

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf877-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PIC [®] MCU Mid-Range Reference Manual (DS33023)	PIC16F873	PIC16F874	PIC16F876	PIC16F877
Operating Frequency	DC - 20 MHz			
RESETS (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
EEPROM Data Memory	128	128	256	256
Interrupts	13	14	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3	3	3
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, USART	MSSP, USART	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP	—	PSP
10-bit Analog-to-Digital Module	5 input channels	8 input channels	5 input channels	8 input channels
Instruction Set	35 instructions	35 instructions	35 instructions	35 instructions

Table of Contents

1.0	Device Overview	
2.0	Memory Organization	11
3.0	I/O Ports	
4.0	Data EEPROM and FLASH Program Memory	41
5.0	Timer0 Module	47
6.0	Timer1 Module	51
7.0	Timer2 Module	55
8.0	Capture/Compare/PWM Modules	57
9.0	Master Synchronous Serial Port (MSSP) Module	
10.0	Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
11.0	Analog-to-Digital Converter (A/D) Module	111
12.0	Special Features of the CPU	119
13.0	Instruction Set Summary	135
14.0	Development Support	143
15.0	Electrical Characteristics	149
16.0	DC and AC Characteristics Graphs and Tables	177
17.0	Packaging Information	189
Appe	ndix A: Revision History	197
Appe	ndix B: Device Differences	197
Appe	ndix C: Conversion Considerations	198
Index	(199
On-L	ine Support	207
Read	ler Response	
PIC1	6F87X Product Identification System	209

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

 TABLE 2-1:
 SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 0											
00h ⁽³⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	o address dat	a memory (no	t a physical ı	egister)	0000 0000	27
01h	TMR0	Timer0 Mc	dule Registe	ər						XXXX XXXX	47
02h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26
03h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
04h ⁽³⁾	FSR	Indirect Da	ata Memory	Address Poir	nter					xxxx xxxx	27
05h	PORTA		_	PORTA Da	ta Latch whe	n written: POI	RTA pins whe	n read		0x 0000	29
06h	PORTB	PORTB Da	ata Latch wh	en written: F	ORTB pins v	hen read				xxxx xxxx	31
07h	PORTC	PORTC D	ata Latch wh	en written: F	ORTC pins v	vhen read				xxxx xxxx	33
08h ⁽⁴⁾	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				XXXX XXXX	35
09h ⁽⁴⁾	PORTE		_		_	_	RE2	RE1	RE0	xxx	36
0Ah ^(1,3)	PCLATH		_		Write Buffer	for the upper	r 5 bits of the l	Program Cou	unter	0 0000	26
0Bh ⁽³⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	22
0Dh	PIR2	_	(5)	—	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	24
0Eh	TMR1L	Holding re	gister for the	Least Signi	ficant Byte of	the 16-bit TN	IR1 Register			xxxx xxxx	52
0Fh	TMR1H	Holding re	gister for the	Most Signif	icant Byte of	the 16-bit TM	R1 Register			xxxx xxxx	52
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	51
11h	TMR2	Timer2 Mo	dule Registe	ər						0000 0000	55
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	55
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive E	Suffer/Transm	it Register				xxxx xxxx	70, 73
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	67
15h	CCPR1L	Capture/C	ompare/PW	M Register1	(LSB)					xxxx xxxx	57
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					xxxx xxxx	57
17h	CCP1CON		—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	58
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	99
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	101
1Bh	CCPR2L	Capture/C	ompare/PW	M Register2	(LSB)					xxxx xxxx	57
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	57
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	58
1Eh	ADRESH	A/D Resul	t Register Hi	gh Byte						xxxx xxxx	116
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	111

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.2.2.8 PCON Register

The Power Control (PCON) Register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT), and an external MCLR Reset.

Note: BOR is unknown on POR. It must be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	_	POR	BOR
bit 7							bit 0

bit 7-2 Unimplemented: Read as '0'

bit 1 **POR**: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TRISE REGISTER (ADDRESS 89h) R/W-1 R-0 R-0 R/W-0 R/W-0 U-0 R/W-1 R/W-1 IBF OBF **IBOV PSPMODE** Bit2 Bit1 Bit0 bit 7 bit 0 Parallel Slave Port Status/Control Bits: bit 7 IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received bit 6 **OBF**: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read bit 5 **IBOV**: Input Buffer Overflow Detect bit (in Microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred bit 4 PSPMODE: Parallel Slave Port Mode Select bit 1 = PORTD functions in Parallel Slave Port mode 0 = PORTD functions in general purpose I/O mode Unimplemented: Read as '0' bit 3 **PORTE Data Direction Bits:** Bit2: Direction Control bit for pin RE2/CS/AN7 bit 2 1 = Input0 = OutputBit1: Direction Control bit for pin RE1/WR/AN6 bit 1 1 = Input 0 = Output Bit0: Direction Control bit for pin RE0/RD/AN5 bit 0 1 = Input 0 = Output Legend:

W = Writable bit

'1' = Bit is set

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

R = Readable bit

- n = Value at POR

REGISTER 3-1:

4.2 Reading the EEPROM Data Memory

Reading EEPROM data memory only requires that the desired address to access be written to the EEADR register and clear the EEPGD bit. After the RD bit is set, data will be available in the EEDATA register on the very next instruction cycle. EEDATA will hold this value until another read operation is initiated or until it is written by firmware.

The steps to reading the EEPROM data memory are:

- 1. Write the address to EEDATA. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 2. Clear the EEPGD bit to point to EEPROM data memory.
- 3. Set the RD bit to start the read operation.
- 4. Read the data from the EEDATA register.

BSF	STATUS,	RP1	i
BCF	STATUS,	RP0	;Bank 2
MOVF	ADDR, W		;Write address
MOVWF	EEADR		;to read from
BSF	STATUS,	RP0	;Bank 3
BCF	EECON1,	EEPGD	; Point to Data memory
BSF	EECON1,	RD	;Start read operation
BCF	STATUS,	RP0	;Bank 2
MOVF	EEDATA,	W	;W = EEDATA

EXAMPLE 4-1: EEPROM DATA READ

4.3 Writing to the EEPROM Data Memory

There are many steps in writing to the EEPROM data memory. Both address and data values must be written to the SFRs. The EEPGD bit must be cleared, and the WREN bit must be set, to enable writes. The WREN bit should be kept clear at all times, except when writing to the EEPROM data. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.

Writes to EEPROM data memory must also be prefaced with a special sequence of instructions, that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruptions. The firmware should verify that a write is not in progress, before starting another cycle. The steps to write to EEPROM data memory are:

- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- Write the address to EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear the WREN bit to disable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 4-2:	EEPROM DATA WRITE

202		
BSF	STATUS, RPI	;
BSF	STATUS, RPO	;Bank 3
BTFSC	EECON1, WR	;Wait for
GOTO	\$-1	;write to finish
BCF	STATUS, RPO	;Bank 2
MOVF	ADDR, W	;Address to
MOVWF	EEADR	;write to
MOVF	VALUE, W	;Data to
MOVWF	EEDATA	;write
BSF	STATUS, RPO	;Bank 3
BCF	EECON1, EEPGD	;Point to Data memory
BSF	EECON1, WREN	;Enable writes
		;Only disable interrupts
BCF	INTCON, GIE	;if already enabled,
		;otherwise discard
MOVLW	0x55	;Write 55h to
MOVWF	EECON2	;EECON2
MOVLW	0xAA	;Write AAh to
MOVWF	EECON2	;EECON2
BSF	EECON1, WR	;Start write operation
		;Only enable interrupts
BSF	INTCON, GIE	; if using interrupts,
		;otherwise discard
BCF	EECON1, WREN	;Disable writes

NOTES:

9.2.18.3 Bus Collision During a STOP Condition

Bus collision occurs during a STOP condition if:

- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0'. If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is a case of another master attempting to drive a data '0' (Figure 9-25).

FIGURE 9-25: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 9-26: BUS COLLISION DURING A STOP CONDITION (CASE 2)

TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission. **Note 1:** Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

FIGURE 10-9: SYNCHRONOUS TRANSMISSION

FIGURE 10-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.

e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	USART Transmit Register							0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

11.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next

FIGURE 11-3: A/D CONVERSION TAD CYCLES

acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-4: A/D RESULT JUSTIFICATION

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note:	For the A/D module to operate in SLEEP,
	the A/D clock source must be set to RC
	(ADCS1:ADCS0 = 11). To allow the con-
	version to occur during SLEEP, ensure the
	SLEEP instruction immediately follows the
	instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	V <u>alue o</u> n MCLR, WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
1Eh	ADRESH	A/D Resul	lt Register	High By	te					xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Resul	lt Register	Low Byt	e					XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM		_	—	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA	—		PORTA	Data Directio	n Register				11 1111	11 1111
05h	PORTA	—		PORTA	Data Latch w	/hen writte	n: PORTA pi	ns when re	ead	0x 0000	0u 0000
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ta Directio	n bits	0000 -111	0000 -111
09h ⁽¹⁾	PORTE	—			_		RE2	RE1	RE0	xxx	uuu

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	рісчесххх	PIC16F62X	X7O91OI9	XXTOðroig	PIC16C8X	PIC16F8XX	PIC16C9XX	PIC17C4X	XXTOTIOIq	PIC18CXX2	63CXX 52CXX/ 54CXX/	хххзэн	мскеххх	MCP2510
MPLAB [®] Integrated	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler												>	>					
MPLAB® C18 C Compiler														>				
6 MPASM™ Assembler/ 0 MPLINK™ Object Linker	>	~	~	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	~	~	~	>	~	×*^	>	~	>	>	>	~	~	~				
ccePICTM In-Circuit Emulator	>		>	>	>		>	>	>		>							
ee Bebugger Debugger				*			*			>								
ଝ PICSTART® Plus Entry Level ଅଧିତ Development Programmer	>	`	~	>	>	**>	>	>	>	>	>	>	>	`				
PRO MATE® II Universal Device Programmer	>	>	>	>	>	**/	>	>	>	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		+		>			>						
PICDEM TM 2 Demonstration Board				4			4							>				
PICDEM™ 3 Demonstration Board											>							
PICDEM™ 14A Demonstration Board		~																
■ PICDEM™ 17 Demonstration Board													>					
KEELoq® Evaluation Kit																>		
KEELoa® Transponder Kit																~		
o microlD™ Programmer's Kit																	<	
5 125 kHz microlD™ Developer's Kit																	>	
125 kHz Anticollision microlD TM Developer's Kit																	>	
13.56 MHz Anticollision microlD TM Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>
* Contact the Microchip Technology Ir ** Contact Microchip Technology Inc. fu ⁺ Development tool is available on sel	nc. web si or availab lect devic	te at www ility date. es.	. microchi	p.com for	informatic	woh no n	to use the	e MPLAB	[®] ICD In-0	Circuit De	bugger (E	V164001) with PIC	C16C62, (63, 64, 65	, 72, 73,	74, 76, 77	

|--|

© 1998-2013 Microchip Technology Inc.

FIGURE 15-4: PIC16F87X-10 VOLTAGE-FREQUENCY GRAPH (EXTENDED TEMPERATURE RANGE ONLY)

15.3

DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended) (Continued)

PIC16F87 PIC16F87 (Extende	3/874/876 3/874/876 ed)	5/877-04 5/877-20	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions			
	IDD	Supply Current ^(2,5)								
D010			—	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V			
D013			_	7	15	mA	HS osc configuration, Fosc = 10 MHz, VDD = 5.5V			
D015	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μΑ	BOR enabled, VDD = 5.0V			
	IPD	Power-down Current ^(3,5)								
D020A				10.5	60	μΑ	VDD = 4.0V, WDT enabled			
D021B				1.5	30	μΑ	VDD = 4.0V, WDT disabled			
D023	ΔIBOR	Brown-out Reset Current ⁽⁶⁾		85	200	μA	BOR enabled, VDD = 5.0V			

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

FIGURE 15-11: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym		Characteris	stic	Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time		Standard(F)	10	_	_	ns	
			With Prescaler	Extended(LF)	20	_		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	l	ns	
		input high time		Standard(F)	10	_		ns	
			With Prescaler	Extended(LF)	20	-		ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N		—	ns	N = prescale value (1, 4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 of	output fall time	Standard(F)	_	10	25	ns	
				Extended(LF)	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

FIGURE 16-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769294

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.