

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7КВ (4К х 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874t-04-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt, the SSP bus collision interrupt, and the EEPROM write operation interrupt.

REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)

	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0		
	_	Reserved	_	EEIE	BCLIE	—	—	CCP2IE		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	l as '0'							
bit 6	Reserved:	Always mair	ntain this bi	it clear						
bit 5	Unimplem	Unimplemented: Read as '0'								
bit 4	EEIE: EEP	ROM Write	Operation I	nterrupt Ena	able					
	1 = Enable	EE Write Int	terrupt							
	0 = Disable	e EE Write In	terrupt							
bit 3	BCLIE: Bu	s Collision In	iterrupt Ena	able						
	1 = Enable 0 = Disable	e Bus Collisio e Bus Collisio	n Interrupt on Interrupt	:						
bit 2-1	Unimplem	ented: Read	l as '0'							
bit 0	CCP2IE: C	CP2 Interrup	ot Enable b	it						
	1 = Enable	s the CCP2	interrupt							
	0 = Disable	es the CCP2	interrupt							
	Legend:									
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '	0'		
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is o	leared	x = Bit is u	nknown		

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	_	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

bit 7 bit 6 bit 5

bit 4

bit 3

bit 2-0

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

REGISTER 5-1: OPTION REG REGISTER

DANA

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF1, MOVWF1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

	R/W-1	R/W-1	R/W-1	R/VV-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7							bit 0
oit 7	RBPU							
oit 6	INTEDG							
oit 5	TOCS : TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)							
oit 4	T0SE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin							
oit 3	 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 							
oit 2-0	PS2:PS0 :	Prescaler Ra	ate Select b	oits				
	Bit Value	TMR0 Rate	WDT Rat	e				
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128					
	Legend:							
	R = Reada	able bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '	D'
	- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nknown
To avoid an ily Reference to the WDT	unintended ce Manual (. This seque	l device RES DS33023) m ence must be	ET, the inst ust be exe followed e	ruction sequ cuted when even if the W	ience shown in changing the pi /DT is disabled	the PIC [®] I rescaler as	MCU Mid-Ra signment fr	ange Fam- om Timer0

Note:

PIC16F87X

NOTES:

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt-on-overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock, will guarantee a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[®] MCU Mid-Range Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator, rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq.	C1	C2				
LP	32 kHz	33 pF	33 pF				
	100 kHz	15 pF	15 pF				
	200 kHz	15 pF	15 pF				
These values are for design guidance only.							
Crystals Tested:							
32.768 kHz	Epson C-00	1R32.768K-A	± 20 PPM				
100 kHz	Epson C-2	Epson C-2 100.00 KC-P ± 20 PPN					
200 kHz	STD XTL:	200.000 kHz	± 20 PPM				
 Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 							

6.6 Resetting Timer1 using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

PIC16F87X

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
	bit 7							bit 0
bit 7-6	Unimplem	ented: Rea	d as '0'					
bit 5-4	CCPxX:CC	PxY: PWM	Least Sign	ificant bits				
	<u>Capture mo</u> Unused	ode:						
	<u>Compare n</u> Unused	<u>node:</u>						
	<u>PWM mode</u> These bits	<u>ə:</u> are the two	LSbs of the	PWM duty	cycle. The eig	ght MSbs ar	e found in (CPRxL.
bit 3-0	CCPxM3:C	CPxM0: C	CPx Mode S	Select bits				
	0000 = Ca	pture/Comp	are/PWM d	isabled (rese	ets CCPx mod	dule)		
	0100 = Ca	pture mode	, every fallir	ig edge				
	0101 = Ca	pture mode	, every risin	g edge				
	0110 = Ca	nture mode	every 4011	rising edge				
	1000 = Co	mpare mod	e, set outpu	t on match (CCPxIF bit is	set)		
	1001 = Co	mpare mod	e, clear outp	out on match	(CCPxIF bit	is set)		
	1010 = Co r una	mpare mode	e, generate	software inte	errupt on mate	ch (CCPxIF	bit is set, C	CPx pin is
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)							
	11xx = PW	/M mode						
								1
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented b	oit, read as	0'

'1' = Bit is set

- n = Value at POR

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

x = Bit is unknown

'0' = Bit is cleared

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

The type of event is configured by control bits CCP1M3:CCP1M0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode, or Synchronized Counter mode, for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

	<u>~</u>		
CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	move value and CCP \ensuremath{ON}
MOVWF	CCP1CON	;	Load CCP1CON with this
		;	value

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h) REGISTER 9-1: R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP D/A Р R/W BF CKE S UA bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4) SPI mode: For CKP = 0 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK For CKP = 1 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK In I²C Master or Slave mode: 1 = Input levels conform to SMBus spec 0 = Input levels conform to I²C specs **D/A**: Data/Address bit (I²C mode only) bit 5 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address bit 4 P: STOP bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last bit 2 **R/W**: Read/Write bit Information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit. In I²C Slave mode: 1 = Read0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit BF: Buffer Full Status bit Receive (SPI and I²C modes): 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only): 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

9.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 9-18).

9.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

9.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

FIGURE 9-18: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

9.2.18.2 Bus Collision During a Repeated START Condition

During a Repeated START condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then de-asserted, and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data'0'). If, however, SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs, because no two masters can assert SDA at exactly the same time.

If, however, SCL goes from high to low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data'1' during the Repeated START condition.

If at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low, the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated START condition is complete (Figure 9-23).

FIGURE 9-23: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 9-24: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

Register	Devices		Devices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt
W	873	874	876	877	XXXX XXXX	սսսս սսսս	uuuu uuuu
INDF	873	874	876	877	N/A	N/A	N/A
TMR0	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	873	874	876	877	0000h	0000h	PC + 1 ⁽²⁾
STATUS	873	874	876	877	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	873	874	876	877	0x 0000	0u 0000	uu uuuu
PORTB	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	873	874	876	877	xxx	uuu	uuu
PCLATH	873	874	876	877	0 0000	0 0000	u uuuu
INTCON	873	874	876	877	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu ⁽¹⁾
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu(1)
TMR1L	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	873	874	876	877	00 0000	uu uuuu	uu uuuu
TMR2	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
T2CON	873	874	876	877	-000 0000	-000 0000	-uuu uuuu
SSPBUF	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR1L	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	873	874	876	877	00 0000	00 0000	uu uuuu
RCSTA	873	874	876	877	0000 000x	0000 000x	uuuu uuuu
TXREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
RCREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR2L	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR2H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP2CON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
ADRESH	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	873	874	876	877	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISA	873	874	876	877	11 1111	11 1111	uu uuuu
TRISB	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISC	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISD	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISE	873	874	876	877	0000 -111	0000 -111	uuuu -uuu
PIE1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

13.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

Bit Clear f

BCF

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a $2T_{CY}$ instruction.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

PIC16LF873/874/876/877-04 (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
Param No.	Symbol	Characteristic/ Device	Min Typ† Max Units Conditions						
	Vdd	Supply Voltage							
D001		16LF87X	2.0	—	5.5	V	LP, XT, RC osc configuration (DC to 4 MHz)		
D001		16F87X	4.0	_	5.5	V	LP, XT, RC osc configuration		
D001A			4.5		5.5	V	HS osc configuration		
			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	_	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	—	V	See section on Power-on Reset for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05		—	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled		

Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	10	MHz	HS osc mode (-10)
			DC	—	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	10	MHz	HS osc mode (-10)
			4	—	20	MHz	HS osc mode (-20)
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
				_	—	μS	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	—	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100		_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μS	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 15-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-9: BROWN-OUT RESET TIMING

TABLE 15-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	_	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset		_	2.1	μS	
35	TBOR	Brown-out Reset pulse width	100	_	_	μS	$VDD \leq VBOR (D005)$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-11: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym		Characteris	Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time		Standard(F)	10	_	_	ns	
			With Prescaler	Extended(LF)	20	_		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	l	ns	
		input high time		Standard(F)	10	_		ns	
			With Prescaler	Extended(LF)	20	-		ns	
52*	TccP	CCP1 and CCP2 in	put period		<u>3Tcy + 40</u> N			ns	N = prescale value (1, 4 or 16)
53*	TccR	CCP1 and CCP2 output rise time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 c	output fall time	Standard(F)	_	10	25	ns	
				Extended(LF)	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			MILLIMETERS*			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44			
Pitch	р		.031			0.80			
Pins per Side	n1		11			11			
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20		
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05		
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15		
Foot Length	L	.018	.024	.030	0.45	0.60	0.75		
Footprint (Reference)	(F)		.039		1.00				
Foot Angle	¢	0	3.5	7	0	3.5	7		
Overall Width	E	.463	.472	.482	11.75	12.00	12.25		
Overall Length	D	.463	.472	.482	11.75	12.00	12.25		
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10		
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10		
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20		
Lead Width	В	.012	.015	.017	0.30	0.38	0.44		
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-026 Drawing No. C04-076

0

On-Line Support	
OPCODE Field Descriptions	
OPTION REG Register	19 48
	10
PS2:PS0 Bits	
PSA Bit	
T0CS Bit	
T0SE Bit	
OSC1/CLKIN Pin	
OSC2/CLKOUT Pin	
Oscillator Configuration	
HS	
LP	
RC	121, 122, 124
ХТ	
Oscillator, WDT	
Oscillators	
Capacitor Selection	
Crystal and Ceramic Resonators	121
RC	122

Ρ

P (STOP bit)	
Package Marking Information	
Packaging Information	
Paging, Program Memory	
Parallel Slave Port (PSP)	9, 35, 38
Associated Registers	
Block Diagram	
RE0/RD/AN5 Pin	9, 36, 38
RE1/WR/AN6 Pin	9, 36, 38
RE2/CS/AN7 Pin	9, 36, 38
Read Waveforms	
Select (PSPMODE Bit)	35, 36, 37, 38
Write Waveforms	
PCL Register	15, 16, 26
PCLATH Register	15, 16, 17, 26
PCON Register	25, 124
BOR Bit	25
POR Bit	25
PIC16F876 Pinout Description	7
PIC16F87X Product Identification System	
PICDEM 1 Low Cost PIC MCU	
Demonstration Board	
PICDEM 17 Demonstration Board	
PICDEM 2 Low Cost PIC16CXX	
Demonstration Board	145
PICDEM 3 Low Cost PIC16CXXX	
Demonstration Board	146
PICSTART Plus Entry Level	
Development Programmer	145
PIE1 Register	21
PIE2 Register	23
Pinout Descriptions	
PIC16F873/PIC16F876	7
PIC16F874/PIC16F877	8
PIR1 Register	
PIR2 Register	24
POP	
POR. See Power-on Reset	

POR	RTA7, 8	8, 17
	Analog Port Pins	7, 8
	Associated Registers	30
	Block Diagram	
	BA2: BA0 and BA5 Bina	20
		29
	RA4/TOCKI Pin	29
	Initialization	29
	PORTA Register1	5, 29
	RA3	
	RA0 and RA5 Port Pins	. 29
		7 8
		7,0
	RA5/SS/AN4 PIn	/,8
	I RISA Register	29
POR	RTB7, 8	8, 17
	Associated Registers	32
	Block Diagram	
	RB3 RB0 Port Pins	31
	PP7:PP4 Dort Ding	21
		31
	PORTB Register1	5, 31
	RB0/INT Edge Select (INTEDG Bit)	19
	RB0/INT Pin, External7, 8	, 130
	RB7:RB4 Interrupt on Change	. 130
	RB7 RB4 Interrupt on Change Enable	
	(PBIE Bit)	130
		. 150
	RB7.RB4 Interrupt on Change Flag	
	(RBIF Bit)	. 130
	RB7:RB4 Interrupt-on-Change Enable	
	(RBIE Bit)	20
	RB7:RB4 Interrupt-on-Change Flag	
	(RBIF Bit) 2	0 31
	TRISB Register 1	7 31
		0 47
POR	(IC	9, 17
	Associated Registers	34
	Block Diagrams	
	Peripheral Output Override	
	(RC 0:2, 5:7)	33
	Peripheral Output Override	
		22
	(NC 3.4)	33
	PORIC Register1	5, 33
	RC0/T1OSO/T1CKI Pin	7, 9
	RC1/T1OSI/CCP2 Pin	7, 9
	RC2/CCP1 Pin	7, 9
	RC3/SCK/SCL Pin	7.9
	RC4/SDI/SDA Pin	7 9
		7,9
	RC6/TX/CK Pin	9,96
	RC7/RX/DT Pin7, 9, 9	6, 97
	TRISC Register	3, 95
POR		7, 38
	Associated Registers	35
	Block Diagram	00 2F
	Devolution Days (DCD) Function	ათ იი
	Parallel Slave Port (PSP) FUnction	35
	PORID Register1	5, 35
	TRISD Register	35

PIC16F87X

NOTES: