

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf877-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note:	The C and DC bits operate as a borrow
	and digit borrow bit, respectively, in sub-
	traction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
	IRP	RP1	RP0	TO	PD	Z	DC	С					
	bit 7							bit 0					
					<i>.</i>								
bit 7	-		-	d for indire	ct addressing)								
		1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)											
bit 6-5	RP1:RP0	: Register Ba	nk Select bi	its (used for	direct addressi	ng)							
	10 = Ban 01 = Ban 00 = Ban	RP1:RP0 : Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes											
bit 4	TO : Time	-out bit											
		power-up, CL T time-out o		iction, or SI	EEP instruction								
bit 3	PD: Powe	er-down bit											
		power-up or l ecution of the			on								
bit 2	Z: Zero bi	it											
		esult of an ar esult of an ar			on is zero on is not zero								
bit 1	DC: Digit	carry/borrow	bit (ADDWF,	ADDLW, SU	BLW, SUBWF ins	tructions)							
	(for borro	w, the polarity	/ is reversed	d)									
		ry-out from th arry-out from t			e result occurre the result	d							
bit 0	C: Carry/	borrow bit (AI	DDWF, ADDLI	W,SUBLW,S	UBWF instruction	ons)							
		•	•		f the result occu of the result occ								
	Note:	complemer	nt of the sec	ond operar	d. A subtraction d. For rotate (R order bit of the	rf, rlf)	instructions						
	Legend:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x					
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF					
	bit 7							bit 0					
bit 7	GIE: Globa	al Interrupt E	nable bit										
		s all unmas		ots									
h :+ C	 Disables all interrupts PEIE: Peripheral Interrupt Enable bit 												
bit 6	-		•		-								
		s all unmas		•	5								
bit 5		0 Overflow	=										
		s the TMR0											
	0 = Disable	es the TMR) interrupt										
bit 4		/INT Externa	•										
		es the RB0/II es the RB0/I											
bit 3		Port Change		•									
bit 0		s the RB po	•										
		es the RB po											
bit 2	TOIF: TMR	0 Overflow I	Interrupt Fla	ag bit									
					eared in softwa	re)							
		register did											
bit 1		/INT Externa	•	•		1	>						
		30/INT exter	•	•	must be cleared	a in softwa	re)						
bit 0		Port Change	•										
		•	•	•	l state; a misma	tch conditi	ion will cont	nue to set					
		•		nd the mism	atch condition a	and allow t	he bit to be	cleared					
		be cleared in of the RB7:R	,	ve changed	stato								
			una hiris ila	e changeu	SIGIE								
	Legend:												
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	oit, read as '	0'					
	- n = Value			Bit is set	'0' = Bit is c		x = Bit is u						
								-					

2.2.2.4 **PIE1** Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note:	Bit PEIE (INTCON<6>) must be set to
	enable any peripheral interrupt.

PIE1 REGISTER (ADDRESS 8Ch) **REGISTER 2-4:**

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	PSPIE ⁽¹⁾ : F	Parallel Slav	e Port Read	d/Write Inter	rupt Enable bit			
		s the PSP r s the PSP i						
bit 6	ADIE: A/D	Converter I	nterrupt Ena	able bit				
		s the A/D co es the A/D c						
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit				
		s the USAR						
		es the USAF						
bit 4		RT Transmi	-					
		s the USAR		•				
bit 3	SSPIE: Syl	nchronous S	Serial Port In	nterrupt Ena	ıble bit			
	1 = Enable	s the SSP i	nterrupt					
	0 = Disable	es the SSP i	nterrupt					
bit 2		CP1 Interru	•	it				
		s the CCP1	•					
		es the CCP1	•					
bit 1		MR2 to PR2		•				
		s the TMR2 es the TMR2		•				
bit 0					L			
		MR1 Overfless the TMR1	-					
		es the TMR1		•				

Note 1: PSPIE is reserved on PIC16F873/876 devices; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

5.3 Prescaler

There is only one prescaler available, which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the

REGISTER 5-1: OPTION REG REGISTER

DANA

Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. This prescaler is not readable or writable (see Figure 5-1).

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF1, MOVWF1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

Note: Writing to TMR0, when the prescaler is assigned to Timer0, will clear the prescaler count, but will not change the prescaler assignment.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0					
	bit 7							bit 0					
bit 7	RBPU												
bit 6	INTEDG												
bit 5	TOCS : TMR0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKOUT)												
bit 4	TOSE : TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin												
bit 3	1 = Presca	 Prescaler Assignment bit Prescaler is assigned to the WDT Prescaler is assigned to the Timer0 module 											
bit 2-0	PS2:PS0:	Prescaler Ra	ite Select b	oits									
	Bit Value	TMR0 Rate	WDT Rat	e									
	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	-									
	Legend:												
	R = Reada	able bit	VV = V	Vritable bit	U = Unimple	emented b	it, read as '()'					
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown					
ily Reference	ce Manual (DS33023) m	ust be exe	cuted when	ience shown in changing the pr /DT is disabled.	escaler as	MCU Mid-Ra signment fr	ange Fam- om Timer0					

Note:

TABLE 5-1:	REGISTERS ASSOCIATED WITH TIMER0
------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	Module's F	Register	•					XXXX XXXX	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

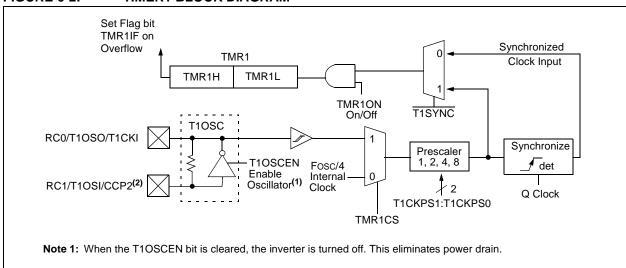
6.1 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync.

6.2 Timer1 Counter Operation

Timer1 may operate in either a Synchronous, or an Asynchronous mode, depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.


FIGURE 6-1: TIMER1 INCREMENTING EDGE

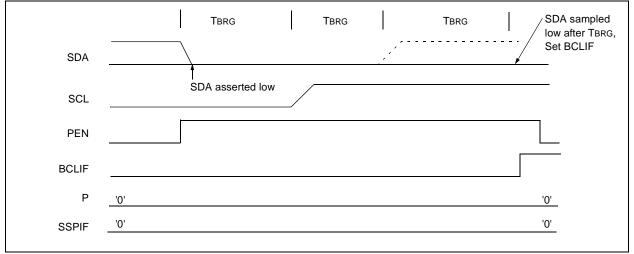
6.3 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

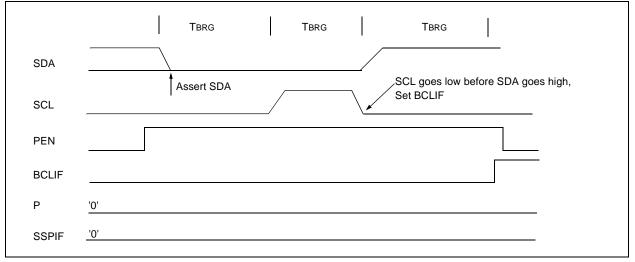
If $\overline{\text{T1SYNC}}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM


9.2.18.3 Bus Collision During a STOP Condition

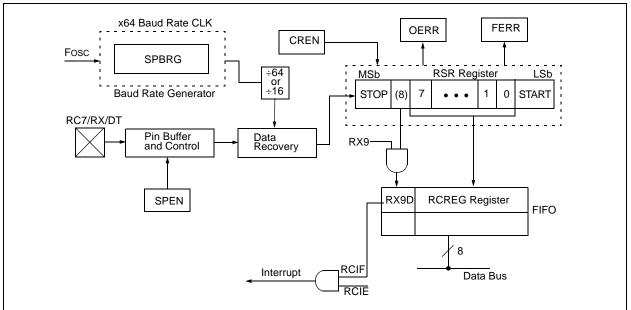
Bus collision occurs during a STOP condition if:

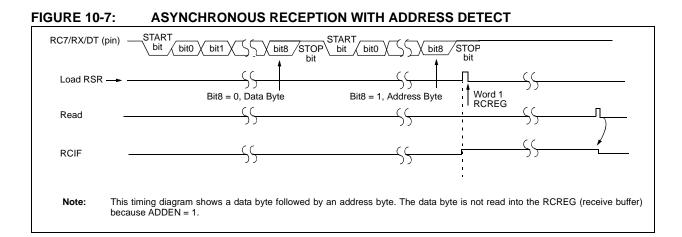

- a) After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0'. If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is a case of another master attempting to drive a data '0' (Figure 9-25).

FIGURE 9-25: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 9-26: BUS COLLISION DURING A STOP CONDITION (CASE 2)


10.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter, operating at x16 times the baud rate; whereas, the main receive serial shifter operates at the bit rate or at Fosc.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

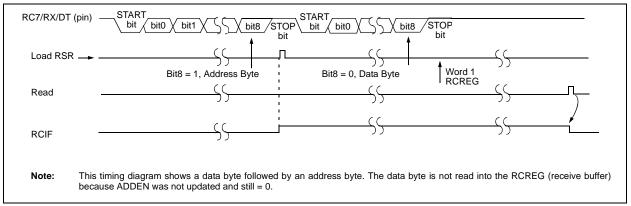

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, and no further data will be received. It is therefore, essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.

FIGURE 10-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	x000 0000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Re	ceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato	or Registe	r					0000 0000	0000 0000

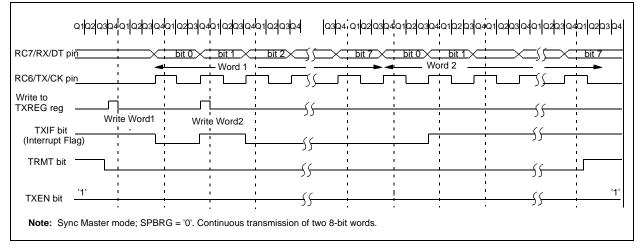
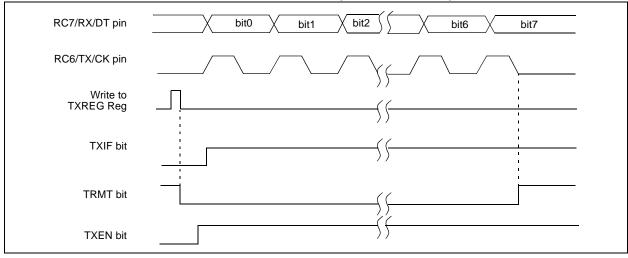

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

TABLE 10-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	aud Rate Generator Register							0000 0000	0000 0000

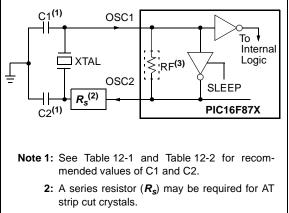
Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission. **Note 1:** Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

FIGURE 10-9: SYNCHRONOUS TRANSMISSION

FIGURE 10-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.2 **Oscillator Configurations**

12.2.1 **OSCILLATOR TYPES**


The PIC16F87X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- Crystal/Resonator • XT
- High Speed Crystal/Resonator HS
- RC Resistor/Capacitor

12.2.2 **CRYSTAL OSCILLATOR/CERAMIC** RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F87X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 12-2).

FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP **OSC CONFIGURATION)**

3: RF varies with the crystal chosen.

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC **CONFIGURATION**) OSC1 Clock from Ext. System PIC16F87X OSC2 Open

TABLE 12-1: CERAMIC RESONATORS

	Ranges Tested:							
Mode	Freq.	OSC1	OSC2					
ХТ	455 kHz	68 - 100 pF	68 - 100 pF					
	2.0 MHz	15 - 68 pF	15 - 68 pF					
	4.0 MHz	15 - 68 pF	15 - 68 pF					
HS	8.0 MHz	10 - 68 pF	10 - 68 pF					
	16.0 MHz	10 - 22 pF	10 - 22 pF					

These values are for design guidance only. See notes following Table 12-2.

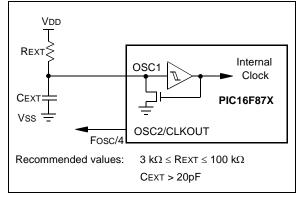
Resonators Used:

455 kHz	Panasonic EFO-A455K04B	$\pm 0.3\%$				
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$				
4.0 MHz	Murata Erie CSA4.00MG	$\pm 0.5\%$				
8.0 MHz	Murata Erie CSA8.00MT	$\pm 0.5\%$				
16.0 MHz	Murata Erie CSA16.00MX	$\pm 0.5\%$				
All resonators used did not have built-in capacitors.						

TABLE 12-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF

These values are for design guidance only. See notes following this table.


Crystals Used						
32 kHz	Epson C-001R32.768K-A	± 20 PPM				
200 kHz	STD XTL 200.000KHz	± 20 PPM				
1 MHz	ECS ECS-10-13-1	± 50 PPM				
4 MHz	ECS ECS-40-20-1	± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C	± 30 PPM				
20 MHz	EPSON CA-301 20.000M- C	± 30 PPM				

- **Note 1:** Higher capacitance increases the stability of oscillator, but also increases the startup time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - R_s may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - 4: When migrating from other PIC[®] MCU devices, oscillator performance should be verified.

12.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 12-3 shows how the R/C combination is connected to the PIC16F87X.

Register		Dev	ices		Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset	Wake-up via WDT or Interrupt
W	873	874	876	877	XXXX XXXX	<u>uuuu</u> uuuu	uuuu uuuu
INDF	873	874	876	877	N/A	N/A	N/A
TMR0	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	873	874	876	877	0000h	0000h	PC + 1 ⁽²⁾
STATUS	873	874	876	877	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA	873	874	876	877	0x 0000	0u 0000	uu uuuu
PORTB	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTD	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTE	873	874	876	877	xxx	uuu	uuu
PCLATH	873	874	876	877	0 0000	0 0000	u uuuu
INTCON	873	874	876	877	x000 0000	0000 000u	uuuu uuuu (1)
PIR1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu (1)
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	873	874	876	877	-r-0 00	-r-0 00	-r-u uu (1)
TMR1L	873	874	876	877	xxxx xxxx	uuuu uuuu	սսսս սսսս
TMR1H	873	874	876	877	xxxx xxxx	uuuu uuuu	սսսս սսսս
T1CON	873	874	876	877	00 0000	uu uuuu	uu uuuu
TMR2	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
T2CON	873	874	876	877	-000 0000	-000 0000	-uuu uuuu
SSPBUF	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	873	874	876	877	0000 0000	0000 0000	սսսս սսսս
CCPR1L	873	874	876	877	xxxx xxxx	uuuu uuuu	սսսս սսսս
CCPR1H	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	873	874	876	877	00 0000	00 0000	uu uuuu
RCSTA	873	874	876	877	x000 0000	0000 000x	uuuu uuuu
TXREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
RCREG	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
CCPR2L	873	874	876	877	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP2CON	873	874	876	877	0000 0000	0000 0000	uuuu uuuu
ADRESH	873	874	876	877	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	873	874	876	877	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISA	873	874	876	877	11 1111	11 1111	uu uuuu
TRISB	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISC	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISD	873	874	876	877	1111 1111	1111 1111	uuuu uuuu
TRISE	873	874	876	877	0000 -111	0000 -111	uuuu -uuu
PIE1	873	874	876	877	r000 0000	r000 0000	ruuu uuuu
	873	874	876	877	0000 0000	0000 0000	uuuu uuuu

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

PIC16LF873/874/876/877-04 (Commercial, Industrial)			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions		
	Vdd	Supply Voltage							
D001		16LF87X	2.0		5.5	V	LP, XT, RC osc configuration (DC to 4 MHz)		
D001		16F87X	4.0	_	5.5	V	LP, XT, RC osc configuration		
D001A			4.5		5.5	V	HS osc configuration		
			VBOR		5.5	V	BOR enabled, FMAX = 14 MHz ⁽⁷⁾		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5		V			
D003	Vpor	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled		

Legend: Rows with standard voltage device data only are shaded for improved readability.

- † Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

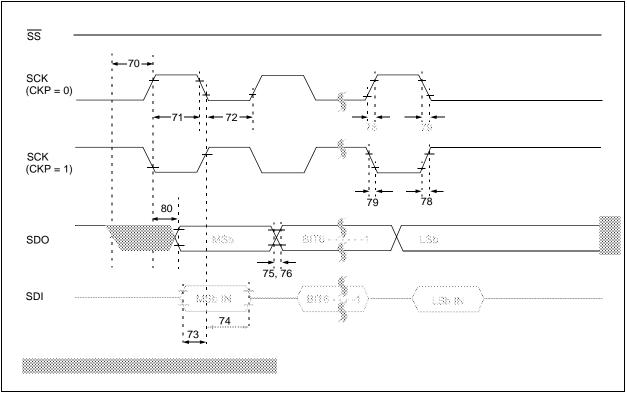
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

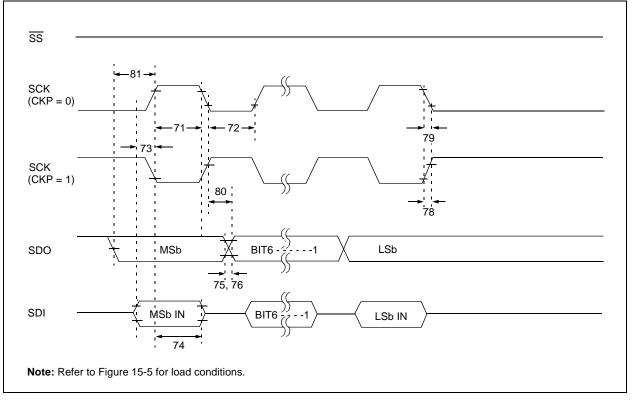
15.2 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	VIL	Input Low Voltage						
		I/O ports						
D030		with TTL buffer	Vss	—	0.15Vdd	V	For entire VDD range	
D030A			Vss	—	0.8V	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2Vdd	V		
D033		OSC1 (in XT, HS and LP)	Vss	—	0.3Vdd	V	(Note 1)	
		Ports RC3 and RC4		—				
D034		with Schmitt Trigger buffer	Vss	—	0.3Vdd	V	For entire VDD range	
D034A		with SMBus	-0.5	—	0.6	V	for VDD = 4.5 to 5.5 V	
	Vih	Input High Voltage			r		1	
		I/O ports		—				
D040		with TTL buffer	2.0	—	Vdd	-	$4.5V \leq VDD \leq 5.5V$	
D040A			0.25VDD + 0.8V	_	Vdd	V	For entire VDD range	
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range	
D042		MCLR	0.8Vdd	—	Vdd	V		
D042A		OSC1 (XT, HS and LP)	0.7Vdd	—	Vdd	V	(Note 1)	
D043		OSC1 (in RC mode) Ports RC3 and RC4	0.9Vdd	—	Vdd	V		
D044		with Schmitt Trigger buffer	0.7Vdd	—	Vdd	V	For entire VDD range	
D044A		with SMBus	1.4	—	5.5	V	for VDD = 4.5 to 5.5 V	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μA	VDD = 5V, VPIN = VSS, -40°C TO +85°C	
	lı∟	Input Leakage Current ^(2, 3)						
D060		I/O ports	—	—	±1	μΑ	$Vss \le VPIN \le VDD,$ Pin at hi-impedance	
D061		MCLR, RA4/T0CKI	_	_	±5	uΑ	$Vss \leq VPIN \leq VDD$	
D063		OSC1	—	_	±5	•	$Vss \le VPIN \le VDD$, XT, HS and LP osc configuration	


These parameters are characterized but not tested.

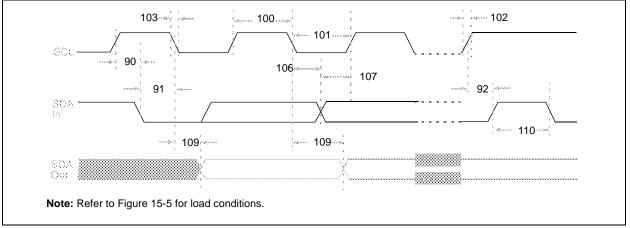
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 15-13: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)


FIGURE 15-14: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

Parameter No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions	
90	Tsu:sta	START condition	100 kHz mode	4700	—	_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	—	—		START condition	
91	Thd:sta	START condition	100 kHz mode	4000	_	_	ns	After this period, the first clock	
		Hold time	400 kHz mode	600	_	_		pulse is generated	
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	-	_			
93	Thd:sto	STOP condition	100 kHz mode	4000	_	—	ns		
		Hold time	400 kHz mode	600	_	_			

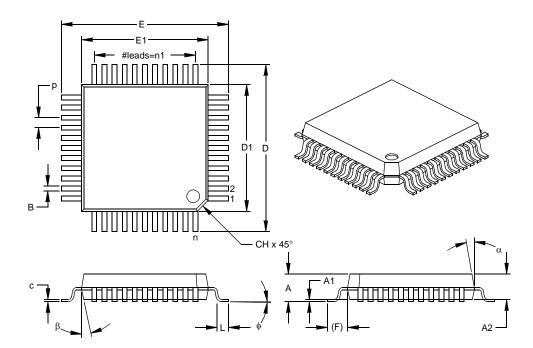

TABLE 15-8:	I ² C BUS START/STOP BITS REQUIREMENTS
-------------	---

FIGURE 15-18: I²C BUS DATA TIMING

44-Lead Plastic Metric Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead Form (MQFP)

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

		INCHES		MILLIMETERS*			
Dimensior	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	А	.079	.086	.093	2.00	2.18	2.35
Molded Package Thickness	A2	.077	.080	.083	1.95	2.03	2.10
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Foot Length	L	.029	.035	.041	0.73	0.88	1.03
Footprint (Reference)	(F)		.063			1.60	
Foot Angle	ø	0	3.5	7	0	3.5	7
Overall Width	E	.510	.520	.530	12.95	13.20	13.45
Overall Length	D	.510	.520	.530	12.95	13.20	13.45
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.005	.007	.009	0.13	0.18	0.23
Lead Width	В	.012	.015	.018	0.30	0.38	0.45
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-022 Drawing No. C04-071

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1:	CONVERSION
	CONSIDERATIONS

Characteristic	PIC16C7X	PIC16F87X
Pins	28/40	28/40
Timers	3	3
Interrupts	11 or 12	13 or 14
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz
Voltage	2.5V - 5.5V	2.0V - 5.5V
A/D	8-bit	10-bit
CCP	2	2
Program Memory	4K, 8K EPROM	4K, 8K FLASH
RAM	192, 368 bytes	192, 368 bytes
EEPROM data	None	128, 256 bytes
Other	_	In-Circuit Debugger, Low Voltage Programming