

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877-20-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can be found in Section 4.0 of this data sheet.
0.0.4	

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF		
	bit 7							bit 0		
bit 7	GIE: Globa	al Interrupt E	nable bit							
	1 = Enable 0 = Disabl	es all unmasl es all interru	ked interrup pts	ots						
bit 6	PEIE: Peri	pheral Interr	upt Enable	bit						
	1 = Enable 0 = Disabl	es all unmasl es all peripho	ked periphe eral interrup	eral interrupt	S					
bit 5	TOIE: TMF	R0 Overflow I	Interrupt En	able bit						
	1 = Enable 0 = Disabl	es the TMR0 es the TMR0	interrupt) interrupt							
bit 4	INTE: RBC)/INT Externa	al Interrupt	Enable bit						
	1 = Enable 0 = Disabl	es the RB0/II es the RB0/I	NT external NT externa	interrupt I interrupt						
bit 3	RBIE: RB	Port Change	e Interrupt E	nable bit						
	1 = Enable 0 = Disabl	es the RB po es the RB po	rt change ir ort change i	nterrupt nterrupt						
bit 2	TOIF: TMR	IIF: TMR0 Overflow Interrupt Flag bit								
	1 = TMR0 0 = TMR0	register has register did	overflowed not overflov	(must be cl v	eared in softwa	re)				
bit 1	INTF: RB0	/INT Externa	al Interrupt I	Flag bit						
	1 = The R 0 = The R	B0/INT exter B0/INT exter	nal interrup nal interrup	t occurred (t did not occ	must be cleared cur	d in softwar	re)			
bit 0	RBIF : RB	Port Change	Interrupt F	lag bit						
	1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to se the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared (must be cleared in software).							inue to set cleared		
	0 = None (of the RB/:R	в4 pins hav	ve changed	state					
	Legend:									
	R = Reada	able bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '	0'		
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is u	nknown		

2.2.2.4 **PIE1** Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

PIE1 REGISTER (ADDRESS 8Ch) **REGISTER 2-4:**

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE				
	bit 7							bit 0				
bit 7	PSPIE ⁽¹⁾ : F	Parallel Slav	e Port Read	d/Write Inter	rupt Enable bit							
	1 = Enables the PSP read/write interrupt0 = Disables the PSP read/write interrupt											
bit 6	ADIE: A/D	Converter li	nterrupt Ena	able bit								
	1 = Enable 0 = Disable	s the A/D co es the A/D c	onverter inte onverter inte	errupt errupt								
bit 5	RCIE: USA	RT Receive	Interrupt E	nable bit								
	1 = Enable 0 = Disable	s the USAR es the USAF	T receive in RT receive in	nterrupt nterrupt								
bit 4	TXIE: USART Transmit Interrupt Enable bit											
	 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt 											
bit 3	SSPIE: Synchronous Serial Port Interrupt Enable bit											
	 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt 											
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	it								
	1 = Enable	s the CCP1	interrupt									
	0 = Disables the CCP1 interrupt											
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enable	e bit							
	 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt 											
bit 0	TMR1IE: T	MR1 Overfle	ow Interrupt	Enable bit								
	1 = Enable 0 = Disable	s the TMR1 s the TMR1	overflow in overflow ir	terrupt nterrupt								

Note 1: PSPIE is reserved on PIC16F873/876 devices; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset, or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding R	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								uuuu uuuu
0Fh	TMR1H	Holding R	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu								uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0	
	bit 7							bit 0	
bit 7-6	Unimplem	ented: Rea	d as '0'						
bit 5-4	CCPxX:CC	PxY: PWM	Least Sign	ificant bits					
	<u>Capture mo</u> Unused	ode:							
	<u>Compare n</u> Unused	<u>node:</u>							
	<u>PWM mode</u> These bits	<u>ə:</u> are the two	LSbs of the	PWM duty	cycle. The eig	ght MSbs ar	e found in (CPRxL.	
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits					
	0000 = Capture/Compare/PWM disabled (resets CCPx module)								
	0100 = Ca	pture mode	, every fallir	ig edge					
	0101 = Ca	pture mode	, every risin	g edge					
	0110 = Ca	nture mode	every 4011	rising edge					
	1000 = Co	mpare mod	e, set outpu	t on match (CCPxIF bit is	set)			
	1001 = Co	mpare mod	e, clear outp	out on match	(CCPxIF bit	is set)			
	1010 = Co r una	mpare mode	e, generate	software inte	errupt on mate	ch (CCPxIF	bit is set, C	CPx pin is	
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)								
	11xx = PW	/M mode							
								1	
	Legend:								
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented b	oit, read as	0'	

'1' = Bit is set

- n = Value at POR

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

x = Bit is unknown

'0' = Bit is cleared

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

The type of event is configured by control bits CCP1M3:CCP1M0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	move value and CCP \ensuremath{ON}
MOVWF	CCP1CON	;	Load CCP1CON with this
		;	value

FIGURE 9-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8 bits are shifted into SSPSR and the address is compared against SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 9-8).

FIGURE 9-8: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

9.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 9-18).

9.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

9.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 9-18: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

9.2.18.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data'0'). If, however, SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs, because no two masters can assert SDA at exactly the same time.

If, however, SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data'1' during the Repeated START condition.

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low, the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete (Figure 9-23).

FIGURE 9-23: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 9-24: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Ser	ial Port Ena	ble bit									
	1 = Serial p	oort enabled	(configures	RC7/RX/D	I and RC6/I	X/CK pins a	is serial port	t pins)				
hit 6		Pacaiva Enc	u ahla hit									
DIL U	1 = Selects	9-bit recept	tion									
	0 = Selects	s 8-bit recept	tion									
bit 5	SREN: Sin	gle Receive	Enable bit									
	Asynchron	<u>ous mode:</u>										
	Don't care											
	Synchrono	<u>us mode - m</u> a aingla raa	<u>naster:</u>									
	1 = Enable 0 = Disable	s single rece	eive									
	This bit is c	cleared after	reception is	s complete.								
	<u>Synchrono</u>	us mode - sl	lave:									
	Don't care											
bit 4	CREN: Co	ntinuous Re	ceive Enabl	e bit								
	Asynchron	<u>ous mode:</u>										
	1 = Enable 0 = Disable	s continuou: es continuou	s receive									
	Synchrono	us mode:										
	1 = Enable	1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)										
	0 = Disable	es continuou	s receive									
bit 3	ADDEN: A	ddress Dete	ect Enable b	it								
	Asynchron	<u>ous mode 9-</u>	<u>-bit (RX9 = ´</u>	<u>1):</u> ablasinterru	امحما اممر	of the reaction	a huffaruuh					
	$\perp = \text{Enable}$	s address de l> is set	etection, ena	ables Interru	ipt and load	of the receiv	e butter wh	en				
	0 = Disable	es address d	letection, all	bytes are re	eceived, and	ninth bit ca	n be used a	s parity bit				
bit 2	FERR: Fra	ming Error b	oit									
	1 = Framin	g error (can	be updated	by reading	RCREG reg	ister and rec	ceive next va	alid byte)				
	0 = No frar	ning error										
bit 1		errun Error	bit	hu olooring l								
	1 = Overru	rrun error	be cleared	by cleaning i								
bit 0	RX9D: 9th	bit of Recei	ived Data (c	an be parity	bit but mus	t be calcula	ted by user i	firmware)				
2						. se calculu						
	Legend:											
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit. read as	'0'				

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

- n = Value at POR

x = Bit is unknown

10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, and no further data will be received. It is therefore, essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

NOTES:

12.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 12.13 for details on SLEEP mode.

12.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

12.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 3.2).

12.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

For the PIC16F873/874 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F876/877 devices, temporary holding registers W_TEMP, STATUS_TEMP, and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 12-1 can be used.

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR)		;(Insert user code here)
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

TABLE 13-2: PIC16F87X INSTRUCTION SET

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	Status	Netor		
		Description	Cycles	MSb			LSb	Affected	Notes	
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENTED FILE REGISTER OPERATIONS										
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL AND CONTROL OPERATIONS										
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present										

 When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

FIGURE 15-2: PIC16LF87X-04 VOLTAGE-FREQUENCY GRAPH (COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES ONLY)

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)								
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
DC CHA	$0^{\circ}C \le TA \le +70^{\circ}C$ for commercial								
	(Section 15.1)								
Daram				0.1)					
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports							
D030		with TTL buffer	Vss	—	0.15Vdd	V	For entire VDD range		
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$		
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V			
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)		
		Ports RC3 and RC4		—					
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range		
D034A		with SMBus	-0.5	—	0.6	V	for VDD = 4.5 to 5.5V		
	Vih	Input High Voltage							
		I/O ports							
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25Vdd	—	Vdd	V	For entire VDD range		
			+ 0.8V						
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range		
D042		MCLR	0.8Vdd	—	Vdd	V			
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)		
D043		OSC1 (in RC mode)	0.9Vdd	—	Vdd	V			
		Ports RC3 and RC4							
D044		with Schmitt Trigger buffer	0.7Vdd	—	Vdd	V	For entire VDD range		
D044A		with SMBus	1.4	—	5.5	V	for $VDD = 4.5$ to $5.5V$		
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = VSS,		
	1	(2.2)					-40°C TO +85°C		
	IIL	Input Leakage Current ^(2, 3)							
D060		I/O ports	—	—	±1	μA	$Vss \leq VPIN \leq VDD,$		
							Pin at hi-impedance		
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$VSS \leq VPIN \leq VDD$		
D063		OSC1	—	—	±5	μA	$Vss \le VPIN \le VDD, XT, HS$		
	-						and LP osc configuration		

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 15-13: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	Standard(F)	1.6	—		μS	Tosc based, VREF \geq 3.0V
			Extended(LF)	3.0	—		μS	Tosc based, VREF $\geq 2.0V$
			Standard(F)	2.0	4.0	6.0	μS	A/D RC mode
			Extended(LF)	3.0	6.0	9.0	μS	A/D RC mode
131	TCNV	Conversion time (not including S/H time) (Note 1)			—	12	TAD	
132	TACQ	Acquisition time		(Note 2)	40	_	μS	
				10*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input volt- age has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2 §		_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are t not tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.1 for minimum conditions.

NOTES: