

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
_		—	—	—		POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

NOTES:

6.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by either of the two CCP modules (Section 8.0). Register 6-1 shows the Timer1 control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored, and these pins read as '0'.

Additional information on timer modules is available in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
	bit 7							bit 0			
bit 7-6	Unimplemented: Read as '0'										
bit 5-4	T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits										
		rescale valu									
		rescale valu rescale valu									
	• = • • • • •	rescale valu									
bit 3	T1OSCEN	: Timer1 Os	cillator Enal	ble Control b	it						
	1 = Oscillat	tor is enable	ed								
	0 = Oscillat	tor is shut-c	off (the oscill	ator inverter	is turned off to	eliminate p	ower drain)			
bit 2	T1SYNC: 7	Timer1 Exte	rnal Clock Ir	nput Synchro	onization Contr	ol bit					
	When TMF										
		•	e external cl								
	When TMR		nal clock inp	Jul							
			ner1 uses th	e internal clo	ock when TMR	1CS = 0.					
bit 1	TMR1CS:	- Timer1 Cloo	k Source So	elect bit							
			•	10SO/T1Ck	(I (on the rising	edge)					
	0 = Interna	I clock (Fos	sc/4)								
bit 0	TMR10N:		bit								
	1 = Enable										
	0 = Stops 7	imer1									
	· · ·										
	Legend:										
	R = Reada			Vritable bit	U = Unimpl						
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown			

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt-on-overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock, will guarantee a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 Timer1 Oscillator

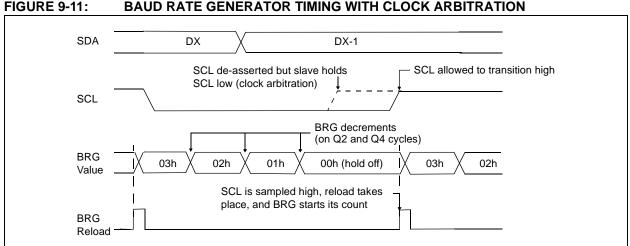
A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator, rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq.	C1	C2				
LP	32 kHz	33 pF	33 pF				
	100 kHz	15 pF	15 pF				
	200 kHz	15 pF					
These va	lues are for o	design guida	nce only.				
Crystals Tested:							
32.768 kHz	Epson C-00	1R32.768K-A	± 20 PPM				
100 kHz	Epson C-2	100.00 KC-P	± 20 PPM				
200 kHz	STD XTL	200.000 kHz	± 20 PPM				
 200 kHz STD XTL 200.000 kHz ± 20 PPM Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 							

6.6 Resetting Timer1 using a CCP Trigger Output


If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

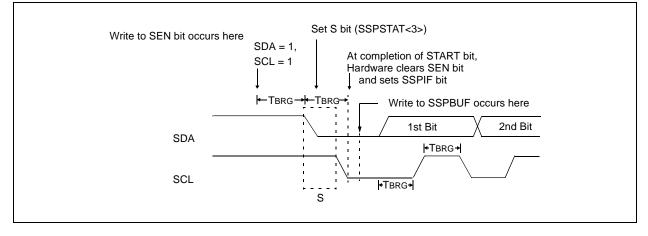
In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

9.2.9 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the START condition, and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware. The baud rate generator is suspended, leaving the SDA line held low, and the START condition is complete.


Note: If, at the beginning of START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag (BCLIF) is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

9.2.9.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

FIGURE 9-12: FIRST START BIT TIMING

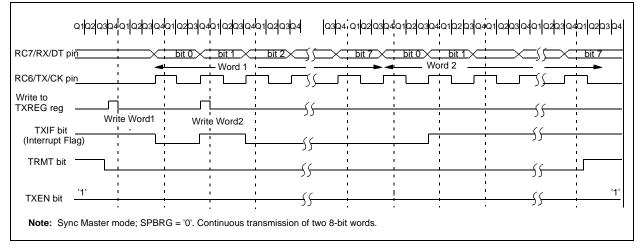
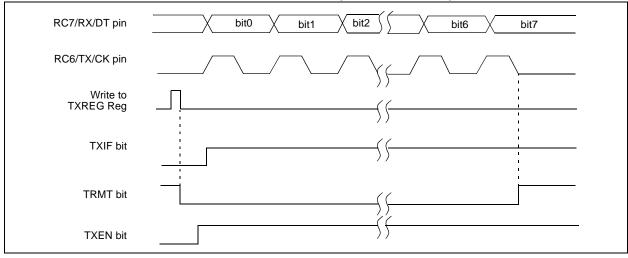


TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission. **Note 1:** Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

FIGURE 10-9: SYNCHRONOUS TRANSMISSION

FIGURE 10-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin devices and eight for the other devices.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, VSS, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O.

Additional information on using the A/D module can be found in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

REGISTER 11-1: ADCON0 REGISTER (ADDRESS: 1Fh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0			
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON			
	bit 7							bit 0			
bit 7-6	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from the internal A/D module RC oscillator)										
bit 5-3	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4) 101 = channel 5, (RE0/AN5) ⁽¹⁾ 110 = channel 6, (RE1/AN6) ⁽¹⁾ 111 = channel 7, (RE2/AN7) ⁽¹⁾										
bit 2	$\frac{\text{If ADON} = 1}{1 = A/D \text{ cor}}$ $0 = A/D \text{ cor}$	version in pr	ogress (setti n progress (t	ng this bit sta		onversion) ared by hardv	vare when t	he A/D			
bit 1	Unimpleme	ented: Read a	as '0'								
bit 0	ADON: A/D On bit 1 = A/D converter module is operating										
	 0 = A/D converter module is shut-off and consumes no operating current Note 1: These channels are not available on PIC16F873/876 devices. 										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F87X

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 **PCFG3:PCFG0**: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	Α	А	А	Α	Α	Α	Α	Vdd	Vss	8/0
0001	А	А	А	А	VREF+	А	Α	Α	RA3	Vss	7/1
0010	D	D	D	А	Α	Α	Α	Α	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	Α	Α	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	А	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	Vdd	Vss	0/0
1000	А	А	А	А	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	А	А	Α	А	Α	Α	Vdd	Vss	6/0
1010	D	D	А	А	VREF+	Α	Α	А	RA3	Vss	5/1
1011	D	D	А	А	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	А	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	Vref-	D	А	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine sample time, see Section 11.1. After this acquisition time has elapsed, the A/D conversion can be started.

12.0 SPECIAL FEATURES OF THE CPU

All PIC16F87X devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming
- Low Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87X devices have a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

Additional information on special features is available in the $PIC^{\mathbb{R}}$ MCU Mid-Range Reference Manual, (DS33023).

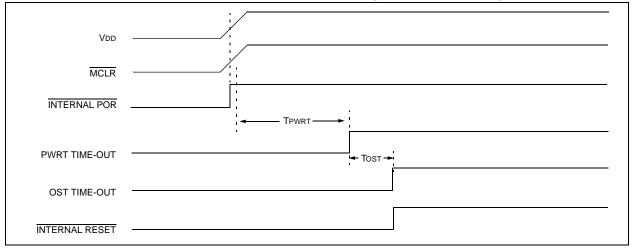
12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. The erased, or unprogrammed value of the configuration word is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

						•	,
Register		Dev	ices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt
PIE2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu
PCON	873	874	876	877	dd	uu	uu
PR2	873	874	876	877	1111 1111	1111 1111	1111 1111
SSPADD	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	873	874	876	877	00 0000	00 0000	uu uuuu
TXSTA	873	874	876	877	0000 -010	0000 -010	uuuu -uuu
SPBRG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
ADRESL	873	874	876	877	XXXX XXXX	սսսս սսսս	uuuu uuuu
ADCON1	873	874	876	877	0 0000	0 0000	u uuuu
EEDATA	873	874	876	877	0 0000	0 0000	u uuuu
EEADR	873	874	876	877	XXXX XXXX	սսսս սսսս	uuuu uuuu
EEDATH	873	874	876	877	XXXX XXXX	սսսս սսսս	uuuu uuuu
EEADRH	873	874	876	877	XXXX XXXX	սսսս սսսս	uuuu uuuu
EECON1	873	874	876	877	x x000	u u000	u uuuu
EECON2	873	874	876	877			

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

FIGURE 12-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

PIC16F87X

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

PIC16F87X

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

RETLW	Return with Literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC						
Status Affected:	None						
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.						

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No. Sym		Characteristic	Min	Тур†	Max	Units	Conditions			
	VIL	Input Low Voltage								
		I/O ports								
D030		with TTL buffer	Vss	—	0.15Vdd	V	For entire VDD range			
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$			
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V				
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V				
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)			
		Ports RC3 and RC4		—						
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range			
D034A		with SMBus	-0.5	—	0.6	V	for VDD = 4.5 to 5.5V			
	Vih	Input High Voltage			r	r	1			
		I/O ports		—						
D040		with TTL buffer	2.0	—	Vdd	-	$4.5V \leq VDD \leq 5.5V$			
D040A			0.25VDD + 0.8V	_	Vdd	V	For entire VDD range			
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range			
D042		MCLR	0.8Vdd	—	Vdd	V				
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)			
D043		OSC1 (in RC mode) Ports RC3 and RC4	0.9Vdd		Vdd	V				
D044		with Schmitt Trigger buffer	0.7Vdd	—	Vdd	V	For entire VDD range			
D044A		with SMBus	1.4	—	5.5	V	for VDD = 4.5 to 5.5V			
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = Vss, -40°С то +85°С			
	lı∟	Input Leakage Current ^(2, 3)		•		•				
D060		I/O ports	—	—	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-impedance			
D061		MCLR, RA4/T0CKI	_	_	±5	μA	$Vss \leq VPIN \leq VDD$			
D063		OSC1	—	_	±5	•	$Vss \le VPIN \le VDD$, XT, HS and LP osc configuration			

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

15.3 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended)

PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Extended)			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	ol Characteristic/ Min Typ† Max Units Device				Conditions		
	VDD Supply Voltage							
D001			4.0	—	5.5	V	LP, XT, RC osc configuration	
D001A			4.5		5.5	V	HS osc configuration	
D001A			VBOR		5.5	V	BOR enabled, FMAX = 10 MHz ⁽⁷⁾	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	_	V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details	
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled	

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

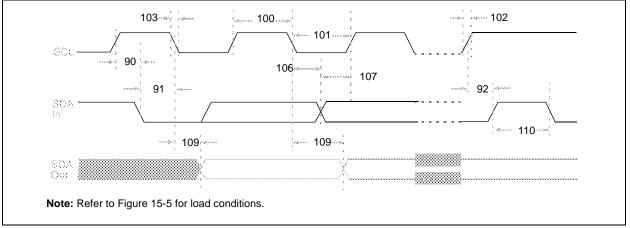
15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 15.1)						
Param No.	Sym	Characteristic	Min Typ†		Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports							
D030		with TTL buffer	Vss	—	0.15Vdd		For entire VDD range		
D030A			Vss	—	0.8V	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V			
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)		
		Ports RC3 and RC4							
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range		
D034A		with SMBus	-0.5	—	0.6	V	for $VDD = 4.5$ to $5.5V$		
	Vih	Input High Voltage							
		I/O ports		—					
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25VDD	—	Vdd	V	For entire VDD range		
			+ 0.8V						
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range		
D042		MCLR	0.8Vdd	—	Vdd	V			
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)		
D043		OSC1 (in RC mode)	0.9Vdd	—	Vdd	V			
		Ports RC3 and RC4							
D044		with Schmitt Trigger buffer	0.7VDD	—	Vdd	V	For entire VDD range		
D044A		with SMBus	1.4	—	5.5	V	for VDD = 4.5 to 5.5V		
D070A	IPURB		50	250	400	μA	VDD = 5V, VPIN = VSS,		
	lı∟	Input Leakage Current ^(2, 3)							
D060		I/O ports	-	-	±1	μA	$Vss \le VPIN \le VDD,$		
							Pin at hi-impedance		
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

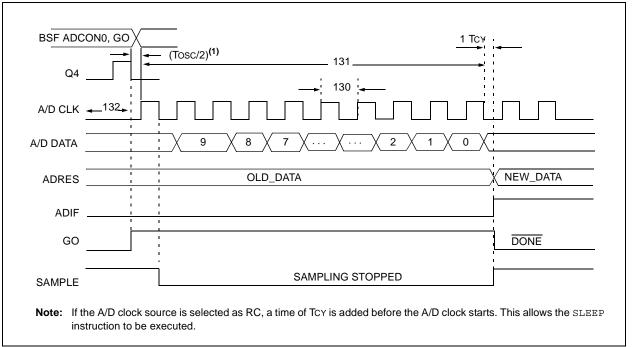

Parameter No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions	
90	Tsu:sta	START condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	—	—		START condition	
91	Thd:sta	START condition	100 kHz mode	4000	_	_	ns	After this period, the first clock	
		Hold time	400 kHz mode	600	_	_		pulse is generated	
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	-	_			
93	Thd:sto	STOP condition	100 kHz mode	4000	-	_	ns		
		Hold time	400 kHz mode	600	_	_			

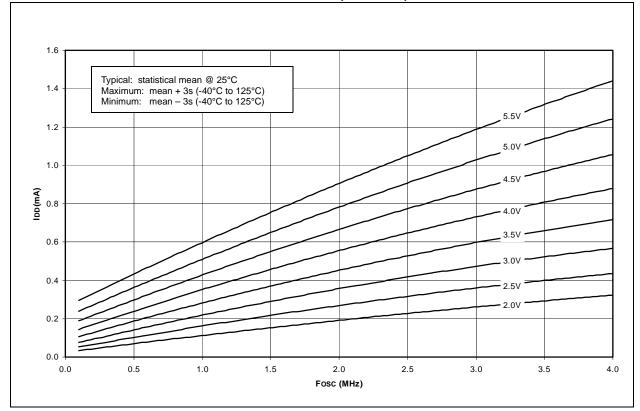
TABLE 15-8:	I ² C BUS START/STOP BITS REQUIREMENTS
-------------	---

FIGURE 15-18: I²C BUS DATA TIMING

TABLE 15-13: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Chara	cteristic	Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	Standard(F)	1.6	_	_	μS	Tosc based, VREF \geq 3.0V
			Extended(LF)	3.0	—	_	μS	Tosc based, VREF \geq 2.0V
			Standard(F)	2.0	4.0	6.0	μS	A/D RC mode
			Extended(LF)	3.0	6.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including S/H time) (Note 1)			—	12	Tad	
132	TACQ Acquisition time		(Note 2)	40	_	μs		
				10*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input volt- age has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock star	t	_	Tosc/2 §	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

These parameters are characterized but not tested.


Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.


2: See Section 11.1 for minimum conditions.

PIC16F87X

FIGURE 16-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events