

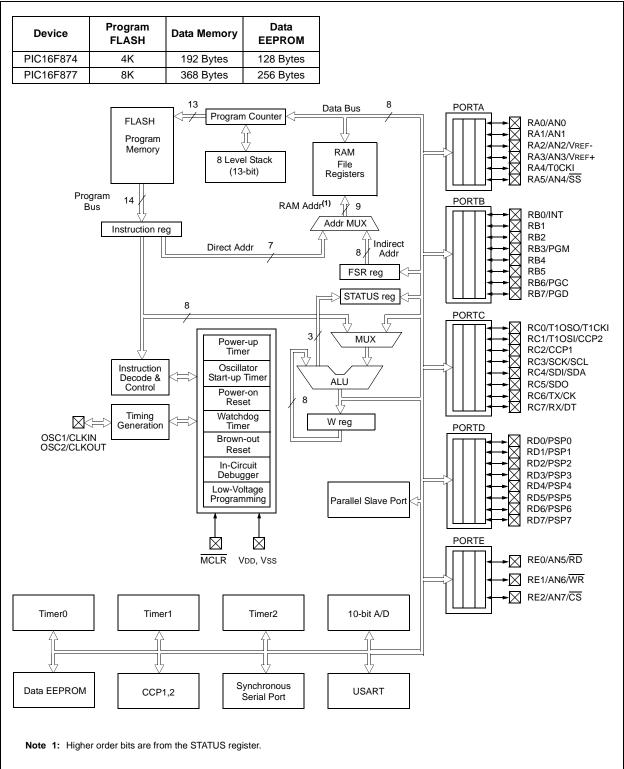
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf874t-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Note:	EEPROM Data Memory description can be found in Section 4.0 of this data sheet.
2.2.4	

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register (FSR).

FIGURE 2-4: PIC16F874/873 REGISTER FILE MAP

,	File Address	A	File ddress	/	File Address		File Addres
Indirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Cł
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dł
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		1206		1A0h
	20h		A0h		120h		
General Purpose Register		General Purpose Register		accesses 20h-7Fh		accesses A0h - FFh	
96 Bytes		96 Bytes		2011 11 11	16Fh 170h		1EFt 1F0h
	754				1756		4
Bank 0	J 7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFł
 Unimplemented data memory locations, read as '0'. * Not a physical register. Note 1: These registers are not implemented on the PIC16F873. 2: These registers are reserved, maintain these registers clear. 							

NOTES:

9.1 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

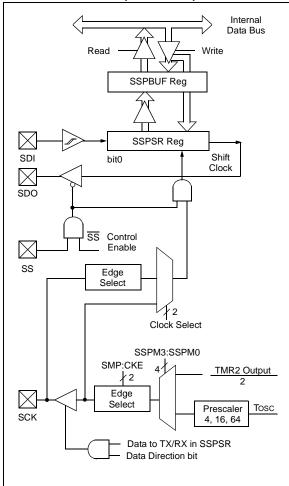
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)


Figure 9-4 shows the block diagram of the MSSP module when in SPI mode.

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

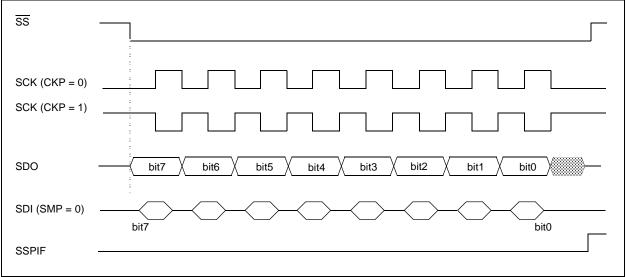
- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set and register ADCON1 (see Section 11.0: A/D Module) must be set in a way that pin RA5 is configured as a digital I/O

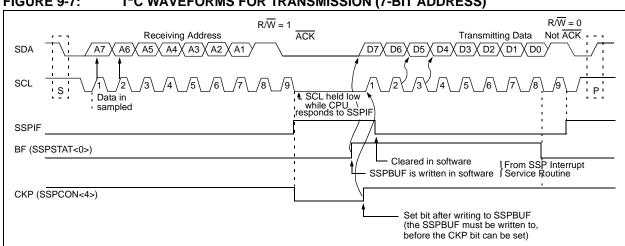
Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

FIGURE 9-1: MSSP BLOCK DIAGRAM (SPI MODE)

9.1.2 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the interrupt flag bit SSPIF (PIR1<3>) is set.


While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications. While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from SLEEP.


- Note 1: When the <u>SPI</u> module is in Slave mode with <u>SS</u> pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the <u>SS</u> pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE = '1', then SS pin control must be enabled.

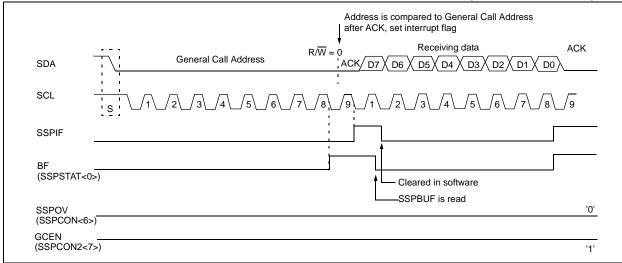
SCK (CKP = 0) SCK (CKP = 1) SD0 SD0 SD1 (SMP = 0) B17 SD1 SD1

FIGURE 9-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

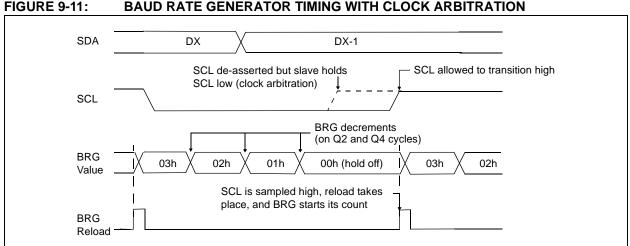
FIGURE 9-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.


The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8 bits are shifted into SSPSR and the address is compared against SSPADD. It is also compared to the general call address and fixed in hardware.


If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

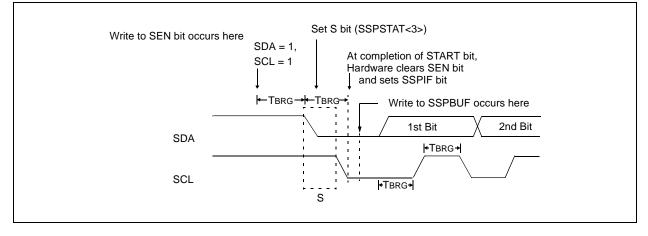
In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 9-8).

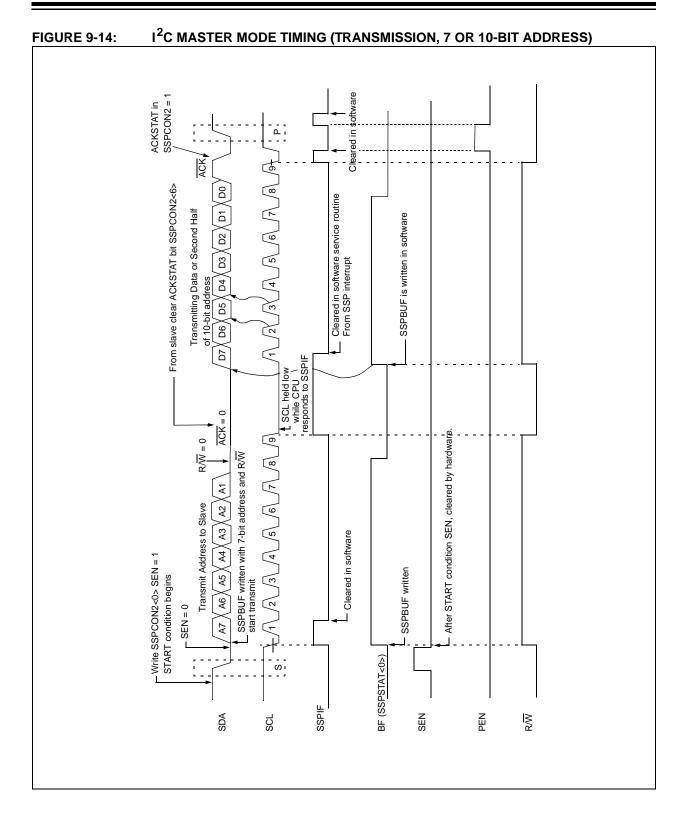
FIGURE 9-8: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

9.2.9 I²C MASTER MODE START CONDITION TIMING

To initiate a START condition, the user sets the START condition enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the baud rate generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the START condition, and causes the S bit (SSPSTAT<3>) to be set. Following this, the baud rate generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware. The baud rate generator is suspended, leaving the SDA line held low, and the START condition is complete.


Note: If, at the beginning of START condition, the SDA and SCL pins are already sampled low, or if during the START condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag (BCLIF) is set, the START condition is aborted, and the I²C module is reset into its IDLE state.


9.2.9.1 WCOL Status Flag

If the user writes the SSPBUF when a START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the START condition is complete.

FIGURE 9-12: FIRST START BIT TIMING

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Reception, follow these steps:

1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	aud Rate Generator Register 0000 0000 0000 0000								

TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. **Note** 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices, always maintain these bits clear.

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 **PCFG3:PCFG0**: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	Α	А	А	Α	Α	Α	Α	Vdd	Vss	8/0
0001	А	А	А	А	VREF+	А	Α	Α	RA3	Vss	7/1
0010	D	D	D	А	Α	Α	Α	Α	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	Α	Α	RA3	Vss	4/1
0100	D	D	D	D	А	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	А	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	Vdd	Vss	0/0
1000	А	А	А	А	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	А	А	А	А	Α	Α	Vdd	Vss	6/0
1010	D	D	А	А	VREF+	Α	Α	А	RA3	Vss	5/1
1011	D	D	А	А	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	А	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	Vref-	D	А	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs. To determine sample time, see Section 11.1. After this acquisition time has elapsed, the A/D conversion can be started.

13.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

Bit Clear f

BCF

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W					
Syntax:	[<i>label</i>] ANDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .AND. (k) \rightarrow (W)					
Status Affected:	Z					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.					

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2TcY instruction.

ANDWF	AND W with f					
Syntax:	[<i>label</i>] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.					

BTFSC	Bit Test, Skip if Clear					
Syntax:	[<i>label</i>] BTFSC f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	skip if $(f < b) = 0$					
Status Affected:	None					
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.					

MOVF	Move f							
Syntax:	[label] MOVF f,d							
Operands:	$0 \le f \le 127$ d $\in [0,1]$							
Operation:	(f) \rightarrow (destination)							
Status Affected:	Z							
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.							

NOP	No Operation			
Syntax:	[label] NOP			
Operands:	None			
Operation:	No operation			
Status Affected:	None			
Description:	No operation.			

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \le k \le 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.					

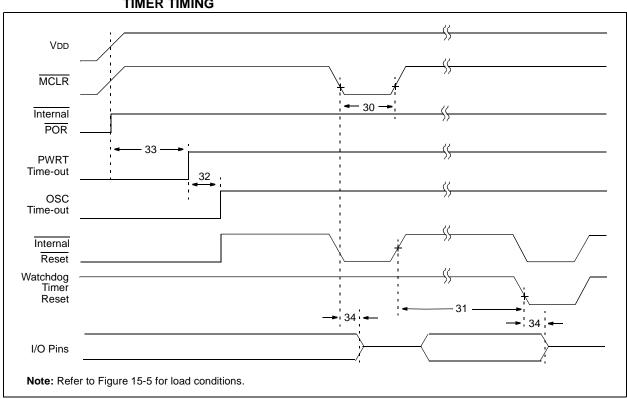
RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$				
Status Affected:	None				

MOVWF	Move W to f					
Syntax:	[<i>label</i>] MOVWF f					
Operands:	$0 \le f \le 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					

RETLW	Return with Literal in W					
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$					
Status Affected:	None					
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.					

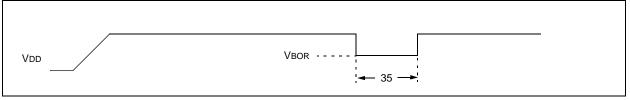
15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended)

DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating voltage VDD range as described in DC specification (Section 15.1)						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	—	0.15Vdd		For entire VDD range	
D030A			Vss	—	0.8V	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V		
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)	
		Ports RC3 and RC4						
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range	
D034A		with SMBus	-0.5	—	0.6	V	for $VDD = 4.5$ to $5.5V$	
	Vih	Input High Voltage						
		I/O ports		—				
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D040A			0.25Vdd	—	Vdd	V	For entire VDD range	
			+ 0.8V					
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range	
D042		MCLR	0.8Vdd	—	Vdd	V		
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)	
D043		OSC1 (in RC mode)	0.9Vdd	—	Vdd	V		
		Ports RC3 and RC4						
D044		with Schmitt Trigger buffer	0.7VDD	—	Vdd	V	For entire VDD range	
D044A		with SMBus	1.4	—	5.5	V	for VDD = 4.5 to 5.5V	
D070A	IPURB		50	250	400	μA	VDD = 5V, VPIN = VSS,	
	lı∟	Input Leakage Current ^(2, 3)						
D060		I/O ports	-	-	±1	μΑ	$Vss \le VPIN \le VDD,$	
							Pin at hi-impedance	
D061		MCLR, RA4/T0CKI	-	-	±5	μΑ	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	-	-	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 15-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-9: BROWN-OUT RESET TIMING

TABLE 15-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	-	_	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tıoz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.1	μS	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$VDD \le VBOR (D005)$

These parameters are characterized but not tested.

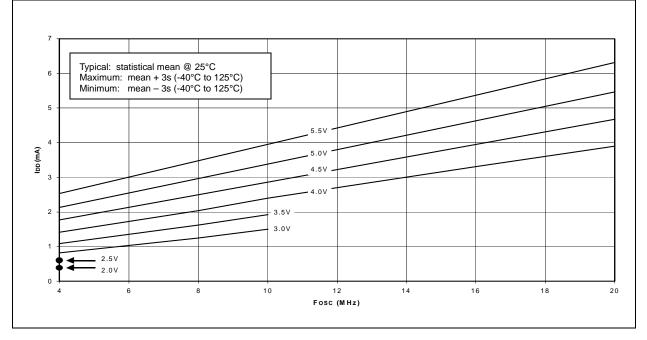
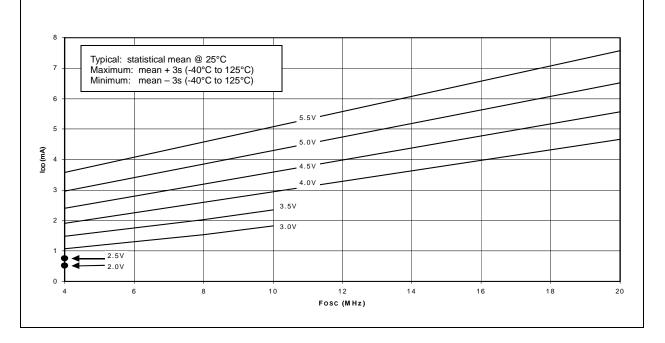
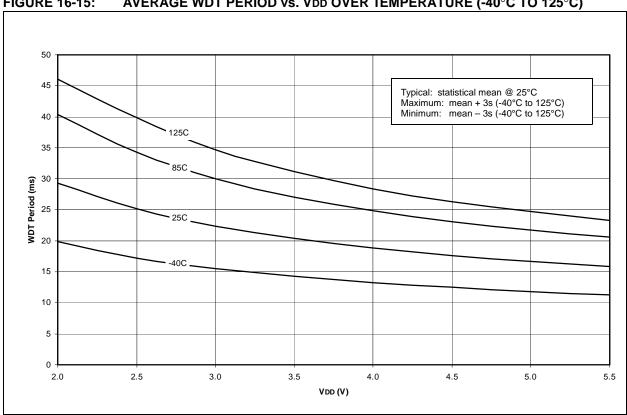
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

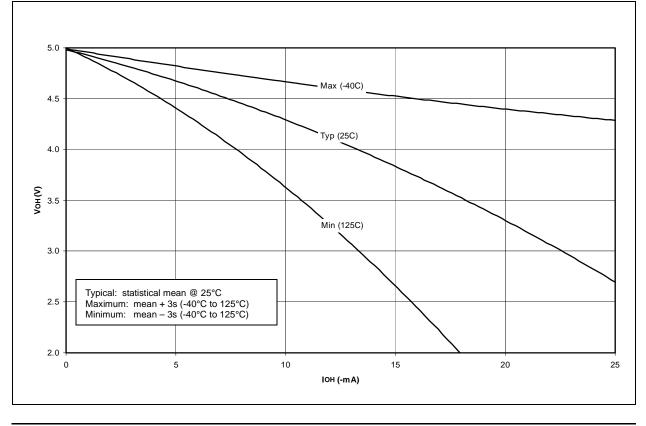
16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

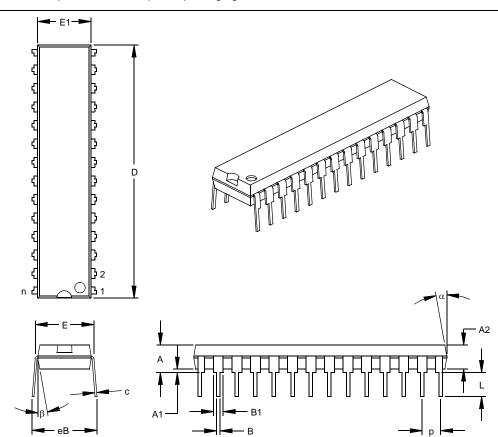
The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented is **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.


FIGURE 16-2: MAXIMUM IDD vs. Fosc OVER VDD (HS MODE)


FIGURE 16-15: AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)

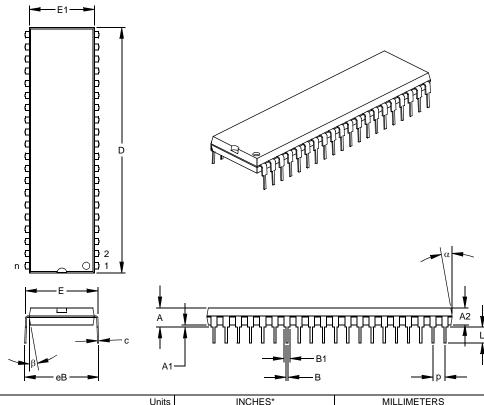
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units INCHES*			MILLIMETERS			
Dimens	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing	§ eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed


.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Notes:

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	its INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15
* 0 / 11' D /							

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016