 and | RB7 are ge
RB7 are de | • | • | • | | | | | bit 10 | | Unimplen | nented: | Read as | '1' | | | | | | | | | | bit 9 | | • | tected p | rogram n | nemory r | may be | ole
written to by
be written t | | | | | | | | bit 8 | | CPD: Data 1 = Code 0 = Data 1 | protection | n off | | | d | | | | | | | | bit 7 | | 1 = RB3/F | PGM pin | has PGN | 1 functio | n, low v | ıming Enabl
oltage progı
e used for p | ramming | | I | | | | | bit 6 | | 1 = BOR (| BODEN: Brown-out Reset Enable bit ⁽³⁾ 1 = BOR enabled 0 = BOR disabled | | | | | | | | | | | | bit 3 | | 1 = PWR7 | PWRTE: Power-up Timer Enable bit ⁽³⁾ 1 = PWRT disabled 0 = PWRT enabled | | | | | | | | | | | | bit 2 | | 1 = WDT | WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled | | | | | | | | | | | | bit 1-0 | | FOSC1:Fr
11 = RC 0
10 = HS 0
01 = XT 0
00 = LP 0 | oscillator
oscillator
oscillator | Oscillator | Selectio | n bits | | | | | | | | **Note 1:** The erased (unprogrammed) value of the configuration word is 3FFFh. - 2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed. - 3: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled. #### 12.10 Interrupts The PIC16F87X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits. **Note:** Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, or the GIE bit. A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET. The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts. The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON. When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts. For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit. FIGURE 12-9: INTERRUPT LOGIC The following table shows which devices have which interrupts. | Device | TOIF | INTF | RBIF | PSPIF | ADIF | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | EEIF | BCLIF | CCP2IF | |---------------|------|------|------|-------|------|------|------|-------|--------|--------|--------|------|-------|--------| | PIC16F876/873 | Yes | Yes | Yes | | Yes | PIC16F877/874 | Yes #### 13.0 INSTRUCTION SET SUMMARY Each PIC16F87X instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F87X instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions. For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction. For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located. For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value. TABLE 13-1: OPCODE FIELD DESCRIPTIONS | Field | Description | |-------|---| | f | Register file address (0x00 to 0x7F) | | W | Working register (accumulator) | | b | Bit address within an 8-bit file register | | k | Literal field, constant data or label | | х | Don't care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. | | d | Destination select; $d = 0$: store result in W, $d = 1$: store result in file register f. Default is $d = 1$. | | PC | Program Counter | | TO | Time-out bit | | PD | Power-down bit | The instruction set is highly orthogonal and is grouped into three basic categories: - Byte-oriented operations - · Bit-oriented operations - · Literal and control operations All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs . If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs . Table 13-2 lists the instructions recognized by the MPASM TM assembler. Figure 13-1 shows the general formats that the instructions can have. **Note:** To maintain upward compatibility with future PIC16F87X products, <u>do not use</u> the OPTION and TRIS instructions. All examples use the following format to represent a hexadecimal number: 0xhh where h signifies a hexadecimal digit. FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS A description of each instruction is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023). 15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) **PIC16LF873/874/876/877-04 (Commercial, Industrial)** | PIC16LF8
(Comme | 73/874/87
ercial, Indu | ., | Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for industrial $0^{\circ}\text{C} \leq \text{TA} \leq +70^{\circ}\text{C}$ for commercial | | | | | | | | |--------------------------------|----------------------------------|--|---|---|------|-------|--|--|--|--| | PIC16F87
PIC16F87
(Comme | | /877-20 | | Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for industrial $0^{\circ}\text{C} \le \text{TA} \le +70^{\circ}\text{C}$ for commercial | | | | | | | | Param
No. | Symbol | Characteristic/
Device | Min | Тур† | Max | Units | Conditions | | | | | | Vdd | Supply Voltage | | | | | | | | | | D001 | | 16LF87X | 2.0 | _ | 5.5 | V |
LP, XT, RC osc configuration (DC to 4 MHz) | | | | | D001 | | 16F87X | 4.0 | _ | 5.5 | V | LP, XT, RC osc configuration | | | | | D001A | | | 4.5 | | 5.5 | V | HS osc configuration | | | | | | | | VBOR | | 5.5 | V | BOR enabled, FMAX = 14 MHz ⁽⁷⁾ | | | | | D002 | VDR | RAM Data Retention
Voltage ⁽¹⁾ | _ | 1.5 | _ | V | | | | | | D003 | VPOR | VDD Start Voltage to
ensure internal Power-on
Reset signal | _ | Vss | _ | V | See section on Power-on Reset for details | | | | | D004 | SVDD | VDD Rise Rate to ensure internal Power-on Reset signal | 0.05 | _ | _ | V/ms | See section on Power-on Reset for details | | | | | D005 | VBOR | Brown-out Reset
Voltage | 3.7 | 4.0 | 4.35 | V | BODEN bit in configuration word enabled | | | | Legend: Rows with standard voltage device data only are shaded for improved readability. - † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested. - **Note 1:** This is the limit to which VDD can be lowered without losing RAM data. - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT enabled/disabled as specified. - **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is - measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS. 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm. - 5: Timer1 oscillator (when enabled) adds approximately 20 μ A to the specification. This value is from characterization and is for design guidance only. This is not tested. - **6:** The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. - 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached. FIGURE 16-19: TYPICAL, MINIMUM AND MAXIMUM Vol vs. Iol (VDD=3V, -40°C TO 125°C) FIGURE 16-20: MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO 125°C)