

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877-04e-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PIC [®] MCU Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 instructions	35 instructions	35 instructions	35 instructions

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	I	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	—	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active low RESET to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0.
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1.
RA2/AN2/VREF-	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage.
RA3/AN3/VREF+	5	6	22	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage.
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/SS/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be soft- ware programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3/PGM	36	39	11	I/O	TTL	RB3 can also be the low voltage programming input.
RB4	37	41	14	I/O	TTL	Interrupt-on-change pin.
RB5	38	42	15	I/O	TTL	Interrupt-on-change pin.
RB6/PGC	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming clock.
RB7/PGD	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming data.
Legend: I = input	0 = 0 — = N	utput lot used		I/O = inp TTL = T	out/output TL input	P = power ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

FI	GU	IRF	2-3	-
			<u> </u>	

PIC16F877/876 REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	18
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	18
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		18
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	181
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18
T1CON	10h		90h		110h		190
TMR2	11h	SSPCON2	91h		111h		19 [.]
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h		95h		115h		19
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah		9Ah	-	11Ah		19/
CCPR2L	1Bh		9Bh		11Bh		198
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		19[
ADRESH	1Eh	ADRESL	9Eh		11Eh		19
ADCON0	1Fh	ADCON1	9Fh		11Fh		191
	20h		A0h		120h		1A
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	
96 Bytes		UU Dyico	EFh	00 Dytos	16Fh	00 Dyi00	1EI
	7Fh	accesses 70h-7Fh	F0h FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F(1Fl
Bank 0		Bank 1	FFII	Bank 2	/. !!	Bank 3	11.1
1 1 m 1 m 1	بارار منعم	a memory location	a				

2: These registers are reserved, maintain these registers clear.

4.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The Data EEPROM and FLASH Program Memory are readable and writable during normal operation over the entire VDD range. These operations take place on a single byte for Data EEPROM memory and a single word for Program memory. A write operation causes an erase-then-write operation to take place on the specified byte or word. A bulk erase operation may not be issued from user code (which includes removing code protection).

Access to program memory allows for checksum calculation. The values written to program memory do not need to be valid instructions. Therefore, up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that form an invalid instruction, results in the execution of a NOP instruction.

The EEPROM Data memory is rated for high erase/ write cycles (specification D120). The FLASH program memory is rated much lower (specification D130), because EEPROM data memory can be used to store frequently updated values. An on-chip timer controls the write time and it will vary with voltage and temperature, as well as from chip to chip. Please refer to the specifications for exact limits (specifications D122 and D133).

A byte or word write automatically erases the location and writes the new value (erase before write). Writing to EEPROM data memory does not impact the operation of the device. Writing to program memory will cease the execution of instructions until the write is complete. The program memory cannot be accessed during the write. During the write operation, the oscillator continues to run, the peripherals continue to function and interrupt events will be detected and essentially "queued" until the write is complete. When the write completes, the next instruction in the pipeline is executed and the branch to the interrupt vector will take place, if the interrupt is enabled and occurred during the write.

Read and write access to both memories take place indirectly through a set of Special Function Registers (SFR). The six SFRs used are:

- EEDATA
- EEDATH
- EEADR
- EEADRH
- EECON1
- EECON2

The EEPROM data memory allows byte read and write operations without interfering with the normal operation of the microcontroller. When interfacing to EEPROM data memory, the EEADR register holds the address to be accessed. Depending on the operation, the EEDATA register holds the data to be written, or the data read, at the address in EEADR. The PIC16F873/874 devices have 128 bytes of EEPROM data memory and therefore, require that the MSb of EEADR remain clear. The EEPROM data memory on these devices do not wrap around to 0, i.e., 0x80 in the EEADR does not map to 0x00. The PIC16F876/877 devices have 256 bytes of EEPROM data memory and therefore, uses all 8-bits of the EEADR.

The FLASH program memory allows non-intrusive read access, but write operations cause the device to stop executing instructions, until the write completes. When interfacing to the program memory, the EEADRH:EEADR registers form a two-byte word, which holds the 13-bit address of the memory location being accessed. The register combination of EEDATH:EEDATA holds the 14-bit data for writes, or reflects the value of program memory after a read operation. Just as in EEPROM data memory accesses, the value of the EEADRH:EEADR registers must be within the valid range of program memory, depending on the device: 0000h to 1FFFh for the PIC16F873/874. or 0000h to 3FFFh for the PIC16F876/877. Addresses outside of this range do not wrap around to 0000h (i.e., 4000h does not map to 0000h on the PIC16F877).

4.1 EECON1 and EECON2 Registers

The EECON1 register is the control register for configuring and initiating the access. The EECON2 register is not a physically implemented register, but is used exclusively in the memory write sequence to prevent inadvertent writes.

There are many bits used to control the read and write operations to EEPROM data and FLASH program memory. The EEPGD bit determines if the access will be a program or data memory access. When clear, any subsequent operations will work on the EEPROM data memory. When set, all subsequent operations will operate in the program memory.

Read operations only use one additional bit, RD, which initiates the read operation from the desired memory location. Once this bit is set, the value of the desired memory location will be available in the data registers. This bit cannot be cleared by firmware. It is automatically cleared at the end of the read operation. For EEPROM data memory reads, the data will be available in the EEDATA register in the very next instruction cycle after the RD bit is set. For program memory reads, the data will be loaded into the EEDATH:EEDATA registers, following the second instruction after the RD bit is set.

4.4 Reading the FLASH Program Memory

Reading FLASH program memory is much like that of EEPROM data memory, only two NOP instructions must be inserted after the RD bit is set. These two instruction cycles that the NOP instructions execute, will be used by the microcontroller to read the data out of program the memory and insert value into the EEDATH:EEDATA registers. Data will be available following the second NOP instruction. EEDATH and EEDATA will hold their value until another read operation is initiated, or until they are written by firmware.

The steps to reading the FLASH program memory are:

- 1. Write the address to EEADRH:EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 2. Set the EEPGD bit to point to FLASH program memory.
- 3. Set the RD bit to start the read operation.
- 4. Execute two NOP instructions to allow the microcontroller to read out of program memory.
- 5. Read the data from the EEDATH:EEDATA registers.

EXAMPLE 4-3: FLASH PROGRAM READ

BSF	STATUS, RP1	;
BCF	STATUS, RPO	;Bank 2
MOVF	ADDRL, W	;Write the
MOVWF	EEADR	;address bytes
MOVF	ADDRH,W	;for the desired
MOVWF	EEADRH	;address to read
BSF	STATUS, RPO	;Bank 3
BSF	EECON1, EEPGD	;Point to Program memory
BSF	EECON1, RD	;Start read operation
NOP		;Required two NOPs
NOP		;
BCF	STATUS, RPO	;Bank 2
MOVF	EEDATA, W	;DATAL = EEDATA
MOVWF	DATAL	;
MOVF	EEDATH,W	;DATAH = EEDATH
MOVWF	DATAH	;

4.5 Writing to the FLASH Program Memory

Writing to FLASH program memory is unique, in that the microcontroller does not execute instructions while programming is taking place. The oscillator continues to run and all peripherals continue to operate and queue interrupts, if enabled. Once the write operation completes (specification D133), the processor begins executing code from where it left off. The other important difference when writing to FLASH program memory, is that the WRT configuration bit, when clear, prevents any writes to program memory (see Table 4-1).

Just like EEPROM data memory, there are many steps in writing to the FLASH program memory. Both address and data values must be written to the SFRs. The EEPGD bit must be set, and the WREN bit must be set to enable writes. The WREN bit should be kept clear at all times, except when writing to the FLASH Program memory. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.

Writes to program memory must also be prefaced with a special sequence of instructions that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruption for each byte written. These instructions must then be followed by two NOP instructions to allow the microcontroller to setup for the write operation. Once the write is complete, the execution of instructions starts with the instruction after the second NOP.

The steps to write to program memory are:

- 1. Write the address to EEADRH:EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 2. Write the 14-bit data value to be programmed in the EEDATH:EEDATA registers.
- 3. Set the EEPGD bit to point to FLASH program memory.
- 4. Set the WREN bit to enable program operations.
- 5. Disable interrupts (if enabled).
- 6. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 7. Execute two NOP instructions to allow the microcontroller to setup for write operation.
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

REGISTER 5-1: OPTION REG REGISTER

DANA

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF1, MOVWF1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7	RBPU									
bit 6	INTEDG									
bit 5	1 = Transit	R0 Clock Sou tion on T0CK al instruction o	l pin							
bit 4	1 = Increm	R0 Source Ed nent on high-t nent on low-to	o-low trans	sition on TOC	•					
bit 3	 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 									
bit 2-0	PS2:PS0:	Prescaler Ra	ite Select b	oits						
	Bit Value	TMR0 Rate	WDT Rat	e						
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	-						
	Legend:									
	R = Reada	able bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '()'		
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown		
ily Reference	To avoid an unintended device RESET, the instruction sequence shown in the PIC [®] MCU Mid-Range Fam- ily Reference Manual (DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.									

Note:

PIC16F87X

REGISTER 0-1:	CUPICON	CCPICON REGISTER/CCP2CON REGISTER (ADDRESS: 1717/101)										
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0				
	bit 7							bit 0				
bit 7-6	Unimplem											
bit 5-4		CCPxX:CCPxY: PWM Least Significant bits										
	<u>Capture m</u> Unused	<u>Capture mode</u> : Unused										
	<u>Compare mode:</u> Unused											
	PWM mode: These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR											
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits								
	0100 = Ca 0101 = Ca 0110 = Ca 0111 = Ca 1000 = Co 1001 = Co 1010 = Co 1011 = Co 1011 = Co 1011 = Co	pture mode pture mode pture mode mpare mod mpare mod affected) mpare mod affected) mpare mode ets TMR1; abled)	, every fallir , every risin , every 4th r , every 16th e, set outpu e, clear outp e, generate e, trigger sp	ng edge g edge rising edge t rising edge t on match (out on match software int ecial event (0	ets CCPx mod CCPxIF bit is (CCPxIF bit errupt on mat CCPxIF bit is s starts an A/D	set) is set) ch (CCPxIF set, CCPx pi	in is unaffec	ted); CCP1				
	Legend:											
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented l	bit, read as	ʻ0'				

'1' = Bit is set

- n = Value at POR

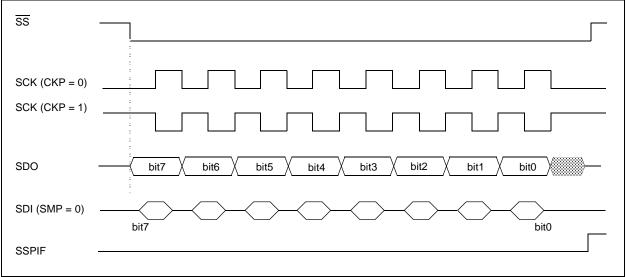
REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

x = Bit is unknown

'0' = Bit is cleared

9.1.2 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the interrupt flag bit SSPIF (PIR1<3>) is set.


While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications. While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from SLEEP.

- Note 1: When the <u>SPI</u> module is in Slave mode with <u>SS</u> pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the <u>SS</u> pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE = '1', then SS pin control must be enabled.

SCK (CKP = 0) SCK (CKP = 1) SD0 SD0 SD1 (SMP = 0) B17 SD1 SD1

FIGURE 9-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

PIC16F87X

	SPEN bit 7	RX9							
	hit 7		SREN	CREN	ADDEN	FERR	OERR	RX9D	
								bit C	
bit 7	1 = Serial p	ial Port Ena port enabled	l (configures	RC7/RX/D	T and RC6/T	X/CK pins a	as serial port	pins)	
bit 6	1 = Selects	Receive Ena 9-bit recep 8-bit recep	tion						
bit 5	SREN: Sin	gle Receive	Enable bit						
	Asynchron Don't care	ous mode:							
	1 = Enable 0 = Disable	<u>us mode - n</u> s single rec es single rec cleared after	eive	s complete.					
	<u>Synchrono</u> Don't care	<u>us mode - s</u>	lave:						
bit 4	CREN: Continuous Receive Enable bit								
		<u>ous mode:</u> s continuou es continuou							
				til enable bi	t CREN is cle	eared (CRE	N overrides	SREN)	
bit 3	ADDEN: A	ddress Dete	ect Enable b	it					
	1 = Enable RSR<8	s address d ⊳ is set		ables interru	ipt and load o				
bit 2	FERR: Fra	ming Error b g error (can	pit		RCREG regi			1 9	
bit 1		-	bit be cleared	by clearing	bit CREN)				
bit 0	RX9D: 9th	bit of Rece	ived Data (c	an be parity	bit, but mus	t be calcula	ted by user	firmware)	
	Legend:								
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	ʻ0'	

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

- n = Value at POR

x = Bit is unknown

10.2 USART Asynchronous Mode

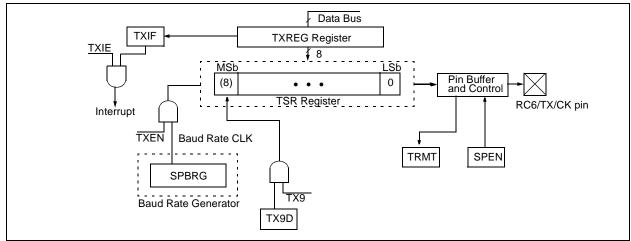
In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

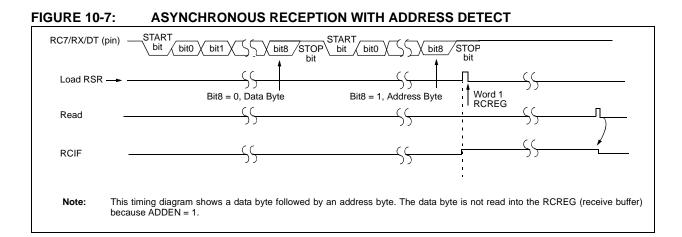
The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER


The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be

enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.


- **Note 1:** The TSR register is not mapped in data memory, so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

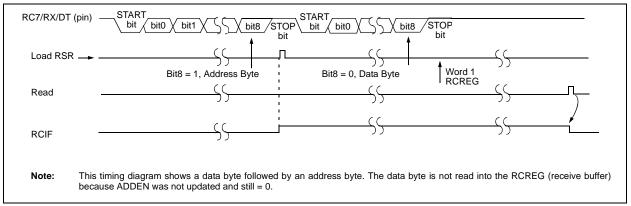

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

FIGURE 10-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	x000 0000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Re	ceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

12.0 SPECIAL FEATURES OF THE CPU

All PIC16F87X devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming
- Low Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87X devices have a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

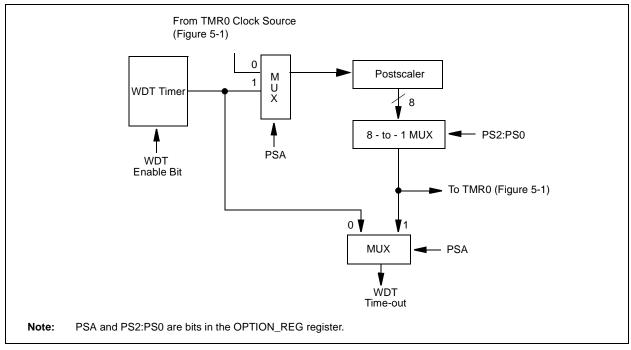
Additional information on special features is available in the $PIC^{\mathbb{R}}$ MCU Mid-Range Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. The erased, or unprogrammed value of the configuration word is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

12.12 Watchdog Timer (WDT)


The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/ CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 12.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 12-10: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer. **Note 1:** See Register 12-1 for operation of these bits.

12.17 In-Circuit Serial Programming

PIC16F87X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware, or a custom firmware to be programmed.

When using ICSP, the part must be supplied at 4.5V to 5.5V, if a bulk erase will be executed. This includes reprogramming of the code protect, both from an onstate to off-state. For all other cases of ICSP, the part may be programmed at the normal operating voltages. This means calibration values, unique user IDs, or user code can be reprogrammed or added.

For complete details of serial programming, please refer to the EEPROM Memory Programming Specification for the PIC16F87X (DS39025).

12.18 Low Voltage ICSP Programming

The LVP bit of the configuration word enables low voltage ICSP programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB3/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR pin. To enter Programming mode, VDD must be applied to the RB3/PGM, provided the LVP bit is set. The LVP bit defaults to on ('1') from the factory.

- Note 1: The High Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low Voltage ICSP mode, the RB3 pin can no longer be used as a general purpose I/O pin.
 - 3: When using low voltage ICSP programming (LVP) and the pull-ups on PORTB are enabled, bit 3 in the TRISB register must be cleared to disable the pull-up on RB3 and ensure the proper operation of the device.
 - 4: RB3 should not be allowed to float if LVP is enabled. An external pull-down device should be used to default the device to normal operating mode. If RB3 floats high, the PIC16F87X device will enter Programming mode.
 - LVP mode is enabled by default on all devices shipped from Microchip. It can be disabled by clearing the LVP bit in the CONFIG register.
 - 6: Disabling LVP will provide maximum compatibility to other PIC16CXXX devices.

If Low Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB3/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR. The LVP bit can only be charged when using high voltage on MCLR.

It should be noted, that once the LVP bit is programmed to 0, only the High Voltage Programming mode is available and only High Voltage Programming mode can be used to program the device.

When using low voltage ICSP, the part must be supplied at 4.5V to 5.5V, if a bulk erase will be executed. This includes reprogramming of the code protect bits from an on-state to off-state. For all other cases of low voltage ICSP, the part may be programmed at the normal operating voltage. This means calibration values, unique user IDs, or user code can be reprogrammed or added.

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

DC CHA	RACTEF	RISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC specification(Section 15.1)				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports			0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Voh	Output High Voltage					
D090		I/O ports ⁽³⁾	Vdd - 0.7		_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	_	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D150*	Vod	Open-Drain High Voltage		_	8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Cio	All I/O pins and OSC2 (RC mode)	_	—	50	pF	
D102	Св	SCL, SDA (I ² C mode)		_	400	pF	
		Data EEPROM Memory					
D120	ED	Endurance	100K	—	_		25°C at 5V
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Using EECON to read/write VMIN = min. operating voltage
D122	TDEW	Erase/write cycle time	—	4	8	ms	
		Program FLASH Memory					
D130	Eр	Endurance	1000	—	—		25°C at 5V
D131	Vpr	VDD for read	Vmin	—	5.5	V	VMIN = min operating voltage
D132A		VDD for erase/write	Vmin	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage
D133		Erase/Write cycle time		4	8	ms	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended)

DC CHARACTERISTICS Operating tem Operating volta (Section 15.1)			temp volta	rating Conditions (unless otherwise stated) perature $-40^{\circ}C \le TA \le +125^{\circ}C$ age VDD range as described in DC specification			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.15Vdd		For entire VDD range
D030A			Vss	—	0.8V	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V	
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)
		Ports RC3 and RC4					
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range
D034A		with SMBus	-0.5	—	0.6	V	for $VDD = 4.5$ to $5.5V$
	Vih	Input High Voltage					
		I/O ports		—			
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25VDD	—	Vdd	V	For entire VDD range
			+ 0.8V				
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range
D042		MCLR	0.8Vdd	—	Vdd	V	
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)
D043		OSC1 (in RC mode)	0.9Vdd	—	Vdd	V	
		Ports RC3 and RC4					
D044		with Schmitt Trigger buffer	0.7VDD	—	Vdd	V	For entire VDD range
D044A		with SMBus	1.4	—	5.5	V	for VDD = 4.5 to 5.5V
D070A	IPURB		50	250	400	μA	VDD = 5V, VPIN = VSS,
	lı∟	Input Leakage Current ^(2, 3)					
D060		I/O ports	-	-	±1	μA	$Vss \le VPIN \le VDD,$
							Pin at hi-impedance
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

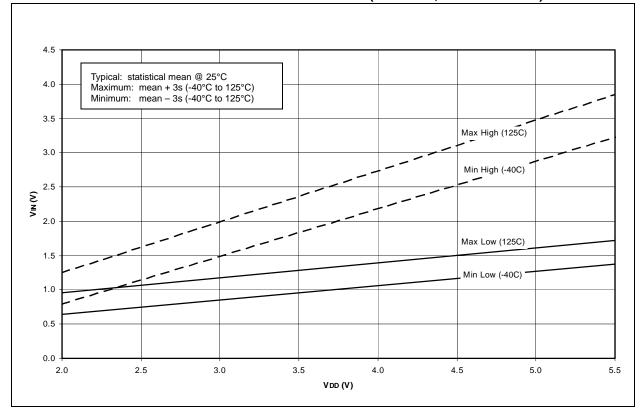
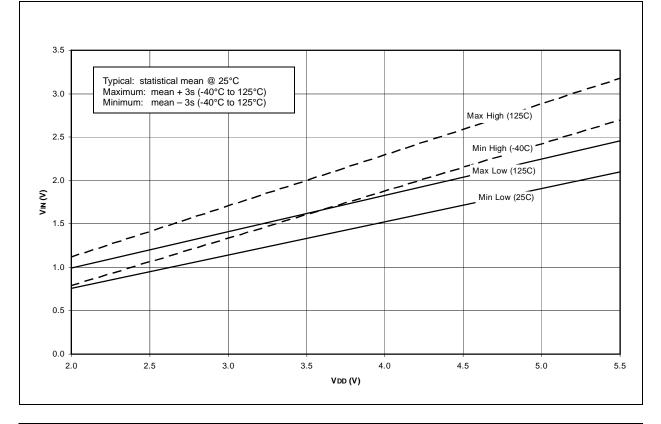
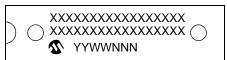



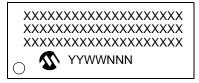
FIGURE 16-21: MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO 125°C)



© 1998-2013 Microchip Technology Inc.

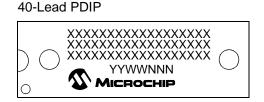
17.0 PACKAGING INFORMATION

17.1 Package Marking Information

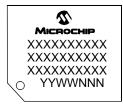

28-Lead PDIP (Skinny DIP)

Example

28-Lead SOIC



Example



Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

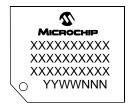
Package Marking Information (Cont'd)

44-Lead TQFP

Example

 \bigcirc

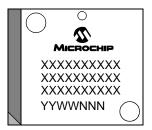
Example

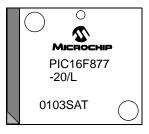

 $\lambda \lambda$

PIC16F877-04/P

0112SAA

MICROCHIP


44-Lead MQFP


Example

44-Lead PLCC

Example

INDEX

Α

A/D
Acquisition Requirements
ADCON0 Register
ADCON1 Register
ADIF bit
Analog Input Model Block Diagram
Analog Port Pins
Associated Registers and Bits
Block Diagram
Calculating Acquisition Time114
Configuring Analog Port Pins
Configuring the Interrupt
Configuring the Module113
Conversion Clock
Conversions
Delays
Effects of a RESET117
GO/DONE bit
Internal Sampling Switch (Rss) Impedence
Operation During SLEEP
Result Registers
Sampling Requirements
Source Impedence
Time Delays114
Absolute Maximum Ratings
ACK
Acknowledge Data bit
Acknowledge Pulse
Acknowledge Sequence Enable bit
Acknowledge Status bit
ADRES Register
Analog Port Pins. See A/D
Analog-to-Digital Converter. See A/D
Application Notes
AN552 (Implementing Wake-up on Key Strokes
Using PIC16CXXX)
AN556 (Implementing a Table Read)
AN578 (Use of the SSP Module in the I2C
Multi-Master Environment)
Architecture
PIC16F873/PIC16F876 Block Diagram5
PIC16F874/PIC16F877 Block Diagram
Assembler
MPASM Assembler143
В
Banking, Data Memory 12, 18
Baud Rate Generator
BCLIF
BF
Block Diagrams
A/D
A/D Converter113

 Analog Input Model
 114

 Baud Rate Generator
 79

 Capture Mode
 59

 Compare Mode
 60

 I²C Master Mode
 78

 I²C Module
 73

 I²C Slave Mode
 73

 Interrupt Logic
 129

 PIC16F873/PIC16F876
 5

PIC16F874/PIC16F877	6
PORTA	
RA3:RA0 and RA5 Pins	
RA4/T0CKI Pin	29
PORTB	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	31
PORTC	
Peripheral Output Override (RC 0:2, 5:7)	
Peripheral Output Override (RC 3:4)	
PORTD	
PORTD and PORTE (Parallel Slave Port)	
PORTE	36
PWM Mode	61
RESET Circuit	123
SSP (I ² C Mode)	73
SSP (SPI Mode)	
Timer0/WDT Prescaler	47
Timer1	52
Timer2	55
USART Asynchronous Receive	101
USART Asynchronous Receive (9-bit Mode)	103
USART Transmit	99
Watchdog Timer	131
BOR. See Brown-out Reset	
BRG	79
BRGH bit	
Brown-out Reset (BOR) 119, 123, 7	125, 126
BOR Status (BOR Bit)	25
Buffer Full bit, BF	74
Bus Arbitration	89
Bus Collision Section	89
Bus Collision During a Repeated START Condition	92
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	93
Bus Collision Interrupt Flag bit, BCLIF	24

С

Capture/Compare/PWM (CCP)	57
Associated Registers	
Capture, Compare and Timer1	62
PWM and Timer2	63
Capture Mode	59
Block Diagram	59
CCP1CON Register	58
CCP1IF	59
Prescaler	59
CCP Timer Resources	57
CCP1	
RC2/CCP1 Pin	7, 9
CCP2	
RC1/T1OSI/CCP2 Pin	7, 9
Compare	
Special Trigger Output of CCP1	60
Special Trigger Output of CCP2	60
Compare Mode	60
Block Diagram	60
Software Interrupt Mode	
Special Event Trigger	60
Interaction of Two CCP Modules (table)	57