

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f877t-20-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-11: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 3-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port Data	Latch w	XXXX XXXX	uuuu uuuu						
09h	PORTE	—			—	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	Data Direct	on Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM			—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

PIC16F87X

NOTES:

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset, or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POI BO	on: R, R	Valu all c RES	e on other ETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 Mod	Timer2 Module's Register										0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2 Per	ner2 Period Register										1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

The type of event is configured by control bits CCP1M3:CCP1M0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

	<u>~</u>		
CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	move value and CCP \ensuremath{ON}
MOVWF	CCP1CON	;	Load CCP1CON with this
		;	value

REGISTER 9-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 WCOL SSPOV SSPM0 SSPEN CKP SSPM3 SSPM2 SSPM1 bit 7 bit 0 bit 7 WCOL: Write Collision Detect bit Master mode: 1 = A write to SSPBUF was attempted while the I2C conditions were not valid 0 = No collision Slave mode: 1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software) 0 = No collision bit 6 SSPOV: Receive Overflow Indicator bit In SPI mode: 1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register. (Must be cleared in software.) 0 = No overflowIn I²C mode: 1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.) 0 = No overflowSSPEN: Synchronous Serial Port Enable bit bit 5 In SPI mode, When enabled, these pins must be properly configured as input or output 1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins In I²C mode, When enabled, these pins must be properly configured as input or output 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins 0 = Disables serial port and configures these pins as I/O port pins bit 4 CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I²C Slave mode: SCK release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I²C Master mode: Unused in this mode bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin. $0110 = I^2C$ Slave mode, 7-bit address $0111 = I^2C$ Slave mode, 10-bit address 1000 = I²C Master mode, clock = Fosc / (4 * (SSPADD+1)) $1011 = I^2C$ Firmware Controlled Master mode (slave idle) 1110 = I²C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts enabled 1111 = I²C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1001, 1010, 1100, 1101 = Reserved

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented b	U = Unimplemented bit, read as '0'				
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

9.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (an SSP interrupt will occur if enabled):

- START condition
- STOP condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated START

FIGURE 9-9: SSP BLOCK DIAGRAM (I²C MASTER MODE)

9.2.6 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the MSSP module is disabled. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A START Condition
- A Repeated START Condition
- An Acknowledge Condition

9.2.18.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data'0'). If, however,

SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs, because no two masters can assert SDA at exactly the same time.

If, however, SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data'1' during the Repeated START condition.

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low, the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete (Figure 9-23).

FIGURE 9-23: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 9-24: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

10.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0						
	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D						
	bit 7							bit 0						
bit 7	CSRC: Cloc	CSRC: Clock Source Select bit												
	<u>Asynchronou</u> Don't care	<u>us mode:</u>												
	<u>Synchronous</u> 1 = Master n 0 = Slave mo	<u>s mode:</u> node (clock ode (clock fr	generated in om externa	nternally fror I source)	n BRG)									
bit 6	TX9 : 9-bit Tr 1 = Selects 9 0 = Selects 8	ansmit Enal 9-bit transmi 3-bit transmi	ole bit ssion ssion											
bit 5	TXEN : Tran 1 = Transmit 0 = Transmit	TXEN : Transmit Enable bit 1 = Transmit enabled 0 = Transmit disabled												
	Note: SREN	CREN ove	rrides TXEN	I in SYNC m	ode.									
bit 4	SYNC: USA 1 = Synchron 0 = Asynchron	RT Mode S nous mode onous mode	elect bit											
bit 3	Unimpleme	nted: Read	as '0'											
bit 2	BRGH: High	BRGH: High Baud Rate Select bit												
	Asynchronous mode: 1 = High speed 0 = Low speed													
	<u>Synchronous</u> Unused in th	<u>Synchronous mode:</u> Unused in this mode												
bit 1	TRMT : Trans 1 = TSR em 0 = TSR full	smit Shift Re pty	egister Statu	s bit										
bit 0	TX9D: 9th bi	TX9D: 9th bit of Transmit Data, can be parity bit												
	Legend.													
	R = Readabl	le hit	W = W/r	itable bit	LI = Unimpl	lemented hi	it read as 'i	n'						
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is c	cleared	x = Bit is ur	- nknown						

10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined.

It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000	0000 000x
99h	SPBRG	Baud Rat	te Genera	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin devices and eight for the other devices.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, VSS, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O.

Additional information on using the A/D module can be found in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023).

REGISTER 11-1: ADCON0 REGISTER (ADDRESS: 1Fh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0						
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON						
	bit 7							bit 0						
bit 7-6	ADCS1:AD 00 = Fosc/2 01 = Fosc/8 10 = Fosc/3 11 = FRC (c	CS0: A/D Cc 2 3 32 lock derived	nversion Clo from the inte	ock Select bits rnal A/D mod	s lule RC oscill	ator)								
bit 5-3	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4) $101 = channel 5, (RE0/AN5)^{(1)}$ $110 = channel 6, (RE1/AN6)^{(1)}$ $111 = channel 7, (RE2/AN7)^{(1)}$ G0/DONE: A/D Conversion Status bit													
bit 2	GO/DONE: If ADON = 1 1 = A/D con 0 = A/D con convers	A/D Convers <u></u>	sion Status bi ogress (settii n progress (t ete)	t ng this bit sta his bit is auto	rts the A/D c matically cle	onversion) ared by hardv	vare when tl	ne A/D						
bit 1	Unimpleme	ented: Read	as '0'											
bit 0	ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shut-off and consumes no operating current													
	Note 1: These channels are not available on PIC16F873/876 devices.													
	Logondi													

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
	(ADCS1:ADCS0 = 11). To allow the con-
	version to occur during SLEEP, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	V <u>alue o</u> n MCLR, WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	0000 0000	0000 0000				
1Eh	ADRESH	A/D Resul	t Register	XXXX XXXX	uuuu uuuu						
9Eh	ADRESL	A/D Resul	t Register	Low Byt	e					XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	—	_	—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA		—	PORTA	Data Directio	n Register				11 1111	11 1111
05h	PORTA		_	PORTA	Data Latch w	hen writte	n: PORTA pi	ns when re	ead	0x 0000	0u 0000
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	0000 -111	0000 -111				
09h ⁽¹⁾	PORTE	—		_	—	—	RE2	RE1	RE0	xxx	uuu

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

PIC16F87X

MOVF	Move f						
Syntax:	[<i>label</i>] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) \rightarrow (destination)						
Status Affected:	Z						
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself d = 1 is useful to test a file register since status flag Z is affected						

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W						
Syntax:	[<i>label</i>] MOVLW k						
Operands:	$0 \le k \le 255$						
Operation:	$k \rightarrow (W)$						
Status Affected:	None						
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.						

RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$						
Status Affected:	None						

MOVWF	Move W to f							
Syntax:	[<i>label</i>] MOVWF f							
Operands:	$0 \leq f \leq 127$							
Operation:	$(W) \rightarrow (f)$							
Status Affected:	None							
Description:	Move data from W register to register 'f'.							

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \leq k \leq 255$							
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC							
Status Affected:	None							
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.							

14.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

14.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

14.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

DC CHA	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C & for industrial \\ & 0^{\circ}C \leq TA \leq +70^{\circ}C & for commercial \\ \mbox{Operating voltage VDD range as described in DC specification} \\ \mbox{(Section 15.1)} \end{array}$						
Param No.	Sym	Characteristic	Min	Тур†	Мах	Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	_	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Voн	Output High Voltage			•		
D090		I/O ports ⁽³⁾	Vdd - 0.7		—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	Юн = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D150*	Vod	Open-Drain High Voltage			8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	_		15	рF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (RC mode)	—	—	50	pF	
D102	Св	SCL, SDA (I ² C mode)	_	_	400	pF	
	_	Data EEPROM Memory			r		
D120	ED	Endurance	100K	—		E/W	25°C at 5V
D121	VDRW	VDD for read/write	VMIN	_	5.5	V	Using EECON to read/write VMIN = min. operating voltage
D122	TDEW	Erase/write cycle time	_	4	8	ms	
B 4 6 6	_	Program FLASH Memory	1000		1		
D130	EP		1000	_		E/W	25°C at 5V
D131	VPR	VDD for read	VMIN	_	5.5	V	VMIN = min operating voltage
D132A		י טט וטר erase/write	VMIN	_	5.5	V	VMIN = min. operating voltage
D133	TPEW	Erase/Write cycle time	—	4	8	ms	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended) (Continued)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 15.1)									
Param No.	Sym	n Characteristic Min Typ† Max Units Conditions										
	Vol	Output Low Voltage										
D080A		I/O ports		—	0.6	V	IOL = 7.0 mA, VDD = 4.5V					
D083A		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V					
	Voн	Output High Voltage										
D090A		I/O ports ⁽³⁾	VDD - 0.7	_	_	V	Юн = -2.5 mA, VDD = 4.5V					
D092A		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	_	V	IOH = -1.0 mA, VDD = 4.5V					
D150*	Vod	Open Drain High Voltage	—	—	8.5	V	RA4 pin					
		Capacitive Loading Specs on C	utput Pins	5								
D100	Cosc2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1					
D101	Сю	All I/O pins and OSC2 (RC mode)		_	50	pF						
D102	Св	SCL, SDA (I ² C mode)	—	—	400	pF						
		Data EEPROM Memory										
D120	ED	Endurance	100K		_	E/W	25°C at 5V					
D121	Vdrw	VDD for read/write	VMIN		5.5	V	Using EECON to read/write VMIN = min. operating voltage					
D122	TDEW	Erase/write cycle time	—	4	8	ms						
		Program FLASH Memory										
D130	Eр	Endurance	1000		—	E/W	25°C at 5V					
D131	Vpr	VDD for read	VMIN	—	5.5	V	VMIN = min operating voltage					
D132A		VDD for erase/write	VMIN		5.5	V	Using EECON to read/write, VMIN = min. operating voltage					
D133	TPEW	Erase/Write cycle time	—	4	8	ms						

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F874/877 ONLY)

Parameter No.	Symbol	Characteristic			Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup time)		20 25		_	ns ns	Extended Range Only
63*	TwrH2dtl	$\overline{\text{WR}}^{\uparrow}$ or $\overline{\text{CS}}^{\uparrow}$ to data–in invalid (hold time)	Standard(F)	20	_	—	ns	
			Extended(LF)	35	—		ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		_		80 90	ns ns	Extended Range Only
65	TrdH2dtI	RD↑ or CS↓ to data–out invalid		10	_	30	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

TABLE 15-12:PIC16F87X-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)PIC16F87X-10 (EXTENDED)PIC16F87X-20 (COMMERCIAL, INDUSTRIAL)PIC16LF87X-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characterist	ic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		—	—	10-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		—	—	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential linearity err	or	—	_	< ± 1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error		—	—	< ± 2	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A07	Egn	Gain error		_	—	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	_	Monotonicity ⁽³⁾		—	guaranteed	_	_	$V\text{SS} \leq V\text{AIN} \leq V\text{REF}$
A20	Vref	Reference voltage (VREF+ - VREF-)		2.0	—	Vdd + 0.3	V	Absolute minimum electrical spec. To ensure 10-bit accuracy.
A21	VREF+	Reference voltage Higl	h	AVDD - 2.5V		AVDD + 0.3V	V	
A22	Vref-	Reference voltage low		AVss - 0.3V		VREF+ - 2.0V	V	
A25	VAIN	Analog input voltage		Vss - 0.3 V	—	Vref + 0.3 V	V	
A30	Zain	Recommended impeda analog voltage source	ance of	_	—	10.0	kΩ	
A40	IAD	A/D conversion	Standard	—	220	_	μΑ	Average current consumption
		current (VDD)	Extended	—	90	_	μΑ	when A/D is on (Note 1)
A50	IREF	VREF input current (No	te 2)	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 11.1.
				—	—	10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1:	CONVERSION			
	CONSIDERATIONS			

Characteristic	PIC16C7X	PIC16F87X			
Pins	28/40	28/40			
Timers	3	3			
Interrupts	11 or 12	13 or 14			
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)			
Frequency	20 MHz	20 MHz			
Voltage	2.5V - 5.5V	2.0V - 5.5V			
A/D	8-bit	10-bit			
CCP	2	2			
Program Memory	4K, 8K EPROM	4K, 8K FLASH			
RAM	192, 368 bytes	192, 368 bytes			
EEPROM data	None	128, 256 bytes			
Other		In-Circuit Debugger, Low Voltage Programming			

PIC16F87X

PORTE
Analog Port Pins9. 36. 38
Associated Registers
Block Diagram
Input Buffer Full Status (IBF Bit)
Input Buffer Overflow (IBOV Bit) 37
Output Buffer Full Status (OBF Bit)
PORTE Register 15.36
PSP Mode Select (PSPMODE Bit) 35, 36, 37, 38
BE0/RD/AN5 Pin 9.36.38
RE1/WR/AN6 Pin 9.36.38
$RE2/CS/AN7Pin \qquad 9.36.38$
TRISE Register 36
Postscaler, WDT
Assignment (PSA Bit)
Rate Select (PS2:PS0 Bits)19
Power-down Mode. See SLEEP
Power-on Reset (POR)
Oscillator Start-up Timer (OST) 119, 124
POR Status (POR Bit)
Power Control (PCON) Register
Power-down (PD Bit)
Power-up Timer (PWRT)
Time-out (TO Bit)
Time-out Sequence on Power-up 127, 128
PR2 Register
Prescaler, Timer0
Assignment (PSA Bit)19
Rate Select (PS2:PS0 Bits)
PRO MATE II Universal Device Programmer
Program Counter
RESET Conditions
Program Memory11
Interrupt Vector
Paging
Program Memory Map
RESET Vector
Program Verification
Programming Pin (VPP) 7.8
Programming, Device Instructions
PSP. See Parallel Slave Port
Pulse Width Modulation. SeeCapture/Compare/PWM
PWM Mode.
PUSH

R

R/W	
R/W bit	74
R/W bit	74
RAM. See Data Memory	
RCREG	
RCSTA Register	17, 96
ADDEN Bit	
CREN Bit	
FERR Bit	
OERR Bit	
RX9 Bit	
RX9D Bit	
SPEN Bit	
SREN Bit	
Read/Write bit, R/W	
Reader Response	
Receive Enable bit	68
Receive Overflow Indicator bit, SSPOV	67
Register File	
Register File Map	13, 14

Registers
ADCON0 (A/D Control 0) 111
ADCON1 (A/D Control 1) 112
CCP1CON (CCP Control 1) 58
EECON2
FSR
INTCON
OPTION REG
PCON (Power Control)
PIE1 (Peripheral Interrupt Enable 1)
PIE2 (Peripheral Interrupt Enable 2) 23
PIR1 (Peripheral Interrupt Request 1)
PIR2 (Peripheral Interrupt Request 2) 24
RCSTA (Receive Status and Control) 96
Special Function Summary 15
SSPCON2 (Sync Serial Port Control 2) 68
STATUS
T1CON (Timer1 Control) 51
T2CON (Timer 2 Control)
Timer2
T2CON Register 55
TRISE 37
TXSTA (Transmit Status and Control) 95
Repeated START Condition Enable bit 68
RESET 119 123
Block Diagram 123
MCLR Reset See MCLR
RESET
Brown-out Reset (BOR) See Brown-out Reset (BOR)
Power-on Reset (POR) See Power-on Reset (POR)
RESET Conditions for PCON Register
RESET Conditions for Program Counter 125
RESET Conditions for STATUS Register 125
WDT Reset. See Watchdog Timer (WDT)
Revision History
5

S (START bit)	
Sales and Support SCI. See USART	209
SCK	69
SCL	74
SDA	74
SDI	69
SDO	69
Serial Clock, SCK	69
Serial Clock, SCL	74
Serial Communication Interface. See USART	
Serial Data Address, SDA	74
Serial Data In, SDI	69
Serial Data Out, SDO	69
Slave Select, SS	69
SLEEP	. 119, 123, 132
SMP	66
Software Simulator (MPLAB SIM)	144
SPBRG Register	
Special Features of the CPU	119
Special Function Registers	15
Special Function Registers (SFRs)	15
Data EEPROM and FLASH Program Men	nory 41
Speed, Operating	1

 \odot 1998-2013 Microchip Technology Inc.