

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874t-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The <u>C and DC bits operate as a borrow</u>										
	and digit borrow bit, respectively, in sub-										
	traction. See the SUBLW and SUBWF										
	instructions for examples.										

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
bit 7	IRP: Register Bank Select bit (used for indirect addressing)											
	1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)											
bit 6-5		Register Ba	nk Select hi	its (used for	direct addressi	na)						
bit 0-5	π r r. π v. register balls detect bits (used for an ect addressing) 11 - Bank 3 (180h - 1FFh)											
	10 = Bank	10 = Bank 2 (100h - 17Fh)										
	01 = Bank	1 (80h - FFI	h)									
	00 = Bank	00 = Bank 0 (00h - 7Fh)										
hit 1		out hit	5									
511 4	1 = After p	IU: Ime-out bit										
	0 = A WDT time-out occurred											
bit 3	PD: Power	PD: Power-down bit										
	1 = After power-up or by the CLRWDT instruction											
	0 = By exe	ecution of the	SLEEP ins	truction								
bit 2	Z: Zero bit											
	1 = The re 0 = The re	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 										
bit 1	DC: Digit o	DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)										
	(for borrow	(for borrow, the polarity is reversed)										
	1 = A carry 0 = No car	 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result 										
bit 0	C: Carry/b	orrow bit (AI	DWF, ADDL	W,SUBLW,S	UBWF instructio	ons)						
	1 = A carry	/-out from th	e Most Sigr	nificant bit o	f the result occu	rred						
	0 = No car	ry-out from t	he Most Sig	gnificant bit	of the result occ	curred						
	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high, or low order bit of the source register.											
												
	Leaend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.4 **PORTD and TRISD Registers**

PORTD and TRISD are not implemented on the PIC16F873 or PIC16F876.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 3-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0.
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1.
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2.
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3.
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4.
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5.
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6.
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7.

TABLE 3-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 3-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORT	PORTD Data Direction Register							1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE	Data Direo	ction Bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

3.6 Parallel Slave Port

The Parallel Slave Port (PSP) is not implemented on the PIC16F873 or PIC16F876.

PORTD operates as an 8-bit wide Parallel Slave Port or microprocessor port, when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is asynchronously readable and writable by the external world through RD control input pin RE0/RD and WR control input pin RE1/WR.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The A/D port configuration bits PCFG3:PCFG0 (ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches: one for data output, and one for data input. The user writes 8-bit data to the PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored, since the external device is controlling the direction of data flow.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), the Input Buffer Full (IBF) status flag bit (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 3-10). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if a second write to the PSP is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 3-11), indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in PSP mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE

4.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The Data EEPROM and FLASH Program Memory are readable and writable during normal operation over the entire VDD range. These operations take place on a single byte for Data EEPROM memory and a single word for Program memory. A write operation causes an erase-then-write operation to take place on the specified byte or word. A bulk erase operation may not be issued from user code (which includes removing code protection).

Access to program memory allows for checksum calculation. The values written to program memory do not need to be valid instructions. Therefore, up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that form an invalid instruction, results in the execution of a NOP instruction.

The EEPROM Data memory is rated for high erase/ write cycles (specification D120). The FLASH program memory is rated much lower (specification D130), because EEPROM data memory can be used to store frequently updated values. An on-chip timer controls the write time and it will vary with voltage and temperature, as well as from chip to chip. Please refer to the specifications for exact limits (specifications D122 and D133).

A byte or word write automatically erases the location and writes the new value (erase before write). Writing to EEPROM data memory does not impact the operation of the device. Writing to program memory will cease the execution of instructions until the write is complete. The program memory cannot be accessed during the write. During the write operation, the oscillator continues to run, the peripherals continue to function and interrupt events will be detected and essentially "queued" until the write is complete. When the write completes, the next instruction in the pipeline is executed and the branch to the interrupt vector will take place, if the interrupt is enabled and occurred during the write.

Read and write access to both memories take place indirectly through a set of Special Function Registers (SFR). The six SFRs used are:

- EEDATA
- EEDATH
- EEADR
- EEADRH
- EECON1
- EECON2

The EEPROM data memory allows byte read and write operations without interfering with the normal operation of the microcontroller. When interfacing to EEPROM data memory, the EEADR register holds the address to be accessed. Depending on the operation, the EEDATA register holds the data to be written, or the data read, at the address in EEADR. The PIC16F873/874 devices have 128 bytes of EEPROM data memory and therefore, require that the MSb of EEADR remain clear. The EEPROM data memory on these devices do not wrap around to 0, i.e., 0x80 in the EEADR does not map to 0x00. The PIC16F876/877 devices have 256 bytes of EEPROM data memory and therefore, uses all 8-bits of the EEADR.

The FLASH program memory allows non-intrusive read access, but write operations cause the device to stop executing instructions, until the write completes. When interfacing to the program memory, the EEADRH:EEADR registers form a two-byte word, which holds the 13-bit address of the memory location being accessed. The register combination of EEDATH:EEDATA holds the 14-bit data for writes, or reflects the value of program memory after a read operation. Just as in EEPROM data memory accesses, the value of the EEADRH:EEADR registers must be within the valid range of program memory, depending on the device: 0000h to 1FFFh for the PIC16F873/874. or 0000h to 3FFFh for the PIC16F876/877. Addresses outside of this range do not wrap around to 0000h (i.e., 4000h does not map to 0000h on the PIC16F877).

4.1 EECON1 and EECON2 Registers

The EECON1 register is the control register for configuring and initiating the access. The EECON2 register is not a physically implemented register, but is used exclusively in the memory write sequence to prevent inadvertent writes.

There are many bits used to control the read and write operations to EEPROM data and FLASH program memory. The EEPGD bit determines if the access will be a program or data memory access. When clear, any subsequent operations will work on the EEPROM data memory. When set, all subsequent operations will operate in the program memory.

Read operations only use one additional bit, RD, which initiates the read operation from the desired memory location. Once this bit is set, the value of the desired memory location will be available in the data registers. This bit cannot be cleared by firmware. It is automatically cleared at the end of the read operation. For EEPROM data memory reads, the data will be available in the EEDATA register in the very next instruction cycle after the RD bit is set. For program memory reads, the data will be loaded into the EEDATH:EEDATA registers, following the second instruction after the RD bit is set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	Module's F	Registe	r					xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

9.2.7 I²C MASTER MODE SUPPORT

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once Master mode is enabled, the user has six options:

- Assert a START condition on SDA and SCL.
- Assert a Repeated START condition on SDA and SCL.
- Write to the SSPBUF register initiating transmission of data/address.
- Generate a STOP condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
- Note: The MSSP Module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a START condition and immediately write the SSPBUF register to initiate transmission before the START condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

9.2.7.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated START condition. Since the Repeated START condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I²C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSPBUF. Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

A typical transmit sequence would go as follows:

- a) User generates a START condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set. The module will wait the required start time before any other operation takes place.
- c) User loads SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) MSSP module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) User loads SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.
- MSSP module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) User generates a STOP condition by setting the STOP enable bit, PEN, in SSPCON2.
- I) Interrupt is generated once the STOP condition is complete.

9.2.8 BAUD RATE GENERATOR

In I^2C Master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 9-10). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr), on the Q2 and Q4 clock.

In I²C Master mode, the BRG is reloaded automatically. If clock arbitration is taking place, the BRG will be reloaded when the SCL pin is sampled high (Figure 9-11).

Note: Baud Rate = Fosc / (4 * (SSPADD + 1))

FIGURE 9-10:

BAUD RATE GENERATOR BLOCK DIAGRAM

9.2.13 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit is presented on the SDA pin. If the user wishes to generate an Acknowledge, the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG), and the SCL pin is de-asserted high. When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off, and the SSP module then goes into IDLE mode (Figure 9-16).

9.2.13.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-16: ACKNOWLEDGE SEQUENCE WAVEFORM

PIC16F87X

9.2.18.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 9-20).
- b) SCL is sampled low before SDA is asserted low (Figure 9-21).

During a START condition, both the SDA and the SCL pins are monitored. If either the SDA pin <u>or</u> the SCL pin is already low, then these events all occur:

- the START condition is aborted,
- and the BCLIF flag is set,
- <u>and</u> the SSP module is reset to its IDLE state (Figure 9-20).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 9-22). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0. During this time, if the SCL pins are sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision, because the two masters must be allowed to arbitrate the first address following the START condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated START, or STOP conditions.

PIC16F87X

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
	bit 7							bit 0				
bit 7	SPEN: Ser	ial Port Ena	ble bit									
	1 = Serial p	oort enabled	(configures	RC7/RX/D	I and RC6/I	X/CK pins a	is serial port	t pins)				
hit 6	RX9 : 9-bit Receive Enable bit											
DIL U	1 = Selects	9-bit recept	tion									
	0 = Selects	0 = Selects 8-bit reception										
bit 5	SREN: Sin	gle Receive	Enable bit									
	Asynchron	<u>ous mode:</u>										
	Don't care											
	Synchrono	<u>us mode - m</u> a aingla raa	<u>naster:</u>									
	1 = Enable 0 = Disable	s single rece	eive									
	This bit is c	cleared after	reception is	s complete.								
	<u>Synchrono</u>	us mode - sl	lave:									
	Don't care											
bit 4	CREN: Co	ntinuous Re	ceive Enabl	e bit								
	Asynchron	Asynchronous mode:										
	1 = Enables continuous receive 0 = Disables continuous receive											
	Synchrono	Synchronous mode:										
	1 = Enable	1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)										
	0 = Disable	es continuou	s receive									
bit 3	ADDEN: A	ddress Dete	ect Enable b	it								
	Asynchronous mode 9-bit (RX9 = 1):											
	$\perp = \text{Enable}$	1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set										
	0 = Disable	0 = Disables address detection, all bytes are received. and ninth bit can be used as parity bit										
bit 2	FERR: Fra	ming Error b	oit									
	1 = Framin	1 = Framing error (can be updated by reading RCREG register and receive next valid byte)										
	0 = No frar	ning error										
bit 1		errun Error	bit	hu olooring l								
	1 = Overru	rrun error	be cleared	by cleaning i								
bit 0	RX9D: 9th	bit of Recei	ived Data (c	an be parity	bit but mus	t be calcula	ted by user i	firmware)				
20						. se calculu						
	Legend:											
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	plemented	bit. read as	'0'				

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

- n = Value at POR

x = Bit is unknown

TABLE 10-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	F	Fosc = 20 N	IHz	F	osc = 16 N	lHz	Fosc = 10 MHz		
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64
9.6	9.766	1.73	31	9.615	0.16	25	9.766	1.73	15
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2
HIGH	1.221	-	255	0.977	-	255	0.610	-	255
LOW	312.500	-	0	250.000	-	0	156.250	-	0

		Fosc = 4 M	Hz	Fosc = 3.6864 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	0.300	0	207	0.3	0	191	
1.2	1.202	0.17	51	1.2	0	47	
2.4	2.404	0.17	25	2.4	0	23	
9.6	8.929	6.99	6	9.6	0	5	
19.2	20.833	8.51	2	19.2	0	2	
28.8	31.250	8.51	1	28.8	0	1	
33.6	-	-	-	-	-	-	
57.6	62.500	8.51	0	57.6	0	0	
HIGH	0.244	-	255	0.225	-	255	
LOW	62.500	-	0	57.6	-	0	

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

PAUD	Fosc = 20 MHz			F	osc = 16 M	Hz	Fosc = 10 MHz		
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	-	-	-	-	-	-	-	-	-
1.2	-	-	-	-	-	-	-	-	-
2.4	-	-	-	-	-	-	2.441	1.71	255
9.6	9.615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	-	255	3.906	-	255	2.441	-	255
LOW	1250.000	-	0	1000.000		0	625.000	-	0

DALID	F	osc = 4 M⊦	łz	Fosc = 3.6864 MHz			
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	
0.3	-	-	-	-	-	-	
1.2	1.202	0.17	207	1.2	0	191	
2.4	2.404	0.17	103	2.4	0	95	
9.6	9.615	0.16	25	9.6	0	23	
19.2	19.231	0.16	12	19.2	0	11	
28.8	27.798	3.55	8	28.8	0	7	
33.6	35.714	6.29	6	32.9	2.04	6	
57.6	62.500	8.51	3	57.6	0	3	
HIGH	0.977	-	255	0.9	-	255	
LOW	250.000	-	0	230.4	-	0	

10.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be

enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- **Note 1:** The TSR register is not mapped in data memory, so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires a minimum 12TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 11-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Clock	Maximum Device Frequency	
Operation	ADCS1:ADCS0	Max.
2Tosc	00	1.25 MHz
8Tosc	01	5 MHz
32Tosc	10	20 MHz
RC ^(1, 2, 3)	11	(Note 1)

Note 1: The RC source has a typical TAD time of 4 μ s, but can vary between 2-6 μ s.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 15.1 and 15.2).

11.3 Configuring Analog Port Pins

The ADCON1 and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

Note	1:	When reading the port register, any pin
		configured as an analog input channel will
		read as cleared (a low level). Pins config-
		ured as digital inputs will convert an ana-
		log input. Analog levels on a digitally
		configured input will not affect the conver-
		sion accuracy.

2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the device specifications.

12.10 Interrupts

The PIC16F87X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit, or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt, and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or GIE bit.

© 1998-2013 Microchip Technology Inc.

12.10.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit, GIE, decides whether or not the processor branches to the interrupt vector following wake-up. See Section 12.13 for details on SLEEP mode.

12.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 5.0).

12.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 3.2).

12.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

For the PIC16F873/874 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F876/877 devices, temporary holding registers W_TEMP, STATUS_TEMP, and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and therefore, make it easier for context save and restore. The same code shown in Example 12-1 can be used.

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR)		;(Insert user code here)
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

15.0 ELECTRICAL CHARACTERISTICS

Absolute	Maximum	Ratings	t

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14 V
Voltage on RA4 with respect to Vss	0 to +8.5 V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD -	VOH) x IOH} + Σ (VOI x IOL)
2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80	mA, may cause latch-up.

- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873/876 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F87X

FIGURE 16-15: AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048

0

On-Line Support	
OPCODE Field Descriptions	
OPTION REG Register	19 48
	10
PS2:PS0 Bits	
PSA Bit	
T0CS Bit	
T0SE Bit	
OSC1/CLKIN Pin	
OSC2/CLKOUT Pin	
Oscillator Configuration	
HS	
LP	
RC	121, 122, 124
ХТ	
Oscillator, WDT	
Oscillators	
Capacitor Selection	
Crystal and Ceramic Resonators	121
RC	122

Ρ

P (STOP bit)	
Package Marking Information	
Packaging Information	
Paging, Program Memory	
Parallel Slave Port (PSP)	9, 35, 38
Associated Registers	
Block Diagram	
RE0/RD/AN5 Pin	9, 36, 38
RE1/WR/AN6 Pin	9, 36, 38
RE2/CS/AN7 Pin	9, 36, 38
Read Waveforms	
Select (PSPMODE Bit)	.35, 36, 37, 38
Write Waveforms	
PCL Register	15, 16, 26
PCLATH Register	.15, 16, 17, 26
PCON Register	
BOR Bit	
POR Bit	
PIC16F876 Pinout Description	7
PIC16F87X Product Identification System	
PICDEM 1 Low Cost PIC MCU	
Demonstration Board	
PICDEM 17 Demonstration Board	
PICDEM 2 Low Cost PIC16CXX	
Demonstration Board	
PICDEM 3 Low Cost PIC16CXXX	
Demonstration Board	
PICSTART Plus Entry Level	
Development Programmer	
PIE1 Register	21
PIE2 Register	23
Pinout Descriptions	
PIC16F873/PIC16F876	7
PIC16F874/PIC16F877	8
PIR1 Register	
PIR2 Register	24
POP	
POR. See Power-on Reset	

POF	RTA7,	8, 17
	Analog Port Pins	7, 8
	Associated Registers	30
	Block Diagram	
	BA2: BA0 and BA5 Bing	20
		29
	RA4/TOCKI Pin	29
	Initialization	29
	PORTA Register1	5, 29
	RA3	
	RA0 and RA5 Port Pins	. 29
		7 8
	RA5/S5/AN4 PIn	/,8
	I RISA Register	29
POF	RTB7,	8, 17
	Associated Registers	32
	Block Diagram	
	RB3 RB0 Port Pins	31
	RD7:DD4 Dort Ding	21
		31
	PORIB Register1	5, 31
	RB0/INT Edge Select (INTEDG Bit)	19
	RB0/INT Pin, External7, 8	, 130
	RB7:RB4 Interrupt on Change	. 130
	RB7 RB4 Interrupt on Change Enable	
	(PRIF Bit)	130
	DD7:DD4 Interrupt on Change Flag	. 150
	RB7.RB4 Interrupt on Change Flag	
	(RBIF Bit)	. 130
	RB7:RB4 Interrupt-on-Change Enable	
	(RBIE Bit)	20
	RB7:RB4 Interrupt-on-Change Flag	
	(BBIE Bit) 2	0 31
	TRISB Pegister 1	7 31
		0 47
POR	(IC	9, 17
	Associated Registers	34
	Block Diagrams	
	Peripheral Output Override	
	(RC 0:2, 5:7)	33
	Peripheral Output Override	
		22
		33
	PORIC Register1	5, 33
	RC0/T1OSO/T1CKI Pin	7, 9
	RC1/T1OSI/CCP2 Pin	7, 9
	RC2/CCP1 Pin	7, 9
	RC3/SCK/SCL Pin	7.9
		7 9
		7,9
	RC6/TX/CK Pin	9,96
	RC7/RX/DT Pin7, 9, 9	6, 97
	TRISC Register	3, 95
POR	.1	7, 38
	Associated Registers	35
	Block Diagram	00 2F
	Devolution Deve (DCD) Expertion	ათ იი
	Parallel Slave Port (PSP) FUnction	35
	PORTD Register1	5, 35

NOTES: