

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf876t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Memory Organization	11
3.0	I/O Ports	
4.0	Data EEPROM and FLASH Program Memory	41
5.0	Timer0 Module	47
6.0	Timer1 Module	51
7.0	Timer2 Module	55
8.0	Capture/Compare/PWM Modules	57
9.0	Master Synchronous Serial Port (MSSP) Module	
10.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
11.0	Analog-to-Digital Converter (A/D) Module	111
12.0	Special Features of the CPU	119
13.0	Instruction Set Summary	135
14.0	Development Support	143
15.0	Electrical Characteristics	149
16.0	DC and AC Characteristics Graphs and Tables	177
17.0	Packaging Information	189
Appe	ndix A: Revision History	197
Appe	ndix B: Device Differences	197
Appe	ndix C: Conversion Considerations	198
Index	(199
On-L	ine Support	207
Read	ler Response	208
PIC1	6F87X Product Identification System	209

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2	bit2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input.

TABLE 3-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA			RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA		—	PORTA	PORTA Data Direction Register						11 1111
9Fh	ADCON1	ADFM	—			PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes, where PCFG3:PCFG0 = 0100,0101, 011x, 1101, 1110, 1111.

NOTES:

9.1 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

Figure 9-4 shows the block diagram of the MSSP module when in SPI mode.

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set and register ADCON1 (see Section 11.0: A/D Module) must be set in a way that pin RA5 is configured as a digital I/O

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

FIGURE 9-1: MSSP BLOCK DIAGRAM (SPI MODE)

9.2.3 SLEEP OPERATION

While in SLEEP mode, the I^2C module can receive addresses or data. When an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

9.2.4 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Dh	PIR2	—	(2)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	-r-0 00
8Dh	PIE2	—	(2)	_	EEIE	BCLIE	_	_	CCP2IE	-r-0 00	-r-0 00
13h	SSPBUF	Synchrono	ous Serial Por	rt Receive I	Buffer/Trar	nsmit Reg	ister			XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
93h	SSPADD	I ² C Slave	² C Slave Address/Master Baud Rate Register								0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 9-3: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in I²C mode.

Note 1: These bits are reserved on PIC16F873/876 devices; always maintain these bits clear.

2: These bits are reserved on these devices; always maintain these bits clear.

9.2.13 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit is presented on the SDA pin. If the user wishes to generate an Acknowledge, the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The baud rate generator then counts for one rollover period (TBRG), and the SCL pin is de-asserted high. When the SCL pin is sampled high (clock arbitration), the baud rate generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the baud rate generator is turned off, and the SSP module then goes into IDLE mode (Figure 9-16).

9.2.13.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-16: ACKNOWLEDGE SEQUENCE WAVEFORM

10.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0					
	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D					
	bit 7							bit 0					
bit 7	CSRC: Cloc	k Source Se	elect bit										
	<u>Asynchronou</u> Don't care	<u>us mode:</u>											
	<u>Synchronous</u> 1 = Master n 0 = Slave mo	<u>s mode:</u> node (clock ode (clock fr	generated in om externa	nternally fror I source)	n BRG)								
bit 6	TX9 : 9-bit Tr 1 = Selects 9 0 = Selects 8	TX9 : 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission											
bit 5	TXEN : Tran 1 = Transmit 0 = Transmit	smit Enable enabled disabled	bit										
	Note: SREN	CREN ove	rrides TXEN	I in SYNC m	ode.								
bit 4	SYNC: USA 1 = Synchron 0 = Asynchron	RT Mode S nous mode onous mode	elect bit										
bit 3	Unimpleme	nted: Read	as '0'										
bit 2	BRGH: High	Baud Rate	Select bit										
	<u>Asynchronou</u> 1 = High spe 0 = Low spe	<u>us mode:</u> eed ed											
	<u>Synchronous</u> Unused in th	<u>Synchronous mode:</u> Unused in this mode											
bit 1	TRMT : Trans 1 = TSR em 0 = TSR full	TRMT : Transmit Shift Register Status bit 1 = TSR empty 0 = TSR full											
bit 0	TX9D: 9th bi	t of Transm	it Data, can	be parity bit									
	Legend.												
	R = Readabl	le hit	W = W/r	itable bit	LI = Unimpl	emented hi	it read as 'i	n'					
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is c	cleared	x = Bit is ur	- nknown					

These steps should be followed for doing an A/D Conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit

- 3. Wait the required acquisition time.
- 4. Start conversion:
 Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before the next acquisition starts.

FIGURE 11-1: A/D BLOCK DIAGRAM

12.0 SPECIAL FEATURES OF THE CPU

All PIC16F87X devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming
- Low Voltage In-Circuit Serial Programming
- In-Circuit Debugger

PIC16F87X devices have a Watchdog Timer, which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits is used to select various options.

Additional information on special features is available in the PIC^{\circledast} MCU Mid-Range Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. The erased, or unprogrammed value of the configuration word is 3FFFh. These bits are mapped in program memory location 2007h.

It is important to note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

TABLE 12-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes following this table.

Crystals Used									
32 kHz	Epson C-001R32.768K-A	± 20 PPM							
200 kHz	STD XTL 200.000KHz	± 20 PPM							
1 MHz	ECS ECS-10-13-1	± 50 PPM							
4 MHz	ECS ECS-40-20-1	± 50 PPM							
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM							
20 MHz	EPSON CA-301 20.000M- C	± 30 PPM							

- **Note 1:** Higher capacitance increases the stability of oscillator, but also increases the startup time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - R_s may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - 4: When migrating from other PIC[®] MCU devices, oscillator performance should be verified.

12.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 12-3 shows how the R/C combination is connected to the PIC16F87X.

13.0 INSTRUCTION SET SUMMARY

Each PIC16F87X instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F87X instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
то	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 13-2 lists the instructions recognized by the MPASMTM assembler.

Figure 13-1 shows the general formats that the instructions can have.

Note:	То	maintain	upward	compatibility	with					
	future PIC16F87X products, do not use the									
	OP	TION and TRIS instructions.								

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file re	gist	er op	eratio	ons				
13	8	1	6		0			
OPCODE		d		f (FILE #)				
d = 0 for desti	nati	on W						
d = 1 for desti	nati	on f						
f = 7-bit file re	egist	ter ad	dres	S				
Bit-oriented file regi	ister	oper	ation	S				
13	10	9	7	6	0			
OPCODE		b (Bl	T #)	f (FILE #)				
h – 3-hit hit ar	dro	ee						
f = 7-bit file re	egist	ter ad	dres	S				
	0							
l iteral and control of	pper	ations	\$					
	, p 0.		-					
General								
13		8	7		0			
OPCODE				k (literal)				
k = 8-bit imm	edia	ite va	lue					
CALL and GOTO instructions only								
13 11 10 0								
OPCODE k (literal)								
k = 11-bit immediate value								

A description of each instruction is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

14.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC16F87X and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. The MPLAB ICD utilizes the in-circuit debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

14.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

14.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

14.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A). PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

14.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I²C[™] bus and separate headers for connection to an LCD module and a keypad.

NOTES:

15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

			Standard	Oper	ating Co	nditior	ns (unless otherwise stated)		
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
DC CHA	RACTER	RISTICS	$0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
			Operating voltage VDD range as described in DC specification						
Daram				0.1)					
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	VIL	Input Low Voltage							
		I/O ports							
D030		with TTL buffer	Vss	—	0.15Vdd	V	For entire VDD range		
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$		
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V			
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V			
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)		
		Ports RC3 and RC4		—					
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range		
D034A		with SMBus	-0.5	—	0.6	V	for VDD = 4.5 to 5.5V		
	Vih	Input High Voltage							
		I/O ports							
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25Vdd	—	Vdd	V	For entire VDD range		
			+ 0.8V						
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range		
D042		MCLR	0.8Vdd	—	Vdd	V			
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)		
D043		OSC1 (in RC mode)	0.9Vdd	—	Vdd	V			
		Ports RC3 and RC4							
D044		with Schmitt Trigger buffer	0.7Vdd	—	Vdd	V	For entire VDD range		
D044A		with SMBus	1.4	—	5.5	V	for $VDD = 4.5$ to $5.5V$		
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = VSS,		
	Lo.	(0, 0)					-40°C TO +85°C		
	IIL	Input Leakage Current ^(2, 3)							
D060		I/O ports	—	—	±1	μA	$Vss \leq VPIN \leq VDD,$		
							Pin at hi-impedance		
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \le VPIN \le VDD$		
D063		OSC1	—	—	±5	μA	$Vss \le VPIN \le VDD, XT, HS$		
	-						and LP osc configuration		

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

NOTES:

FIGURE 16-20: MINIMUM AND MAXIMUM VIN vs. Vdd, (TTL INPUT, -40°C TO 125°C)

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension I	_imits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Notes: