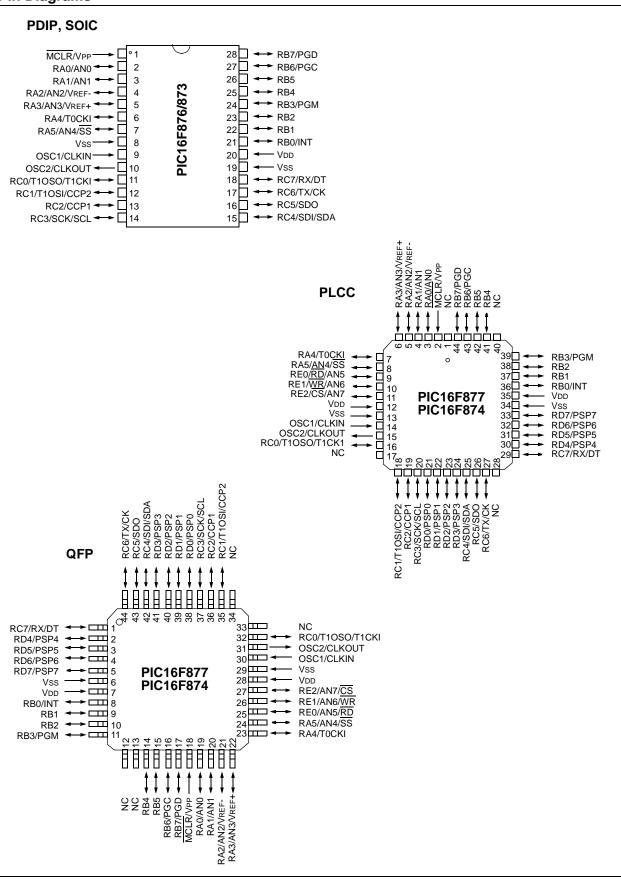


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

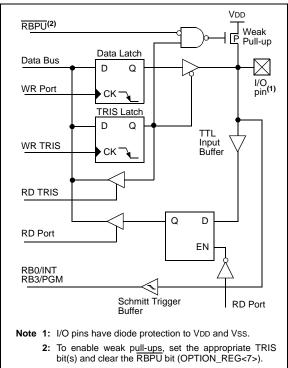

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf877t-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams


3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

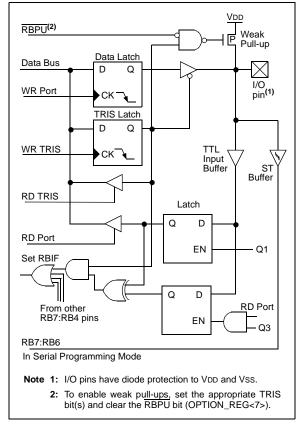
Three pins of PORTB are multiplexed with the Low Voltage Programming function: RB3/PGM, RB6/PGC and RB7/PGD. The alternate functions of these pins are described in the Special Features Section.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins, RB7:RB4, have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.


The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt-on-mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, *"Implementing Wake-up on Key Strokes"* (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in Section 12.10.1.

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

7.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset, or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

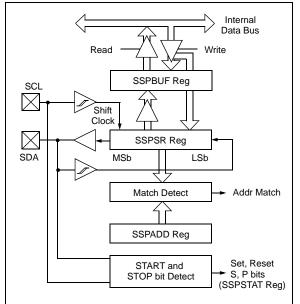
The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2		0000 0000	0000 0000							
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h PR2 Timer2 Period Register										1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

9.2 MSSP I²C Operation


The MSSP module in I²C mode, fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware, to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 9-5:

I²C SLAVE MODE BLOCK DIAGRAM

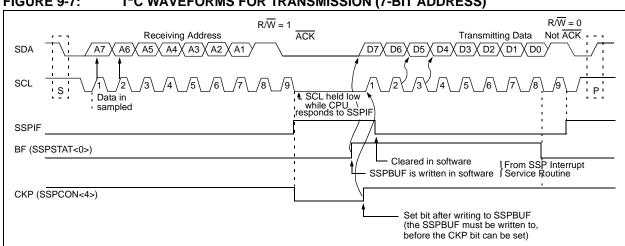
Two pins are used for data transfer. These are the SCL pin, which is the clock, and the SDA pin, which is the data. The SDA and SCL pins are automatically configured when the l^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. They are the:

- SSP Control Register (SSPCON)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C firmware modes (provided for compatibility to other mid-range products)


Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate TRIS bits. Selecting an I^2C mode by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode. Pull-up resistors must be provided externally to the SCL and SDA pins for the proper operation of the I^2C module.

The CKE bit (SSPSTAT<6:7>) sets the levels of the SDA and SCL pins in either Master or Slave mode. When CKE = 1, the levels will conform to the SMBus specification. When CKE = 0, the levels will conform to the I^2C specification.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START (S) or STOP (P) bit, specifies if the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer.

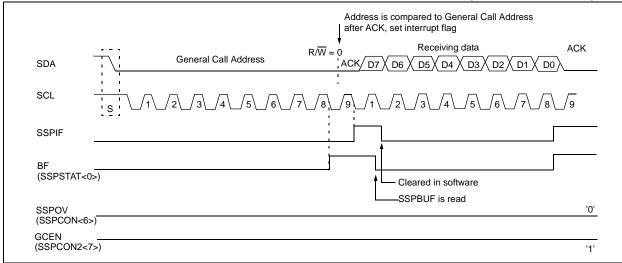
SSPBUF is the register to which the transfer data is written to, or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

FIGURE 9-7: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.


The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all 0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a START bit detect, 8 bits are shifted into SSPSR and the address is compared against SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF flag is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific, or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set, while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the Acknowledge (Figure 9-8).

FIGURE 9-8: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Reception, follow these steps:

1. Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.

- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 6. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	R0IF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h SPBRG Baud Rate Generator Register										0000 0000	0000 0000

TABLE 10-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. **Note** 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices, always maintain these bits clear.

12.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions. For additional information, refer to Application Note, AN007, "Power-up Trouble Shooting", (DS00007).

12.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (if PWRT is enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or Wake-up from SLEEP.

12.7 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

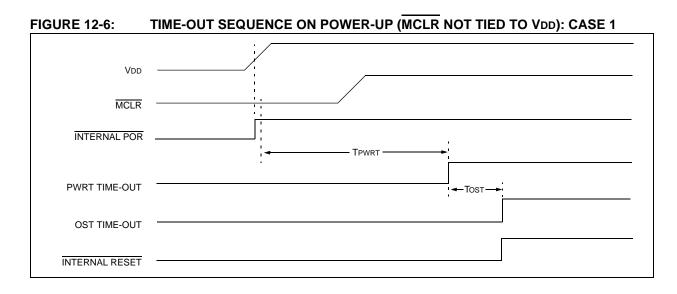
12.8 Time-out Sequence

On power-up, the time-out sequence is as follows: The PWRT delay starts (if enabled) when a POR Reset occurs. Then OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

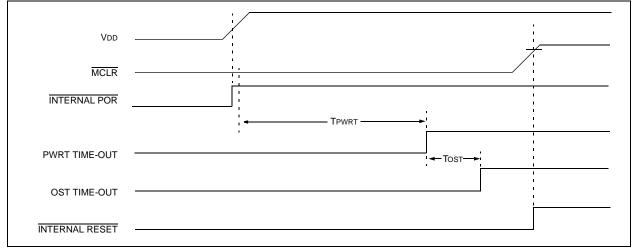
If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F87X device operating in parallel.

Table 12-5 shows the RESET conditions for the STA-TUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

12.9 Power Control/Status Register (PCON)


The Power Control/Status Register, PCON, has up to two bits depending upon the device.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a BOR occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable and is, therefore, not valid at any time.


Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Occillator Configuration	Power	-up	Brown-out	Wake-up from		
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP		
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc		
RC	72 ms	72 ms —		_		

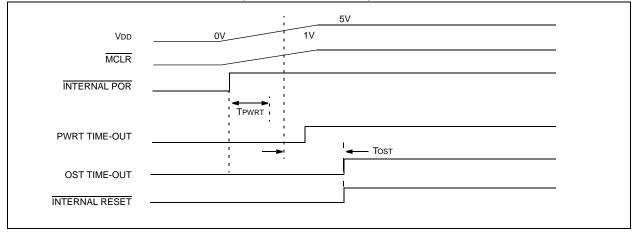

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-8: SLOW RISE TIME (MCLR TIED TO VDD)

	>	>					``````````````````````````````````````	*						>	>	>	>	>	>	
	_	>	× × ×	~			>							>	>					
	_	>	`	~			>	>												
	_	>	>	~			>													
	_						L	>		>										<u> </u>
	>		>	~			>	>					>							
							>	>	>											
			>	>	>		>	>			>									
			>	>		>	>	>												
			>	>	>		>	>	>											
			>	>	>		>	>												
			>	>	>	*	>	>	* +	,+										
			>	**/			**/	**/												
			>	>	>		>	>	>											
			>	>	>	*	>	>		÷,										
			>	>	>		>	>	>											
			>	>			>	>				`								
			>	`	>		>	>												
MBLAB® C17 C Compiler	PLAB® C17 C Compiler	PLAB [®] C18 C Compiler	PASM TM Assembler/ PLINK TM Object Linker	MPLAB [®] ICE In-Circuit Emulator	ICEPIC TM In-Circuit Emulator	PLAB®ICD In-Circuit ebugger	PICSTART® Plus Entry Level Development Programmer	PRO MATE® II Universal Device Programmer	PICDEM™ 1 Demonstration Board	PICDEM™ 2 Demonstration Board	PICDEM™ 3 Demonstration Board	PICDEM TM 14A Demonstration Board	PICDEM™ 17 Demonstration Board	EELoo [®] Evaluation Kit	εεLoα [®] Transponder Kit	iicrolD™ Programmer's Kit	25 kHz microlD™ eveloper's Kit	125 kHz Anticollision microlD™ Developer's Kit	13.56 MHz Anticollision microlD™ Developer's Kit	MCP2510 CAN Developer's Kit
				MPLAB® C17 C Compile MPLAB® C18 C Compile MPASM™ Assembler/ MPLINK™ Object Linker																

TABLE 14-1:	DEVELOPMENT TOOLS FROM MICROCHIP
-------------	----------------------------------

© 1998-2013 Microchip Technology Inc.

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †	Absolute	Maximum	Ratings †
----------------------------	----------	---------	-----------

Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14 V
Voltage on RA4 with respect to Vss	0 to +8.5 V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD -	Voh) x Ioh} + Σ (Vol x Iol)
2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80	mA <u>, may cause latch-up</u> .

- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873/876 devices.

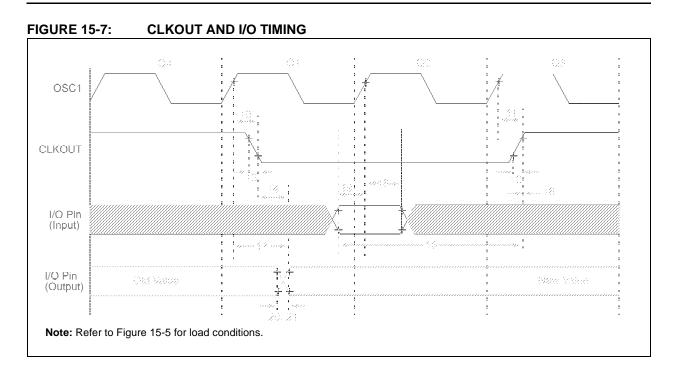
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF8 (Comme	73/874/87 ercial, Indu		Standard Operating Conditions (unless otherwise stated Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial $0^{\circ}C \le Ta \le +70^{\circ}C$ for commerStandard Operating Conditions (unless otherwise stated						
PIC16F87 PIC16F87 (Comme		877-20 Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				$C \leq TA \leq +85^{\circ}C$ for industrial			
Param No.	Symbol	Characteristic/ Device	Min	Тур†	Мах	Units	Conditions		
	IDD	Supply Current ^(2,5)							
D010		16LF87X	—	0.6	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V		
D010		16F87X	—	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V		
D010A		16LF87X	—	20	35	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D013		16F87X	—	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V		
D015	∆IBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V		

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.


- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

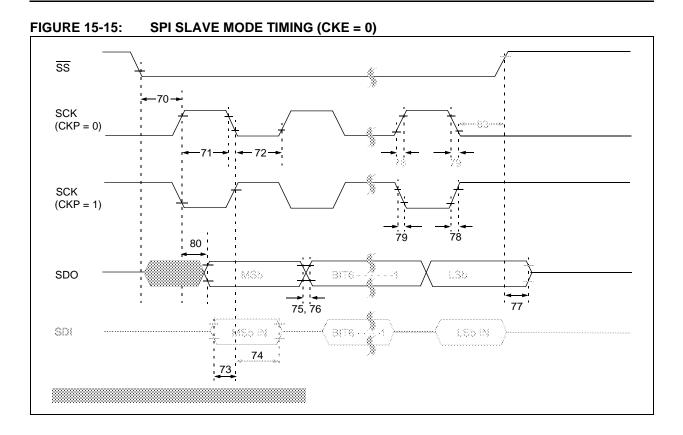
The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

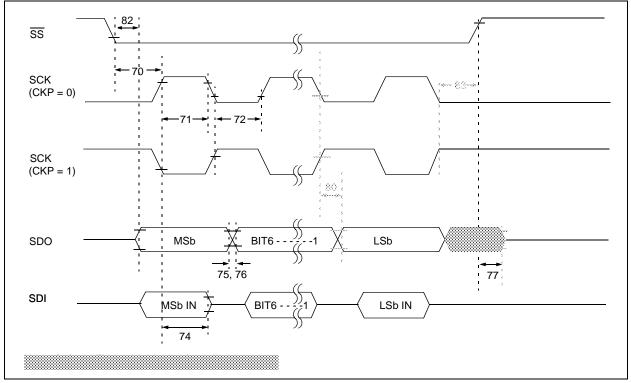
MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

TABLE 15-2:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------

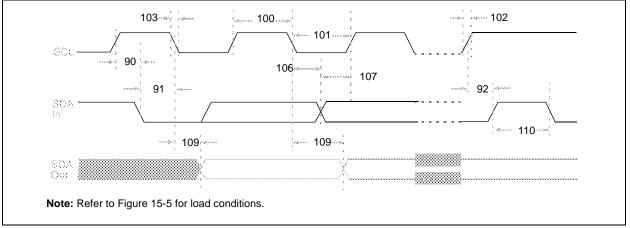

Param No.	Symbol	Charac	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1 \uparrow to CLKOUT \downarrow		—	75	200	ns	(Note 1)
11*	TosH2ck H	OSC1↑ to CLKOUT↑		-	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		—	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT \downarrow to Port out vali	d	—	_	0.5TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKO	TT ↑	Tosc + 200	_	—	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT	· ↑	0	_	—	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid			100	255	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	Standard (F)	100	_	—	ns	
		Port input invalid (I/O in hold time)	Extended (LF)	200	_	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑]	(I/O in setup time)	0	—	—	ns	
20*	TioR	Port output rise time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
21*	TioF	Port output fall time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
22††*	Tinp	INT pin high or low time	•	Тсү	—	—	ns	
23††*	Trbp	RB7:RB4 change INT high	n or low time	Тсү		—	ns	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.



Parameter No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
90	Tsu:sta	START condition	100 kHz mode	4700	—	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	—	—		START condition
91	Thd:sta	START condition	100 kHz mode	4000	_	_	ns	After this period, the first clock
		Hold time	400 kHz mode	600	_	_		pulse is generated
92	Tsu:sto	STOP condition	100 kHz mode	4700	_	_	ns	
		Setup time	400 kHz mode	600	-	_		
93	Thd:sto	STOP condition	100 kHz mode	4000	_	—	ns	
		Hold time	400 kHz mode	600	_	_		

TABLE 15-8:	I ² C BUS START/STOP BITS REQUIREMENTS
-------------	---

FIGURE 15-18: I²C BUS DATA TIMING

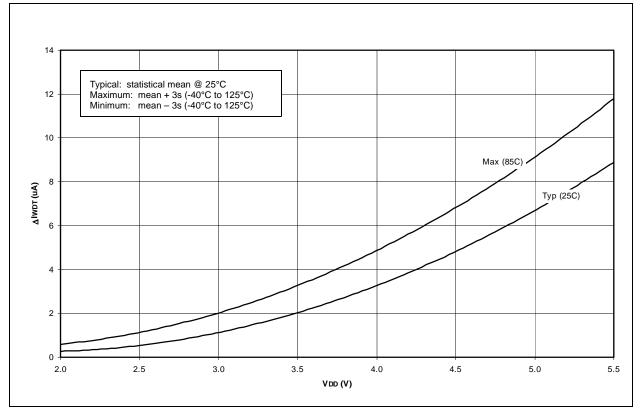
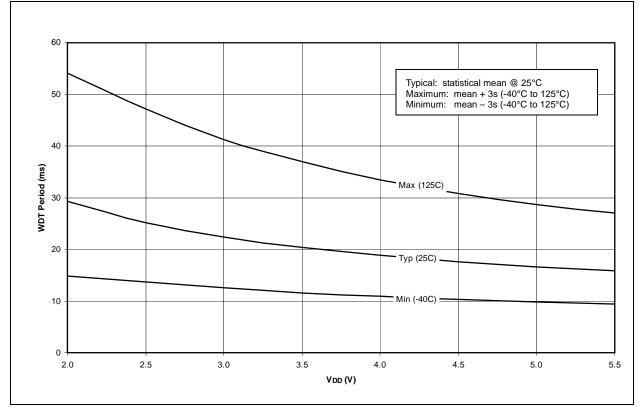
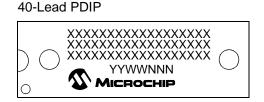
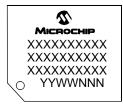



FIGURE 16-13: TYPICAL AND MAXIMUM AlwDT vs. VDD OVER TEMPERATURE




© 1998-2013 Microchip Technology Inc.

NOTES:

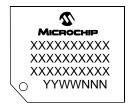
Package Marking Information (Cont'd)

44-Lead TQFP

Example

 \bigcirc

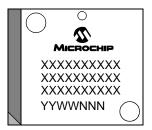
Example

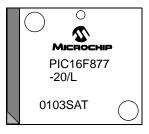

 $\lambda \lambda$

PIC16F877-04/P

0112SAA

MICROCHIP


44-Lead MQFP


Example

44-Lead PLCC

Example

Master Mode Operation 7 Master Mode START Condition 8 Master Mode Transmission 8 Master Mode Transmission 8 Master Mode Transmit Sequence 7 Multi-Master Communication 8 Multi-master Mode 7 Operation 7 Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Vaveforms for 7-bit Transmission 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 INDF 119, 13 INDF 119, 13 INDF 15, 16, 2 Indirect Addressing 2	30 32 39 39 37 37 37 37 37 37 37 37 37 4 33 4 33 4 33 4 33 4 37 5 37 5 76 37 4 4 33 4 33 4 37 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7
Master Mode Transmission 8 Master Mode Transmit Sequence 7 Multi-Master Communication 8 Multi-master Mode 7 Operation 7 Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Vaveforms for 7-bit Reception 7 Vaveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	32 79 37 37 37 37 37 37 37 37 37 37 57 57 57 57 57 57 57 57 57 57 57 57 57
Master Mode Transmit Sequence 7 Multi-Master Communication 8 Multi-master Mode 7 Operation 7 Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Vaveforms for 7-bit Reception 7 Vaveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	79 39 78 73 74 75 73 77 76 73 74 43 34 17 27
Multi-Master Communication 8 Multi-master Mode 7 Operation 7 Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Vaveforms for 7-bit Reception 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	39 73 73 74 75 76 74 334 75 76 74 334 75 76 74 334 17 27
Multi-master Mode 7 Operation 7 Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Reception 7 Vaveforms for 7-bit Reception 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	78 73 74 73 74 75 73 75 76 73 74 43 34 17 27
Operation 7 Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 INDF 1 INDF 15, 16, 2	73 31 74 75 73 77 73 75 76 73 74 43 34 17 27
Repeat START Condition Timing 8 Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 INDF 119, 13 INDF 15, 16, 2	31 74 73 74 75 73 77 73 75 76 73 74 44 33 41 727
Slave Mode 7 Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	74 73 74 75 73 77 75 76 73 74 43 34 17 27
Block Diagram 7 Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	73 74 75 73 77 73 75 76 73 74 43 34 17 27
Slave Reception 7 Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	74 75 73 77 75 76 73 74 33 74 33 41 72 7
Slave Transmission 7 SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	75 73 37 37 75 76 73 74 44 33 417 27
SSPBUF 7 STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	73 37 37 75 76 73 74 44 33 417 27
STOP Condition Receive or Transmit Timing 8 STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	 37 37 75 76 73 74 33 34 17 27
STOP Condition Timing 8 Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	37 75 76 73 74 44 33 84 17 27
Waveforms for 7-bit Reception 7 Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	75 76 73 74 14 33 34 17 27
Waveforms for 7-bit Transmission 7 I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	76 73 74 14 33 34 17 27
I ² C Module Address Register, SSPADD 7 I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	73 74 14 33 34 17 27
I ² C Slave Mode 7 ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	74 14 33 34 17 27
ICEPIC In-Circuit Emulator 14 ID Locations 119, 13 In-Circuit Serial Programming (ICSP) 119, 13 INDF 1 INDF Register 15, 16, 2	14 33 34 17 27
ID Locations	33 34 17 27
In-Circuit Serial Programming (ICSP)	34 17 27
INDF	17 27
INDF Register15, 16, 2	27
Indirect Addressing2	
FSR Register1	
Instruction Format13	
Instruction Set13	35
ADDLW13	
ADDWF13	
ANDLW13	37
ANDWF	37
BCF	37
BSF13	37
BTFSC13	
BTFSS	37
CALL	38
CLRF	~
	38
CLRW	
CLRW	38
	38 38
CLRWDT	38 38 38 38
CLRWDT	38 38 38 38
CLRWDT	38 38 38 38 38 39
CLRWDT	38 38 38 38 38 39 39
CLRWDT	38 38 38 38 39 39 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13	38 38 38 39 39 39 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13	38 38 38 38 39 39 39 39 39 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 INCFSZ 13 INCFSZ 13 IORLW 13	38 38 38 39 39 39 39 39 39 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13	38 38 38 39 39 39 39 39 39 39 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14	38 38 38 39 39 39 39 39 39 39 39 40
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVLW 14	38 38 38 39 39 39 39 39 39 39 39 39 39 39 40 40
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVLW 14 MOVWF 14	38 38 38 39 39 39 39 39 39 39 40 40 40
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVWF 14 NOP 14	38 38 38 39 39 39 39 39 39 39 39 40 40 40 40
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVWF 14 NOP 14 RETFIE 14	38 38 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVWF 14 MOVWF 14 NOP 14 RETFIE 14 RETLW 14	38 38 38 39 39 39 39 39 39 39 39 40 40 40 40 40 40
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVWF 14 MOVWF 14 NOP 14 RETFIE 14 RETLW 14 RETURN 14	38 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 41 41
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVWF 14 NOP 14 RETFIE 14 RETLW 14 RETURN 14 RLF 14	38 38 38 38 39 39 39 39 39 39 39 40 40 40 40 41 41
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVWF 14 NOP 14 RETFIE 14 RETURN 14 RLF 14 RRF 14	38 38 38 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 IORWF 14 MOVF 14 MOVWF 14 NOP 14 RETFIE 14 RETURN 14 RLF 14 RLF 14 REF 14 SLEEP 14	38 38 38 39
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVF 14 MOVWF 14 NOP 14 RETFIE 14 RETURN 14 RLF 14 SLEEP 14 SUBLW 14	38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 40 40 40 41 <td< td=""></td<>
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 MOVF 14 MOVF 14 MOVWF 14 NOP 14 RETFIE 14 RETURN 14 RLF 14 SLEEP 14 SUBLW 14 SUBWF 14	38 38 38 39 40 40 40 41 <td< td=""></td<>
CLRWDT 13 COMF 13 DECF 13 DECFSZ 13 GOTO 13 INCF 13 INCFSZ 13 IORLW 13 IORWF 13 IORWF 14 MOVF 14 MOVWF 14 NOP 14 RETFIE 14 RETURN 14 RLF 14 SLEEP 14 SUBLW 14 SUBWF 14 SWAPF 14	38 38 38 39 <td< td=""></td<>

INT Interrupt (RB0/INT). See Interrupt Sources INTCON	
	47
INTCON Register	
GIE Bit	
INTE Bit	
INTF Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit2	· ·
TOIE Bit	
TOIF Bit	
Inter-Integrated Circuit (I ² C)	
Internal Sampling Switch (Rss) Impedence	
Interrupt Sources119	
Block Diagram	
Interrupt-on-Change (RB7:RB4)	
RB0/INT Pin, External7, 8	3, 130
TMR0 Overflow	. 130
USART Receive/Transmit Complete	95
Interrupts	
Bus Collision Interrupt	24
Synchronous Serial Port Interrupt	
Interrupts, Context Saving During	
Interrupts, Enable Bits	
Global Interrupt Enable (GIE Bit)20). 129
Interrupt-on-Change (RB7:RB4) Enable	, -
(RBIE Bit)	130
Interrupt-on-Change (RB7:RB4) Enable	100
(RBIE Bit)	20
Peripheral Interrupt Enable (PEIE Bit)	
RB0/INT Enable (INTE Bit)	
TMR0 Overflow Enable (T0IE Bit)	20
Interrupts, Flag Bits	
Interrupt-on-Change (RB7:RB4) Flag	400
(RBIF Bit)	. 130
Interrupt-on-Change (RB7:RB4) Flag	
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2	20, 31
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit)	20, 31 20
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2	20, 31 20
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20	20, 31 20
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20	20, 31 20), 130
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20	20, 31 20), 130
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20 K KEELOQ Evaluation and Programming Tools	20, 31 20), 130
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20 K KEELOQ Evaluation and Programming Tools	20, 31 20), 130 146
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)2 RB0/INT Flag (INTF Bit) TMR0 Overflow Flag (T0IF Bit)20 K KEELOQ Evaluation and Programming Tools	20, 31 20), 130 146
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 7, 8 5, 126 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 7, 8 5, 126 5, 126
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126 5, 126 5, 126 12 11
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 7, 8 5, 126 5, 126 5, 126 12 11
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 26 26 126 12 11 143 145
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 26 26 12 126 126 126 144
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20), 130 146 26 26 26 12 126 126 127 144 143
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 26 26 12 126 126 127 144 143 144
Interrupt-on-Change (RB7:RB4) Flag (RBIF Bit)	20, 31 20 0, 130 146 26 26 26 12 146 145 145 144 143 144 89

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	To: Technical Publications Manager T	otal Pages Sent				
RE:	RE: Reader Response					
From	From: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: () FAX:	: ()				
Application (optional):						
Wou	Would you like a reply?YN					
Devi	Device: PIC16F87X Literature Number: DS30292D					
Que	Questions:					
1. \	1. What are the best features of this document?					
_						
2. ł	2. How does this document meet your hardware and software develo	pment needs?				
-						
- 2 [2 Do you find the ergenization of this data sheet easy to follow? If no	t. utb./2				
J. I	3. Do you find the organization of this data sheet easy to follow? If not, why?					
-						
4. \	4. What additions to the data sheet do you think would enhance the s	tructure and subject?				
-						
5. \	5. What deletions from the data sheet could be made without affecting	g the overall usefulness?				
-						
6. I	6. Is there any incorrect or misleading information (what and where)?					
_						
-						
7. H	7. How would you improve this document?					
-						
- 8. H	8. How would you improve our software, systems, and silicon product	ts?				
	······································					

NOTES: