

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Memory Organization	11
3.0	I/O Ports	
4.0	Data EEPROM and FLASH Program Memory	41
5.0	Timer0 Module	47
6.0	Timer1 Module	51
7.0	Timer2 Module	55
8.0	Capture/Compare/PWM Modules	57
9.0	Master Synchronous Serial Port (MSSP) Module	
10.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
11.0	Analog-to-Digital Converter (A/D) Module	111
12.0	Special Features of the CPU	119
13.0	Instruction Set Summary	135
14.0	Development Support	143
15.0	Electrical Characteristics	149
16.0	DC and AC Characteristics Graphs and Tables	177
17.0	Packaging Information	189
Appe	ndix A: Revision History	197
Appe	ndix B: Device Differences	197
Appe	ndix C: Conversion Considerations	198
Index	(199
On-L	ine Support	207
Read	ler Response	
PIC1	6F87X Product Identification System	209

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:	
Bank 1												
80h ⁽³⁾	INDF	Addressin	Addressing this location uses contents of FSR to address data memory (not a physical register)									
81h	OPTION_REG	RBPU	RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0									
82h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26	
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18	
84h ⁽³⁾	FSR	Indirect Da	ata Memory	Address Poir	nter					XXXX XXXX	27	
85h	TRISA	—	-	PORTA Da	ta Direction F	legister				11 1111	29	
86h	TRISB	PORTB Da	ata Direction	Register						1111 1111	31	
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	33	
88h ⁽⁴⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	35	
89h ⁽⁴⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data	Direction Bi	ts	0000 -111	37	
8Ah ^(1,3)	PCLATH	—	-		Write Buffer	for the upper	r 5 bits of the I	Program Cou	unter	0 0000	26	
8Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20	
8Ch	PIE1	PSPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	21	
8Dh	PIE2	—	(5)		EEIE	BCLIE	_	-	CCP2IE	-r-0 00	23	
8Eh	PCON	—	—		—	—	—	POR	BOR	qq	25	
8Fh	—	Unimplem	ented							—	—	
90h	—	Unimplem	ented						-	—	—	
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	68	
92h	PR2	Timer2 Pe	riod Registe	r						1111 1111	55	
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C mode) Address Re	gister				0000 0000	73, 74	
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	66	
95h	—	Unimplem	ented							—	—	
96h	—	Unimplem	ented							—	—	
97h	—	Unimplem	ented						-	—	—	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	95	
99h	SPBRG	Baud Rate	e Generator I	Register						0000 0000	97	
9Ah	—	Unimplem	ented							—	—	
9Bh	—	Unimplem	ented							_	—	
9Ch	—	Unimplem	Unimplemented									
9Dh	—	Unimplem	ented							-	—	
9Eh	ADRESL	A/D Resul	t Register Lo	w Byte		-			-	XXXX XXXX	116	
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0 0000	112	

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.
3: These registers can be addressed from any bank.
4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt bits are clear prior to enabling an interrupt.

		-		-								
	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF				
	bit 7		1		1	1		bit 0				
bit 7	PSPIF⁽¹⁾: F 1 = A read 0 = No read	PSPIF⁽¹⁾: Parallel Slave Port Read/Write Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred										
bit 6	ADIF : A/D 1 = An A/D 0 = The A/I	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete										
bit 5	RCIF : USA 1 = The US 0 = The US	RCIF : USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empty										
bit 4	TXIF : USA 1 = The US 0 = The US	RT Transmi SART transr SART transr	t Interrupt Fl nit buffer is e nit buffer is f	ag bit empty ull								
bit 3	SSPIF: Syr 1 = The SS from th • SPI - / • I ² C S - / • I ² C M - / - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	A transmissi Slave A transmissi A transmissi A transmissi A transmissi A transmissi The initiated The initiated The initiated A START co A STOP cor P interrupt co	Serial Port (S condition has Service Rout ion/reception ion/reception I START con I STOP cond I Restart con I Acknowledg indition occur condition has	SP) Interru occurred, a ine. The co has taken has taken has taken dition was co dition	pt Flag and must be nditions that place. place. completed by completed by completed by was compl ie SSP module e SSP module	cleared in sc t will set this y the SSP m the SSP m y the SSP m eted by the s ule was idle (ule was idle (oftware befor bit are: odule. odule. SSP module (Multi-Maste Multi-Maste	e returning r system). r system).				
bit 2	 0 = No SSP interrupt condition has occurred. CCP1IF: CCP1 Interrupt Flag bit <u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred 											
bit 1	TMR2IF : TI 1 = TMR2 t 0 = No TMI	MR2 to PR2 to PR2 mate R2 to PR2 r	2 Match Inter ch occurred (match occurr	rupt Flag bi (must be cle ed	it eared in soft	ware)						
bit 0	TMR1IF : TI 1 = TMR1 I 0 = TMR1 I Note 1: P	 TMR1IF: TMR1 Overflow Interrupt Flag bit TMR1 register overflowed (must be cleared in software) TMR1 register did not overflow Note 1: PSPIF is reserved on PIC16F873/876 devices: always maintain this bit clear 										
	1											
	R = Readal - n = Value	ble bit at POR	W = Writab '1' = Bit is s	le bit set	U = Unimp '0' = Bit is	lemented bi	t, read as '0' x = Bit is u	nknown				

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	_	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	SUPATILS	PD 0	
BCF	STATUS,	RI U RD1	, • Banku
DCF	SIAIOS,	KE I	, Baliko
CLRF	PORTA		; Initialize PORTA by
			; clearing output
			; data latches
BSF	STATUS,	RP0	; Select Bank 1
MOVLW	0x06		; Configure all pins
MOVWF	ADCON1		; as digital inputs
MOVLW	0xCF		; Value used to
			; initialize data
			; direction
MOVWF	TRISA		; Set RA<3:0> as inputs
			; RA<5:4> as outputs
			; TRISA<7:6>are always
			; read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN

4.4 Reading the FLASH Program Memory

Reading FLASH program memory is much like that of EEPROM data memory, only two NOP instructions must be inserted after the RD bit is set. These two instruction cycles that the NOP instructions execute, will be used by the microcontroller to read the data out of program the memory and insert value into the EEDATH:EEDATA registers. Data will be available following the second NOP instruction. EEDATH and EEDATA will hold their value until another read operation is initiated, or until they are written by firmware.

The steps to reading the FLASH program memory are:

- 1. Write the address to EEADRH:EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 2. Set the EEPGD bit to point to FLASH program memory.
- 3. Set the RD bit to start the read operation.
- 4. Execute two NOP instructions to allow the microcontroller to read out of program memory.
- 5. Read the data from the EEDATH:EEDATA registers.

EXAMPLE 4-3: FLASH PROGRAM READ

BSF	STATUS, RP1	;
BCF	STATUS, RPO	;Bank 2
MOVF	ADDRL, W	;Write the
MOVWF	EEADR	;address bytes
MOVF	ADDRH,W	;for the desired
MOVWF	EEADRH	;address to read
BSF	STATUS, RPO	;Bank 3
BSF	EECON1, EEPGD	;Point to Program memory
BSF	EECON1, RD	;Start read operation
NOP		;Required two NOPs
NOP		;
BCF	STATUS, RPO	;Bank 2
MOVF	EEDATA, W	;DATAL = EEDATA
MOVWF	DATAL	;
MOVF	EEDATH,W	;DATAH = EEDATH
MOVWF	DATAH	;

4.5 Writing to the FLASH Program Memory

Writing to FLASH program memory is unique, in that the microcontroller does not execute instructions while programming is taking place. The oscillator continues to run and all peripherals continue to operate and queue interrupts, if enabled. Once the write operation completes (specification D133), the processor begins executing code from where it left off. The other important difference when writing to FLASH program memory, is that the WRT configuration bit, when clear, prevents any writes to program memory (see Table 4-1).

Just like EEPROM data memory, there are many steps in writing to the FLASH program memory. Both address and data values must be written to the SFRs. The EEPGD bit must be set, and the WREN bit must be set to enable writes. The WREN bit should be kept clear at all times, except when writing to the FLASH Program memory. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.

Writes to program memory must also be prefaced with a special sequence of instructions that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruption for each byte written. These instructions must then be followed by two NOP instructions to allow the microcontroller to setup for the write operation. Once the write is complete, the execution of instructions starts with the instruction after the second NOP.

The steps to write to program memory are:

- 1. Write the address to EEADRH:EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 2. Write the 14-bit data value to be programmed in the EEDATH:EEDATA registers.
- 3. Set the EEPGD bit to point to FLASH program memory.
- 4. Set the WREN bit to enable program operations.
- 5. Disable interrupts (if enabled).
- 6. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 7. Execute two NOP instructions to allow the microcontroller to setup for write operation.
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.

TABLE 9-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on: MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	ous Serial	Port Recei	ive Buff	er/Transm	it Register			XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode. **Note 1:** These bits are reserved on PCI16F873/876 devices; always maintain these bits clear.

9.2.11 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address, is accomplished by simply writing a value to SSPBUF register. This action will set the Buffer Full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time spec). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA allowing the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurs or if data was received properly. The status of ACK is read into the ACKDT on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit (ACKSTAT) is cleared. If not, the bit is set. After the ninth clock, the SSPIF is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 9-14).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL, until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared, and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

9.2.11.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

9.2.11.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

9.2.11.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

FIGURE 10-5: ASYNCHRONOUS RECEPTION

When setting up an Asynchronous Reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART F	Receive Reg	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rat	e Generato	r Register						0000 0000	0000 0000

TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	А	А	А	А	А	А	А	А	Vdd	Vss	8/0
0001	А	А	А	А	VREF+	А	А	А	RA3	Vss	7/1
0010	D	D	D	А	Α	А	А	А	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	А	А	RA3	Vss	4/1
0100	D	D	D	D	Α	D	А	А	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	А	А	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	Vdd	Vss	0/0
1000	А	А	А	А	VREF+	VREF-	А	А	RA3	RA2	6/2
1001	D	D	А	А	А	А	А	А	Vdd	Vss	6/0
1010	D	D	А	А	VREF+	А	А	А	RA3	Vss	5/1
1011	D	D	А	А	VREF+	VREF-	А	А	RA3	RA2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	А	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	А	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine sample time, see Section 11.1. After this acquisition time has elapsed, the A/D conversion can be started.

11.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next

FIGURE 11-3: A/D CONVERSION TAD CYCLES

acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-4: A/D RESULT JUSTIFICATION

12.10 Interrupts

The PIC16F87X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

© 1998-2013 Microchip Technology Inc.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the <u>prescaler of</u> the WDT. Status bits TO and PD are set.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f		
Syntax:	[label] COMF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$(\overline{f}) \rightarrow (destination)$		
Status Affected:	Z		
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

MOVF	Move f			
Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) \rightarrow (destination)			
Status Affected:	Z			
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.			

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W			
Syntax:	[<i>label</i>] MOVLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	$k \rightarrow (W)$			
Status Affected:	None			
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.			

RETFIE	Return from Interrupt			
Syntax:	[label] RETFIE			
Operands:	None			
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$			
Status Affected:	None			

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					

RETLW	Return with Literal in W					
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$					
Status Affected:	None					
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					

TABLE 15-2:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	---

Param No.	Symbol	Charac	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓	—	75	200	ns	(Note 1)	
11*	TosH2ck H	OSC1↑ to CLKOUT↑	—	75	200	ns	(Note 1)	
12*	TckR	CLKOUT rise time	—	35	100	ns	(Note 1)	
13*	TckF	CLKOUT fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	0.5TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKOUT ↑		Tosc + 200	_	—	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	—	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		—	100	255	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	Standard (F)	100	_	—	ns	
		Port input invalid (I/O in hold time)	Extended (LF)	200	—	—	ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)		0	_	—	ns	
20*	TioR	Port output rise time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	_	145	ns	
21*	TioF	Port output fall time	Standard (F)	—	10	40	ns	
			Extended (LF)			145	ns	
22††*	Tinp	INT pin high or low time		Тсү		—	ns	
23††*	Trbp	RB7:RB4 change INT high or low time		Тсү	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

FIGURE 16-15: AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)

NOTES:

NOTES: