

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf877t-04i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-4: PIC16F874/873 REGISTER FILE MAP

,	File Address	A	File ddress	/	File Address		File Addres
Indirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Cł
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dł
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh		9Dh				
ADRESH	1Eh	ADRESL	9Eh				
ADCON0	1Fh	ADCON1	9Fh		1206		1A0h
	20h		A0h		120h		
General Purpose Register		General Purpose Register		accesses 20h-7Fh		accesses A0h - FFh	
96 Bytes		96 Bytes		2011 11 11	16Fh 170h		1EFt 1F0h
	754				1756		4
Bank 0	J 7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFł
* Not a Note 1: These	physical reg e registers	data memory locat gister. are not implemen are reserved, mai	ted on the	e PIC16F873.			

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page:
Bank 2											
100h ⁽³⁾	INDF	Addressing	g this location	n uses conte	ents of FSR to	address data	a memory (no	t a physical r	egister)	0000 0000	27
101h	TMR0	Timer0 Mo	dule Registe	er						XXXX XXXX	47
102h ⁽³⁾	PCL	Program C	Counter's (PC	c) Least Sigr	nificant Byte					0000 0000	26
103h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
104h ⁽³⁾	FSR	Indirect Da	direct Data Memory Address Pointer								27
105h	_	Unimplem	ented								_
106h	PORTB	PORTB Data Latch when written: PORTB pins when read								xxxx xxxx	31
107h	_	Unimplemented								_	_
108h	_	Unimplemented									_
109h	_	Unimplem	Unimplemented								_
10Ah ^(1,3)	PCLATH	_	_	Write Buffer for the upper 5 bits of the Program Counter						0 0000	26
10Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	TOIE INTE RBIE TOIF INTE RBIF					0000 000x	20
10Ch	EEDATA	EEPROM	EEPROM Data Register Low Byte								41
10Dh	EEADR	EEPROM Address Register Low Byte								xxxx xxxx	41
10Eh	EEDATH	—	— — EEPROM Data Register High Byte							xxxx xxxx	41
10Fh	EEADRH	_	_		EEPROM A	ddress Regis	ter High Byte			xxxx xxxx	41
Bank 3											
180h ⁽³⁾	INDF	Addressing	g this location	n uses conte	ents of FSR to	address data	a memory (no	t a physical r	egister)	0000 0000	27
181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	19
182h ⁽³⁾	PCL	Program C	Counter (PC)	Least Signi	ficant Byte		•			0000 0000	26
183h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	18
184h ⁽³⁾	FSR	Indirect Da	ata Memory A	Address Poir	nter					xxxx xxxx	27
185h	_	Unimplem	ented								_
186h	TRISB	PORTB Da	ata Direction	Register						1111 1111	31
187h	_	Unimplem									_
188h	—	Unimplem	ented							_	
189h	—	Unimplemented							_		
18Ah ^(1,3)	PCLATH	— — Write Buffer for the upper 5 bits of the Program Counter							0 0000	26	
18Bh ⁽³⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	20
18Ch	EECON1	EEPGD	—	—	—	WRERR	WREN	WR	RD	x x000	41, 42
18Dh	EECON2	EEPROM	EEPROM Control Register2 (not a physical register)								41
18Eh	—	Reserved maintain clear								0000 0000	_
18Fh	_	Reserved	maintain clea	ar						0000 0000	_

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED))
------------	-----------------------------------	-------------	---

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose

contents are transferred to the upper byte of the program counter. 2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

3: These registers can be addressed from any bank.

4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.

5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear.

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. **Note:** Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF		
	bit 7							bit 0		
bit 7	GIE: Globa	al Interrupt E	nable bit							
		s all unmas		ots						
h :+ C		 0 = Disables all interrupts PEIE: Peripheral Interrupt Enable bit 								
bit 6	-		•		-					
		s all unmas		•	5					
bit 5		0 Overflow	=							
		s the TMR0								
	0 = Disable	es the TMR) interrupt							
bit 4		/INT Externa	•							
		es the RB0/II es the RB0/I								
bit 3		Port Change		•						
bit 0		s the RB po	•							
		es the RB po								
bit 2	TOIF: TMR	0 Overflow I	Interrupt Fla	ag bit						
					eared in softwa	re)				
		register did								
bit 1		/INT Externa	•	•		1	>			
		30/INT exter	•	•	must be cleared	a in softwa	re)			
bit 0		Port Change	•							
		•	•	•	l state; a misma	tch conditi	ion will cont	nue to set		
		•		nd the mism	atch condition a	and allow t	he bit to be	cleared		
		be cleared in of the RB7:R	,	ve changed	stata					
			una hiris ila	e changeu	SIGIE					
	Legend:									
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	oit, read as '	0'		
	- n = Value			Bit is set	'0' = Bit is c		x = Bit is u			
								-		

NOTES:

4.9 FLASH Program Memory Write Protection

The configuration word contains a bit that write protects the FLASH program memory, called WRT. This bit can only be accessed when programming the PIC16F87X device via ICSP. Once write protection is enabled, only an erase of the entire device will disable it. When enabled, write protection prevents any writes to FLASH program memory. Write protection does not affect program memory reads.

TABLE 4-1: READ/WRITE STATE OF INTERNAL FLASH PROGRAM MEMORY

Со	Configuration Bits		Manageral	Internal	Internal	ICSP Read	
CP1	CP0	WRT	Memory Location	Read	Write	ICSP Read	ICSP Write
0	0	x	All program memory	Yes	No	No	No
0	1	0	Unprotected areas	Yes	No	Yes	No
0	1	0	Protected areas	Yes	No	No	No
0	1	1	Unprotected areas	Yes	Yes	Yes	No
0	1	1	Protected areas	Yes	No	No	No
1	0	0	Unprotected areas	Yes	No	Yes	No
1	0	0	Protected areas	Yes	No	No	No
1	0	1	Unprotected areas	Yes	Yes	Yes	No
1	0	1	Protected areas	Yes	No	No	No
1	1	0	All program memory	Yes	No	Yes	Yes
1	1	1	All program memory	Yes	Yes	Yes	Yes

TABLE 4-2:	REGISTERS ASSOCIATED WITH DATA EEPROM/PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Dh	EEADR	EEPRON	EEPROM Address Register, Low Byte							xxxx xxxx	uuuu uuuu
10Fh	EEADRH	—	EEPROM Address, High Byte					xxxx xxxx	uuuu uuuu		
10Ch	EEDATA	EEPRON	EEPROM Data Register, Low Byte							xxxx xxxx	uuuu uuuu
10Eh	EEDATH	—	—	EEPRO	M Data Re	egister, Hig	h Byte			xxxx xxxx	uuuu uuuu
18Ch	EECON1	EEPGD	_	_	—	WRERR	WREN	WR	RD	x x000	x u000
18Dh	EECON2	EEPRON	EEPROM Control Register2 (not a physical register)							_	_
8Dh	PIE2	—	(1)		EEIE	BCLIE	—	_	CCP2IE	-r-0 00	-r-0 00
0Dh	PIR2	_	(1)	_	EEIF	BCLIF	_	_	CCP2IF	-r-0 00	-r-0 00

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during FLASH/EEPROM access.

Note 1: These bits are reserved; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POF BO	R,	Valu all o RES	ther
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 (000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	—	_	_	—	_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	—	—	_	—	_	—	CCP2IE		0		0
87h	TRISC	PORTC D	PORTC Data Direction Register							1111 :	1111	1111	1111
11h	TMR2	Timer2 M	Timer2 Module's Register							0000	0000	0000	0000
92h	PR2	Timer2 M	odule's Perio	od Register						1111 :	1111	1111	1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 (0000	-000	0000
15h	CCPR1L	Capture/C	Compare/PW	/M Register	1 (LSB)					XXXX X	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/PW	/M Register	1 (MSB)					XXXX X	xxxx	uuuu	uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 (0000	00	0000
1Bh	CCPR2L	Capture/Compare/PWM Register2 (LSB)								XXXX X	xxxx	uuuu	uuuu
1Ch	CCPR2H	Capture/C	Capture/Compare/PWM Register2 (MSB)							XXXX X	xxxx	uuuu	uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 (0000	00	0000

TABLE 8-5 :	REGISTERS ASSOCIATED WITH PWM AND TIMER2
--------------------	---

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F873/876; always maintain these bits clear.

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h) REGISTER 9-1: R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 SMP D/A Р R/W BF CKE S UA bit 7 bit 0 bit 7 SMP: Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in slave mode In I²C Master or Slave mode: 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4) SPI mode: For CKP = 0 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK For CKP = 1 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK In I²C Master or Slave mode: 1 = Input levels conform to SMBus spec 0 = Input levels conform to I²C specs **D/A**: Data/Address bit (I²C mode only) bit 5 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address bit 4 P: STOP bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last bit 3 S: START bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last bit 2 **R/W**: Read/Write bit Information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit. In I²C Slave mode: 1 = Read0 = WriteIn I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode. bit 1 **UA**: Update Address (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit BF: Buffer Full Status bit Receive (SPI and I²C modes): 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I²C mode only): 1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

9.2.11 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address, is accomplished by simply writing a value to SSPBUF register. This action will set the Buffer Full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time spec). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA allowing the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurs or if data was received properly. The status of ACK is read into the ACKDT on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit (ACKSTAT) is cleared. If not, the bit is set. After the ninth clock, the SSPIF is set and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 9-14).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL, until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will de-assert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared, and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

9.2.11.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

9.2.11.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

9.2.11.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

FIGURE 10-8: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

TABLE 10-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	R0IF	x000 0000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Re	ceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h SPBRG Baud Rate Generator Register									0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. Note 1: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †	Absolute	Maximum	Ratings †
----------------------------	----------	---------	-----------

Ambient temperature under bias	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3 V to (VDD + 0.3 V)
Voltage on VDD with respect to Vss	0.3 to +7.5 V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14 V
Voltage on RA4 with respect to Vss	0 to +8.5 V
Total power dissipation (Note 1)	1.0 W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD -	Voh) x Ioh} + Σ (Vol x Iol)
2: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80	mA <u>, may cause latch-up</u> .

- 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to VSS.
- 3: PORTD and PORTE are not implemented on PIC16F873/876 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF8 (Comme	73/874/87 ercial, Indu		$\begin{tabular}{ c c c c c } \hline Standard Operating Conditions (unless otherwise state Operating temperature $-40^{\circ}C$ $\leq TA $\leq +85^{\circ}C$ for industria $0^{\circ}C$ $\leq TA $\leq +70^{\circ}C$ for commeted of C $\leq TA $\leq +70^{\circ}C$ for commeted of $TA $\leq +70^{\circ}C$ for commeted of C $\leq TA $\leq +70^{\circ}C$ for commeted of C $\leq -70^{\circ}C$ for commeted of C $\leq -70^{\circ}C$ $\leq -70^{\circ}C$ for commeted of C $\leq -70^{\circ}C$ for commeted of C $\leq -70^{\circ}C$ for $< -70^$				
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)			$\begin{array}{llllllllllllllllllllllllllllllllllll$				$C \leq TA \leq +85^{\circ}C$ for industrial
Param No.	Symbol	Characteristic/ Device	Min	Min Typ† Max Units Conditions			
	IDD	Supply Current ^(2,5)					
D010		16LF87X	—	0.6	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V
D010		16F87X	—	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V
D010A		16LF87X	—	20	35	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D013		16F87X	—	7	15	mA	HS osc configuration, Fosc = 20 MHz, VDD = 5.5V
D015	∆IBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

PIC16F87X

15.1 DC Characteristics: PIC16F873/874/876/877-04 (Commercial, Industrial) PIC16F873/874/876/877-20 (Commercial, Industrial) PIC16LF873/874/876/877-04 (Commercial, Industrial) (Continued)

PIC16LF873/874/876/877-04 (Commercial, Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial						
PIC16F873/874/876/877-04 PIC16F873/874/876/877-20 (Commercial, Industrial)			$\begin{tabular}{ c c c c c } \hline Standard Operating Conditions (unless otherwise stated) \\ Operating temperature & -40 \end{tabular}^\circ C &\leq TA \leq +85 \end{tabular}^\circ C \end{tabular} for industrial \\ 0 \end{tabular}^\circ C &\leq TA \leq +70 \end{tabular}^\circ C \end{tabular} for industrial \\ \hline 0 \end{tabular}^\circ C &\leq TA \leq +70 \end{tabular}^\circ C \end{tabular}$							
Param No.	Symbol	Characteristic/ Device	Min Typ† Max Units Conditions							
	IPD	Power-down Current ^(3,5)								
D020		16LF87X	_	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D020		16F87X		10.5	42	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021		16LF87X	_	0.9	5	μΑ	VDD = 3.0V, WDT enabled, 0°C to +70°C			
D021		16F87X	_	1.5	16	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021A		16LF87X		0.9	5	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D021A		16F87X		1.5	19	μΑ	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D023	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	_	85	200	μΑ	BOR enabled, VDD = 5.0V			

Legend: Rows with standard voltage device data only are shaded for improved readability.

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.3 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended)

PIC16F87 PIC16F87 (Extende	3/874/876		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$			· · · · · · · · · · · · · · · · · · ·			
Param No.	Symbol	Characteristic/ Device	Min Typ† Max Units Conditions						
	VDD Supply Voltage								
D001			4.0	—	5.5	V	LP, XT, RC osc configuration		
D001A			4.5		5.5	V	HS osc configuration		
D001A			VBOR		5.5	V	BOR enabled, FMAX = 10 MHz ⁽⁷⁾		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5	_	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.35	V	BODEN bit in configuration word enabled		

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.3

DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended) (Continued)

PIC16F87 PIC16F87 (Extende	3/874/876		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic/ Device	Min Typ† Max Units Conditions					
	IDD	Supply Current ^(2,5)						
D010			—	1.6	4	mA	RC osc configurations Fosc = 4 MHz, VDD = 5.5V	
D013			-	7	15	mA	HS osc configuration, Fosc = 10 MHz, VDD = 5.5V	
D015	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μΑ	BOR enabled, VDD = 5.0V	
	IPD	Power-down Current ^(3,5)						
D020A				10.5	60	μΑ	VDD = 4.0V, WDT enabled	
D021B				1.5	30	μA	VDD = 4.0V, WDT disabled	
D023	ΔIBOR	Brown-out Reset Current ⁽⁶⁾	—	85	200	μΑ	BOR enabled, VDD = 5.0V	

† Data is "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only, and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading, switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.4 DC Characteristics: PIC16F873/874/876/877-04 (Extended) PIC16F873/874/876/877-10 (Extended) (Continued)

DC CHA	RACTE	ERISTICS	Operating	tempe voltag	erature -	40°C ≤	TA \leq +125°C described in DC specification	
Param No.	Sym	Characteristic	Min Typ† Max Units Conditions					
	Vol	Output Low Voltage						
D080A		I/O ports	—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V	
D083A		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V	
	Voн	Output High Voltage						
D090A		I/O ports ⁽³⁾	Vdd - 0.7	—	_	V	Юн = -2.5 mA, VDD = 4.5V	
D092A		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—		V	Юн = -1.0 mA, VDD = 4.5V	
D150*	Vod	Open Drain High Voltage	—	—	8.5	V	RA4 pin	
		Capacitive Loading Specs on O	utput Pins	5				
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (RC mode)	_	_	50	pF		
D102	Св	SCL, SDA (I ² C mode)	—	—	400	pF		
		Data EEPROM Memory						
D120	ED	Endurance	100K	—	_	E/W	25°C at 5V	
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	Using EECON to read/write VMIN = min. operating voltage	
D122	TDEW	······	_	4	8	ms		
		Program FLASH Memory						
D130	Eр	Endurance	1000	—		E/W	25°C at 5V	
D131	Vpr	VDD for read	VMIN	—	5.5	V	VMIN = min operating voltage	
D132A		VDD for erase/write	VMIN	—	5.5	V	Using EECON to read/write, VMIN = min. operating voltage	
D133	TPEW	Erase/Write cycle time	—	4	8	ms		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F87X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

TABLE 15-4:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
-------------	---

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5TCY + 20	_	_	ns	Must also meet
		_		With Prescaler	10	_	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	_	_	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
					N				
45*	Tt1H	T1CKI High Time	Synchronous, Pr	escaler = 1	0.5Tcy + 20	—	I	-	Must also meet
			Synchronous,	Standard(F)	15		I	ns	parameter 47
			Prescaler = $2,4,8$	Extended(LF)	25		_	ns	
			Asynchronous	Standard(F)	30		_	ns	
				Extended(LF)	50	_	-	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Pr	escaler = 1	0.5TCY + 20	—	—	ns	Must also meet
		Synchronous, S	Standard(F)	15		_	ns	parameter 47	
			Prescaler = 2,4,8	Extended(LF)	25	— — ns			
			Asynchronous	Standard(F)	30	—		ns	1
				Extended(LF)	50	—		ns	
47*	Tt1P	T1CKI input	Synchronous	Standard(F)	Greater of:	—	—	ns	N = prescale value
		period			30 or <u>Tcy + 40</u>				(1, 2, 4, 8)
					N				
				Extended(LF)	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>			(1, 2, 4, 8)	(1, 2, 4, 8)
				-	N				
			Asynchronous	Standard(F)	60		_	ns	
				Extended(LF)	100	—	—	ns	
	Ft1		put frequency range by setting bit T1OSCEN)		DC	-	200	kHz	
48	TCKEZtmr1	Delay from externa	al clock edge to tir	ner increment	2Tosc	—	7Tosc	_	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16F87X

FIGURE 16-15: AVERAGE WDT PERIOD vs. VDD OVER TEMPERATURE (-40°C TO 125°C)

INDEX

Α

A/D1	11
Acquisition Requirements1	
ADCON0 Register	
ADCON1 Register	
ADIF bit	
Analog Input Model Block Diagram1	
Analog Port Pins	
Associated Registers and Bits	
Block Diagram	
Calculating Acquisition Time1	
Configuring Analog Port Pins1	
Configuring the Interrupt1	
Configuring the Module1	
Conversion Clock	
Conversions1	
Delays1	
Effects of a RESET1	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedence	
Operation During SLEEP1	
Result Registers1	
Sampling Requirements1	
Source Impedence1	
Time Delays1	
Absolute Maximum Ratings	
ACK	
Acknowledge Data bit	
Acknowledge Pulse	
Acknowledge Sequence Enable bit	
Acknowledge Status bit	
ADRES Register	
Analog Port Pins. See A/D	• •
Analog-to-Digital Converter. See A/D	
Application Notes	
AN552 (Implementing Wake-up on Key Strokes	
Using PIC16CXXX)	31
AN556 (Implementing a Table Read)	
AN578 (Use of the SSP Module in the I2C	20
Multi-Master Environment)	73
Architecture	10
PIC16F873/PIC16F876 Block Diagram	5
PIC16F874/PIC16F877 Block Diagram	5
Assembler	0
MPASM Assembler1	12
	40
В	
Banking, Data Memory 12,	18
Baud Rate Generator	
BCLIF	
BF	
Block Diagrams	57
A/D1	13
A/D Converter	

 Analog Input Model
 114

 Baud Rate Generator
 79

 Capture Mode
 59

 Compare Mode
 60

 I²C Master Mode
 78

 I²C Module
 73

 I²C Slave Mode
 73

 Interrupt Logic
 129

 PIC16F873/PIC16F876
 5

PIC16F874/PIC16F877	6
PORTA	
RA3:RA0 and RA5 Pins	
RA4/T0CKI Pin	29
PORTB	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	31
PORTC	
Peripheral Output Override (RC 0:2, 5:7)	
Peripheral Output Override (RC 3:4)	
PORTD	
PORTD and PORTE (Parallel Slave Port)	
PORTE	36
PWM Mode	61
RESET Circuit	123
SSP (I ² C Mode)	73
SSP (SPI Mode)	
Timer0/WDT Prescaler	47
Timer1	52
Timer2	55
USART Asynchronous Receive	101
USART Asynchronous Receive (9-bit Mode)	103
USART Transmit	99
Watchdog Timer	131
BOR. See Brown-out Reset	
BRG	79
BRGH bit	
Brown-out Reset (BOR) 119, 123, 7	125, 126
BOR Status (BOR Bit)	25
Buffer Full bit, BF	74
Bus Arbitration	89
Bus Collision Section	89
Bus Collision During a Repeated START Condition	92
Bus Collision During a START Condition	
Bus Collision During a STOP Condition	93
Bus Collision Interrupt Flag bit, BCLIF	24

С

Capture/Compare/PWM (CCP)	57
Associated Registers	
Capture, Compare and Timer1	62
PWM and Timer2	63
Capture Mode	59
Block Diagram	59
CCP1CON Register	58
CCP1IF	59
Prescaler	59
CCP Timer Resources	57
CCP1	
RC2/CCP1 Pin	7, 9
CCP2	
RC1/T1OSI/CCP2 Pin	7, 9
Compare	
Special Trigger Output of CCP1	60
Special Trigger Output of CCP2	60
Compare Mode	60
Block Diagram	60
Software Interrupt Mode	
Special Event Trigger	60
Interaction of Two CCP Modules (table)	57

PIC16F87X

PORTE
Analog Port Pins9, 36, 38
Associated Registers
Block Diagram
Input Buffer Full Status (IBF Bit)
Input Buffer Overflow (IBOV Bit)
Output Buffer Full Status (OBF Bit)
PORTE Register 15, 36
PSP Mode Select (PSPMODE Bit)
RE0/RD/AN5 Pin9, 36, 38
RE1/WR/AN6 Pin9, 36, 38
RE2/CS/AN7 Pin9, 36, 38
TRISE Register
Postscaler, WDT
Assignment (PSA Bit)19
Rate Select (PS2:PS0 Bits) 19
Power-down Mode. See SLEEP
Power-on Reset (POR)119, 123, 124, 125, 126
Oscillator Start-up Timer (OST) 119, 124
POR Status (POR Bit)25
Power Control (PCON) Register
Power-down (PD Bit)18, 123
Power-up <u>Tim</u> er (PWRT)119, 124
Time-out (TO Bit)18, 123
Time-out Sequence on Power-up 127, 128
PR2 Register 16, 55
Prescaler, Timer0
Assignment (PSA Bit)19
Rate Select (PS2:PS0 Bits) 19
PRO MATE II Universal Device Programmer
Program Counter
RESET Conditions 125
Program Memory11
Interrupt Vector11
Paging 11, 26
Program Memory Map11
RESET Vector 11
Program Verification
Programming Pin (VPP)7, 8
Programming, Device Instructions
PSP. See Parallel Slave Port
Pulse Width Modulation.SeeCapture/Compare/PWM,
PWM Mode.
PUSH

R

R/W	
R/W bit	74
R/W bit	74
RAM. See Data Memory	
RCREG	
RCSTA Register	17, 96
ADDEN Bit	
CREN Bit	
FERR Bit	
OERR Bit	
RX9 Bit	
RX9D Bit	
SPEN Bit	
SREN Bit	
Read/Write bit, R/W	
Reader Response	
Receive Enable bit	
Receive Overflow Indicator bit, SSPOV	67
Register File	
Register File Map	

Registers
ADCON0 (A/D Control 0) 111
ADCON1 (A/D Control 1) 112
CCP1CON (CCP Control 1) 58
EECON2 41
FSR
INTCON 20
OPTION_REG19, 48
PCON (Power Control) 25
PIE1 (Peripheral Interrupt Enable 1) 21
PIE2 (Peripheral Interrupt Enable 2)
PIR1 (Peripheral Interrupt Request 1) 22
PIR2 (Peripheral Interrupt Request 2)
RCSTA (Receive Status and Control)
Special Function, Summary 15
SSPCON2 (Sync Serial Port Control 2) 68
STATUS
T1CON (Timer1 Control) 51
T2CON (Timer 2 Control)
Timer2
T2CON Register
TRISE
TXSTA (Transmit Status and Control)
Repeated START Condition Enable bit
RESET
Block Diagram
RESET
Brown-out Reset (BOR). See Brown-out Reset (BOR)
Power-on Reset (POR). See Power-on Reset (POR)
RESET Conditions for PCON Register
RESET Conditions for Program Counter
RESET Conditions for STATUS Register
WDT Reset. See Watchdog Timer (WDT)
Revision History
S

S (START bit) Sales and Support SCI. See USART	
SCK	69
SCL	74
SDA	74
SDI	69
SDO	
Serial Clock, SCK	69
Serial Clock, SCL	74
Serial Communication Interface. See USART	
Serial Data Address, SDA	74
Serial Data In, SDI	69
Serial Data Out, SDO	69
Slave Select, SS	69
SLEEP	119, 123, 132
SMP	66
Software Simulator (MPLAB SIM)	144
SPBRG Register	
Special Features of the CPU	119
Special Function Registers	15
Special Function Registers (SFRs)	15
Data EEPROM and FLASH Program Mem	
Speed, Operating	1

 \odot 1998-2013 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769294

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.