

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

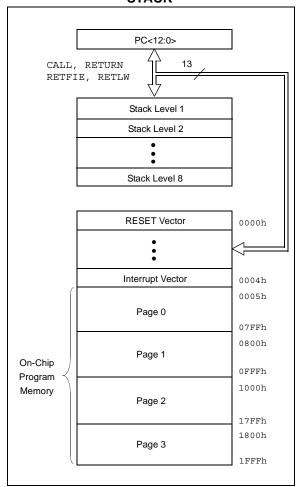
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874t-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

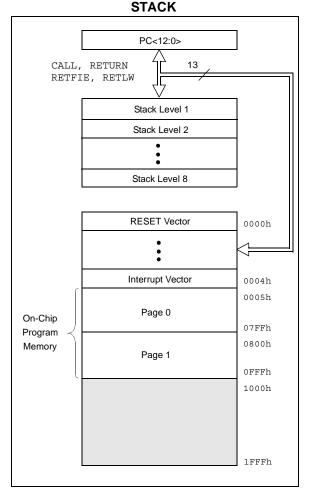

Key Features PIC [®] MCU Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 instructions	35 instructions	35 instructions	35 instructions

2.0 MEMORY ORGANIZATION

There are three memory blocks in each of the PIC16F87X MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The EEPROM data memory block is detailed in Section 4.0.

Additional information on device memory may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

FIGURE 2-1: PIC16F877/876 PROGRAM MEMORY MAP AND STACK



2.1 **Program Memory Organization**

The PIC16F87X devices have a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The PIC16F877/876 devices have $8K \times 14$ words of FLASH program memory, and the PIC16F873/874 devices have $4K \times 14$. Accessing a location above the physically implemented address will cause a wraparound.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-2: PIC16F874/873 PROGRAM MEMORY MAP AND

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (no	t a physical r	egister)	0000 0000	27
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	47
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
04h ⁽³⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27
05h	PORTA	_	_	PORTA Da	ta Latch whei	n written: POI	RTA pins whe	n read		0x 0000	29
06h	PORTB	PORTB Da	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	31
07h	PORTC	PORTC D	ata Latch wh	en written: F	ORTC pins v	vhen read				xxxx xxxx	33
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				xxxx xxxx	35
09h ⁽⁴⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	36
0Ah ^(1,3)	PCLATH	_			Write Buffer	for the upper	r 5 bits of the I	Program Cou	unter	0 0000	26
0Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22
0Dh	PIR2	—	(5)	_	EEIF	BCLIF	—		CCP2IF	-r-0 00	24
0Eh	TMR1L	Holding re	gister for the	Least Signif	ficant Byte of	the 16-bit TM	IR1 Register			xxxx xxxx	52
0Fh	TMR1H	Holding re	gister for the	Most Signifi	cant Byte of t	the 16-bit TM	R1 Register			xxxx xxxx	52
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51
11h	TMR2	Timer2 Mo	dule Registe	er						0000 0000	55
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transm	it Register				xxxx xxxx	70, 73
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					XXXX XXXX	57
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					XXXX XXXX	57
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	99
1Ah	RCREG	USART Re	eceive Data I	Register						0000 0000	101
1Bh	CCPR2L	Capture/C							xxxx xxxx	57	
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	57
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58
1Eh	ADRESH	A/D Result	t Register Hi	gh Byte						xxxx xxxx	116
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

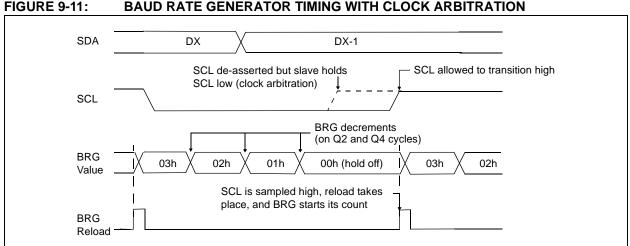
3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt, the SSP bus collision interrupt, and the EEPROM write operation interrupt.


REGISTER 2-6: PIE2 REGISTER (ADDRESS 8Dh)

	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0
	—	Reserved	—	EEIE	BCLIE	—	—	CCP2IE
	bit 7							bit 0
bit 7	Unimplem	ented: Read	as '0'					
bit 6	Reserved:	Always mair	ntain this bi	it clear				
bit 5	Unimplem	ented: Read	as '0'					
bit 4	EEIE: EEP	ROM Write C	Operation I	nterrupt Ena	able			
	1 = Enable	EE Write Int	errupt					
	0 = Disable	e EE Write In	terrupt					
bit 3	BCLIE: Bu	s Collision In	terrupt Ena	able				
	1 = Enable	Bus Collisio	n Interrupt					
	0 = Disable	e Bus Collisio	on Interrupt					
bit 2-1	Unimplem	ented: Read	as '0'					
bit 0	CCP2IE: C	CP2 Interrup	t Enable b	it				
	1 = Enable	s the CCP2 i	nterrupt					
	0 = Disable	0 = Disables the CCP2 interrupt						
	Legend:							
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	oit, read as '	0'
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is u	nknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POF BO	R,	Valu all o RES	ther
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 (000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	—	_	_	—	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	—	—	_	—	_	—	CCP2IE		0		0
87h	TRISC	PORTC D	Data Directio	n Register						1111 :	1111	1111	1111
11h	TMR2	Timer2 M	odule's Regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 M	odule's Perio	od Register						1111 :	1111	1111	1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 (0000	-000	0000
15h	CCPR1L	Capture/C	Compare/PW	/M Register	1 (LSB)					XXXX X	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/PW	/M Register	1 (MSB)					XXXX X	xxxx	uuuu	uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 (0000	00	0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register2 (LSB)						XXXX X	xxxx	uuuu	uuuu	
1Ch	CCPR2H	Capture/C	Compare/PW	/M Register	2 (MSB)					XXXX X	xxxx	uuuu	uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 (0000	00	0000

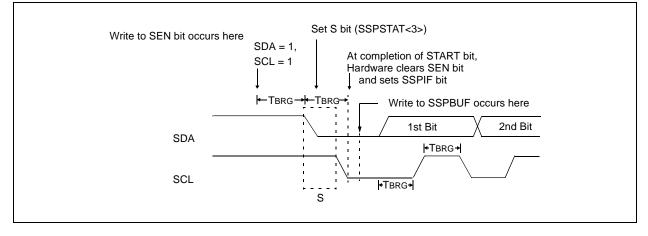
TABLE 8-5 :	REGISTERS ASSOCIATED WITH PWM AND TIMER2
--------------------	---

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

9.2.9 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the START condition, and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware. The baud rate generator is suspended, leaving the SDA line held low, and the START condition is complete.


Note: If, at the beginning of START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag (BCLIF) is set, the START condition is aborted, and the I²C module is reset into its IDLE state.

9.2.9.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

FIGURE 9-12: FIRST START BIT TIMING

9.2.12 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note:	The SSP module must be in an IDLE state
	before the RCEN bit is set, or the RCEN bit
	will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high), and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag is set, the SSPIF is set, and the baud rate generator is suspended from counting, holding SCL low. The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an Acknowledge bit at the end of reception, by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

9.2.12.1 BF Status Flag

In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when SSPBUF is read.

9.2.12.2 SSPOV Status Flag

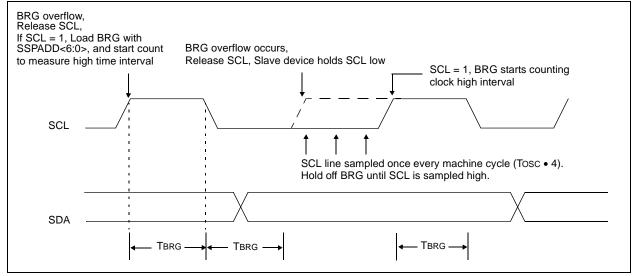
In receive operation, SSPOV is set when 8 bits are received into the SSPSR, and the BF flag is already set from a previous reception.

9.2.12.3 WCOL Status Flag

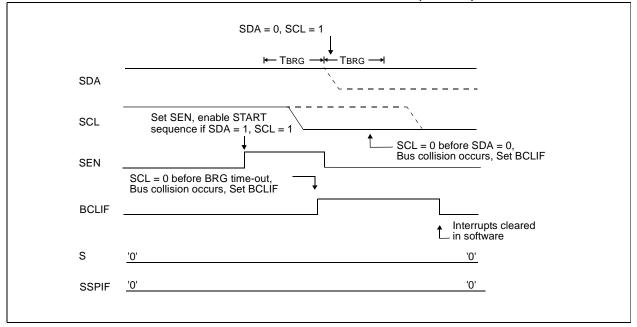
If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

9.2.15 CLOCK ARBITRATION

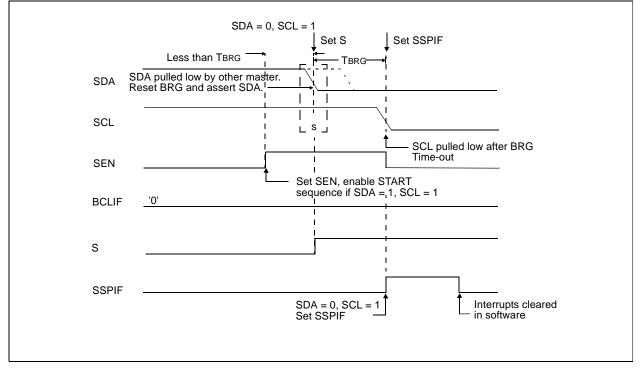
Clock arbitration occurs when the master, during any receive, transmit, or Repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 9-18).

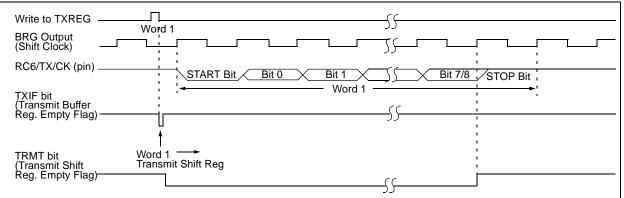

9.2.16 SLEEP OPERATION

While in SLEEP mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

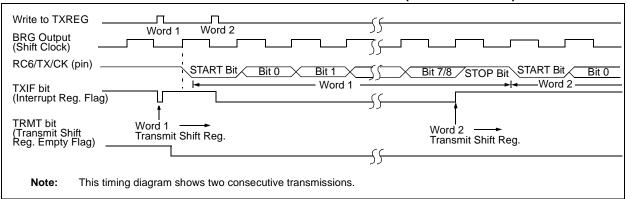

9.2.17 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.


FIGURE 9-18: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE



When setting up an Asynchronous Transmission, follow these steps:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	insmit Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato	or Register	•					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Reception, follow these steps:

1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register 0000 0000 0000 0000									

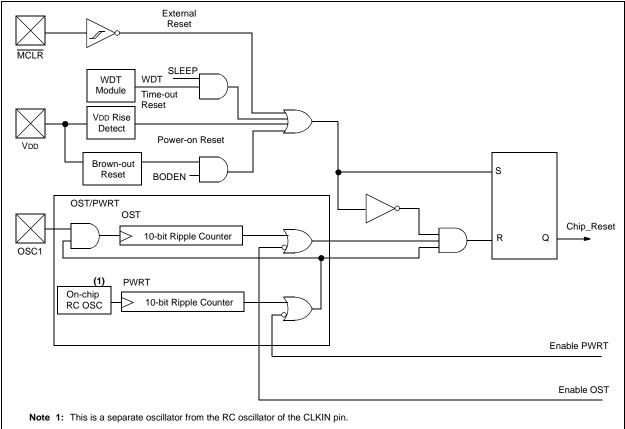
TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. **Note** 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices, always maintain these bits clear.

12.3 **RESET**

The PIC16F87X differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)


Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during SLEEP, and Brown-out Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different RESET situations as indicated in Table 12-4. These bits are used in software to determine the nature of the RESET. See Table 12-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 12-4.

These devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	C
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.				
	C Register f				

SUBLW	Subtract W from Literal					
Syntax:	[<i>label</i>] SUBLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \text{ - } (W) \rightarrow (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.					

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	h: (f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all $\text{PIC}^{\textcircled{R}}$ MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

PIC16F87X

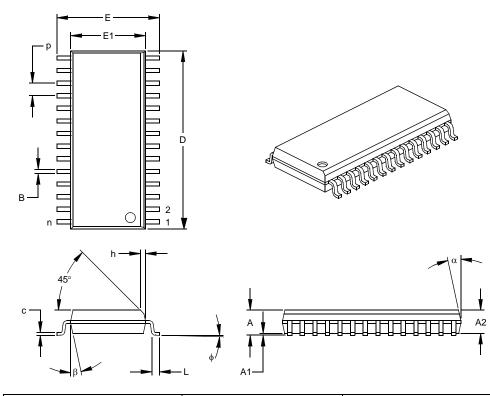

	>	>					``````````````````````````````````````	*						>	>	>	>	>	>	
	_	>	× × ×	~			>							>	>					
	_	>	`	~			>	>												
	_	>	>	~			>													
	_						L	>		>										<u> </u>
	>		>	~			>	>					>							
							>	>	>											
			>	>	>		>	>			>									
			>	>		>	>	>												
			>	>	>		>	>	>											
			>	>	>		>	>												
			>	>	>	*	>	>	* +	,+										
			>	**/			**/	**/												
			>	>	>		>	>	>											
			>	>	>	*	>	>		÷,										
			>	>	>		>	>	>											
			>	>			>	>				`								
			>	`	>		>	>												
MBLAB® C17 C Compiler	PLAB® C17 C Compiler	PLAB [®] C18 C Compiler	PASM TM Assembler/ PLINK TM Object Linker	MPLAB [®] ICE In-Circuit Emulator	ICEPIC TM In-Circuit Emulator	PLAB®ICD In-Circuit ebugger	PICSTART® Plus Entry Level Development Programmer	PRO MATE® II Universal Device Programmer	PICDEM™ 1 Demonstration Board	PICDEM™ 2 Demonstration Board	PICDEM™ 3 Demonstration Board	PICDEM TM 14A Demonstration Board	PICDEM™ 17 Demonstration Board	EELoo [®] Evaluation Kit	εεLoα [®] Transponder Kit	iicrolD™ Programmer's Kit	25 kHz microlD™ eveloper's Kit	125 kHz Anticollision microlD™ Developer's Kit	13.56 MHz Anticollision microlD™ Developer's Kit	MCP2510 CAN Developer's Kit
				MPLAB® C17 C Compile MPLAB® C18 C Compile MPASM™ Assembler/ MPLINK™ Object Linker																

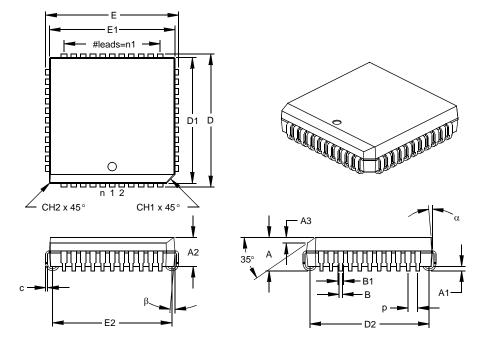
TABLE 14-1:	DEVELOPMENT TOOLS FROM MICROCHIP
-------------	----------------------------------

© 1998-2013 Microchip Technology Inc.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	ф	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-052

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	А	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	1998	This is a new data sheet. However, these devices are similar to the PIC16C7X devices found in the PIC16C7X Data Sheet (DS30390). Data Memory Map for PIC16F873/874, moved ADFM bit from ADCON1<5> to ADCON1<7>.
В	1999	FLASH EEPROM access information.
С	2000	DC characteristics updated. DC performance graphs added.
D	2013	Added a note to each package drawing.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

Difference	PIC16F876/873	PIC16F877/874
A/D	5 channels, 10-bits	8 channels, 10-bits
Parallel Slave Port	no	yes
Packages	28-pin PDIP, 28-pin windowed CERDIP, 28-pin SOIC	40-pin PDIP, 44-pin TQFP, 44-pin MQFP, 44-pin PLCC

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1:	CONVERSION
	CONSIDERATIONS

Characteristic	PIC16C7X	PIC16F87X		
Pins	28/40	28/40		
Timers	3	3		
Interrupts	11 or 12	13 or 14		
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)		
Frequency	20 MHz	20 MHz		
Voltage	2.5V - 5.5V	2.0V - 5.5V		
A/D	8-bit	10-bit		
CCP	2	2		
Program Memory	4K, 8K EPROM	4K, 8K FLASH		
RAM	192, 368 bytes	192, 368 bytes		
EEPROM data	None	128, 256 bytes		
Other	_	In-Circuit Debugger, Low Voltage Programming		

PIC16F87X

NOTES: