
Microchip Technology - AT90PWM81-16SF Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity SPI

Peripherals Brown-out Detect/Reset, PWM, WDT

Number of I/O 16

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b; D/A 1x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 20-SOIC (0.295", 7.50mm Width)

Supplier Device Package 20-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at90pwm81-16sf

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at90pwm81-16sf-4405477
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

AT90PWM81/161
Figure 2-2. 32-pin packages.

1
2
3
4
5
6
7
8

24
23
22
21
20
19
18
17

NC
(ACMP3_OUT_A/SS/CLKO) PD0

(PSCOUT20) PB1
(INT0/PSCOUT21) PB2

VCC
GND

(ACPM1_OUT/PSCIN2/XTAL1) PE1
NC

NC
PD5 (AMP0-/ADC7)
PE3/AREF/ADC6
AGND
AVCC
PB5 (ADC5/INT1/SCK/ACMP2)
PD4 (PSCIN2A/ACMP3M/ADC4)
NC

32 31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

N
C

P
E

0
(R

ES
ET

/O
C

D
/IN

T2
)

P
B

0
(P

SC
O

U
T2

3/
T1

/A
C

M
P3

_O
U

T)
PB

7
(A

D
C

9/
PS

C
O

U
T2

2/
IC

P1
)

PD
7

(A
D

C
10

/P
SC

IN
rA

)
PB

6
(A

D
C

8/
M

IS
O

/A
C

M
P3

)
PD

6
(A

M
P0

+)
N

C

AT90PWM81/161
QFN 32 5*5

N
C

(P
S

C
IN

r/
A

C
M

P
1M

/X
TA

L2
)

P
E

2
(P

S
C

O
U

T
R

0/
P

S
C

IN
rB

)
P

D
1

(A
D

C
0/

A
C

M
P

1)
 P

D
2

(A
D

C
1/

A
C

M
P

2_
O

U
T

)
P

D
3

(A
D

C
2/

A
C

M
P

2M
/P

S
C

O
U

T
R

1)
 P

B
3

 (
A

D
C

3/
A

C
M

P
M

/M
O

S
I)

 P
B

4
N

C

4
7734Q–AVR–02/12

AT90PWM81/161
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Summary” on page 301 for detailed information.

3.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 3-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 3-2. AVR CPU General Purpose Working Registers.

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 3-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

3.5.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 3-3 on page 12.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
11
7734Q–AVR–02/12

AT90PWM81/161
Figure 3-3. The X-register, Y-register, and Z-register.

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see “Instruction Set Summary” on page 301 for
details).

3.6 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x100. The Stack Pointer is decremented by one when data is pushed onto the
Stack with the PUSH instruction, and it is decremented by two when the return address is
pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one
when data is popped from the Stack with the POP instruction, and it is incremented by two when
data is popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

3.7 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
12
7734Q–AVR–02/12

AT90PWM81/161
Figure 3-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 3-4. The parallel instruction fetches and instruction executions.

Figure 3-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 3-5. Single cycle ALU operation.

3.8 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 248 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 62. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is PSC2 CAPT – the PSC2 Capture
Event. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the
IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 62 for more infor-
mation. The Reset Vector can also be moved to the start of the Boot Flash section by

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
13
7734Q–AVR–02/12

AT90PWM81/161
4.3.2 EEARH and EEARL - EEPROM Address Registers

• Bits 15..9 – Reserved Bits
These bits are reserved bits in the AT90PWM81/161 and will always read as zero.

• Bits 8..0 – EEAR8..0: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

4.3.3 EEDR - EEPROM Data Register

• Bits 7..0 – EEDR7.0: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

4.3.4 EECR - EEPROM Control Register

• Bits 7 – NVMBSY: Non-volatile memory busy
The NVMBSY bit is a status bit that indicates that the NVM memory (FLASH, EEPROM, Lock-
bits) is busy programming. Once a program operation is started, the bit will be set and it remains
set until the program operation is completed.

Bits 6 – EEPAGE: EEPROM page access (multiple bytes access mode)

Writing EEPAGE to one enables the multiple bytes access mode. That means that several bytes
can be programmed simultaneously into the EEPROM. When the EEPAGE bit has been written
to one, the EEPAGE bit remains set until an EEPROM program operation is completed. Alterna-
tively the bit is cleared when the temporary EEPROM buffer is flushed in software (see EEPMn
bits descript ion). Any wri te to EEPAGE whi le EEPE is one wi l l be ignored. See
Section “Program multiple bytes in one Atomic operation”, page 21 for details on how to load
data into the temporary EEPROM page and the usage of the EEPAGE bit.

Bit 15 14 13 12 11 10 9 8

– – – – – – – EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

NVMBSY EEPAGE EEPM1 EEPM0 EERIE EEMWE EEWE EERE EECR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X 0 0 X 0
19
7734Q–AVR–02/12

AT90PWM81/161
The order the different bits and registers should be accessed is:

1 Write EEPAGE in EECR (loading of temporary EEPROM buffer is enabled).

2 Write the address bits needed to address bytes within a page into EEARL.

3 Write data to EEDR.

4 Repeat 2 and 3 above until the buffer is filled up or until all data is loaded.

5 Write the remaining address bits into EEARH:EEARL.

a. Select which programming mode that should be executed (EEPMn bits). Write the EEPE
bit in EECR (within four cycles after EEMPE has been written) to start a program opera-
tion. The temporary EEPROM page buffer will auto-erase after program operation is
completed.

OR

b. If an error situation occurred and the loading should be terminated by software: Write
EEPM1:0 to 0b11 and trigger the flushing by writing EEPE (within four cycles after
EEMPE has been written).

4.4 Fuse Bits
The AT90PWM81/161 has three Fuse bytes. Table 4-3 through Table 4-5 on page 23 describe
briefly the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that
the fuses are read as logical zero, “0”, if they are programmed.

Notes: 1. See Table 7-2 on page 53 for BODLEVEL fuse decoding.

Table 4-3. Extended low fuse byte.

Extended fuse byte Bit no. Description Default value

PSC2RB 7 PSC2 reset behavior 1

PSC2RBA 6 PSC2 reset behavior for OUT22 & 23 1

PSCRRB 5 PSC reduced reset behavior 1

PSCRV 4 PSCOUT & PSCOUTR reset value 1

PSCINRB 3 PSC & PSCR inputs reset behavior 1

BODLEVEL2 (1) 2 Brown-out detector trigger level 1 (unprogrammed)

BODLEVEL1 (1) 1 Brown-out detector trigger level 0 (programmed)

BODLEVEL0 (1) 0 Brown-out detector trigger level 1 (unprogrammed)
22
7734Q–AVR–02/12

AT90PWM81/161
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “I/O-Ports” on page 68 for details on which pins are enabled. If the
input buffer is enabled and the input signal is left floating or have an analog signal level close to
VCC/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to “DIDR1 - Digital Input Disable Register 1” on page 222 and “DIDR0 - Digital
Input Disable Register 0” on page 202 for details.

6.7.7 On-chip Debug System
If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes,
this will contribute significantly to the total current consumption.

6.8 Register description

6.8.1 SMCR - Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 6-2.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 6-2. Sleep mode select.

SM2 SM1 SM0 Sleep mode

0 0 0 Idle

0 0 1 ADC noise reduction

0 1 0 Power-down

0 1 1 Reserved

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby (1)

1 1 1 Reserved
48
7734Q–AVR–02/12

AT90PWM81/161
• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 69 for more details about this feature.

9.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 9-3.

The alternate pin configuration is as follows:

• PSCOUT22/ICP1/ADC9 – Bit 7
PSCOUT22: Output 2 of PSC 2
ICP1 – Input Capture Pin1: This pin can act as an input capture pin for Timer/Counter1.
ADC9: Analog to Digital Converter, input channel 9.

• MISO/ACMP3/ADC8– Bit 6
MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB6. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB6. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTB6 and PUD bits.

ACMP3: Analog Comparator 3 Positive Input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of the Ana-
log Comparator.

ADC8: Analog to Digital Converter, input channel 8.

Table 9-3. Port B pins alternate functions.

Port pin Alternate functions

PB7
PSCOUT22 output
ICP1 (Timer/Counter1 Input Capture Pin)
ADC9 (Analog Input Channel 9)

PB6
MISO (SPI Master In Slave Out)
ACMP3 (Analog Comparator 3 Positive Input)
ADC8 (Analog Input Channel 8)

PB5

ADC5 (Analog Input Channel 5)
ACMP2 (Analog Comparator 2 Positive Input)
INT1(External Interrupt 1 Input)
SCK (SPI Clock)

PB4
MOSI (SPI Master Out Slave In)
ADC3 (Analog Input Channel 3)
ACMPM reference for analog comparators

PB3
PSCOUTR1 Output
ADC2 (Analog Input Channel 2)
ACMP2M (Analog Comparator 2 Negative Input)

PB2
INT0 (External Interrupt 0 Input)
PSCOUT21 output

PB1 PSCOUT20 output

PB0
T1 counter source
PSCOUT23 output
ACMP3_OUT(Analog Comparator3 Output)
75
7734Q–AVR–02/12

AT90PWM81/161
Table 12-6. Distribution of fb2 in the modulated frame.

While ‘X’ in the table, fb2 prime to fb1 in cycle corresponding cycle.

So for each row, a number of fb2 take place of fb1.

Figure 12-12. Resulting frequency versus d.

12.7.2 Modes of Operation

12.7.2.1 Normal Mode
The simplest mode of operation is the normal mode. See Figure 12-6 on page 106.

The active time of PSCOUTn0 is given by the OT0 value. The active time of PSCOUTn1 is given
by the OT1 value. Both of them are 12 bit values. Thanks to DT0 & DT1 to adjust the dead time
between PSCOUTn0 and PSCOUTn1 active signals.

Distribution of fb2 in the modulated frame

PWM - cycle

Fractional
divider (d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1 X

2 X X

3 X X X

4 X X X X

5 X X X X X

6 X X X X X X

7 X X X X X X X

8 X X X X X X X X

9 X X X X X X X X X

10 X X X X X X X X X X

11 X X X X X X X X X X X

12 X X X X X X X X X X X X

13 X X X X X X X X X X X X X

14 X X X X X X X X X X X X X X

15 X X X X X X X X X X X X X X X

fb1 fb2

d: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fOP
113
7734Q–AVR–02/12

AT90PWM81/161

• Bit 0 – PEOPn: End Of PSC n Interrupt
This bit is set by hardware when PSC n achieves its whole cycle.

Must be cleared by software by writing a one to its location.

12.26.4 PSC Output Behavior During Reset
For external component safety reason, the state of PSC outputs during Reset can be pro-
grammed by fuses PSCRV, PSCRRB & PSC2RB.

These fuses are located in the Extended Fuse Byte:

Notes: 1. See Table 7-2 on page 53 for BODLEVEL Fuse decoding.

PSCRV gives the state low or high which will be forced on PSC outputs selected by PSC0RB &
PSC2RB fuses.

If PSCRV fuse equals 0 (programmed), the selected PSC outputs will be forced to low state. If
PSCRV fuse equals 1 (unprogrammed), the selected PSC outputs will be forced to high state.

If PSCRRB fuse equals 1 (unprogrammed), PSCOUTR0 & PSCOUTR1 keep a standard port
behavior. If PSC0RB fuse equals 0 (programmed), PSCOUTR0 & PSCOUTR1 are forced at
reset to low level or high level according to PSCRV fuse bit. In this second case, PSCOUTR0 &
PSCOUTR1 keep the forced state until PSOC0 register is written.

Table 12-22. PSC n ramp number description.

PRNn1 PRNn0 Description

0 0 The last event which has generated an interrupt occurred during ramp 1

0 1 The last event which has generated an interrupt occurred during ramp 2

1 0 The last event which has generated an interrupt occurred during ramp 3

1 1 The last event which has generated an interrupt occurred during ramp 4

Table 12-23. Extended Low Fuse byte.

Extended fuse byte Bit No Description Default value

PSC2RB 7 PSC2 reset behavior 1

PSC2RBA 6
PSC2 reset behavior for
OUT22 & 23

1

PSCRRB 5 PSC reduced reset behavior 1

PSCRV 4
PSCOUT & PSCOUTR reset
value

1

PSCINRB 3
PSC & PSCR inputs reset
behavior

1

BODLEVEL2 (1) 2
Brown-out detector trigger
level

1 (unprogrammed)

BODLEVEL1 (1) 1
Brown-out detector trigger
level

0 (programmed)

BODLEVEL0 (1) 0
Brown-out detector trigger
level

1 (unprogrammed)
145
7734Q–AVR–02/12

AT90PWM81/161
13.4 Signal Description

Figure 13-2. PSCR external block view.

13.4.1 Input Description
Table 13-1. Internal inputs.

OCRrRB[11:0]

OCRrRA[11:0]

OCRrSA[11:0]

OCRrSB[11:0]

PICRr[11:0]

IRQ PSCr

PSCINr

Analog
Comparator
Output

PSCOUTr0

CLK

12

12

12

12

CLK

PSCOUTr1

12

PSCrASY

I/O

PLL

3

Name Description Type width

OCRrRB[11:0] Compare value which reset signal on Part B (PSCOUTr1) Register 12 bits

OCRrSB[11:0] Compare value which set signal on Part B (PSCOUTr1) Register 12 bits

OCRrRA[11:0] Compare value which reset signal on Part A (PSCOUTr0) Register 12 bits

OCRrSA[11:0] Compare value which set signal on Part A (PSCOUTr0) Register 12 bits

CLK I/O Clock input from I/O clock Signal

CLK PLL Clock input from PLL Signal
149
7734Q–AVR–02/12

AT90PWM81/161
14. Serial Peripheral Interface – SPI:

14.1 Features
• Full-duplex, three-wire synchronous data transfer
• Master or Slave operation
• LSB first or MSB first data transfer
• Seven programmable bit rates
• End of transmission interrupt flag
• Write collision flag protection
• Wake-up from idle mode
• Double speed (CK/2) Master SPI mode

14.2 Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
AT90PWM81/161 and peripheral devices or between several AVR devices.

The AT90PWM81/161 SPI includes the following features.

Figure 14-1. SPI block diagram (1).

Note: 1. Refer to Figure 2-1 on page 3, and Table 9-3 on page 75 for SPI pin placement.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

clk IO

MISO

MOSI

SCK

SS
180
7734Q–AVR–02/12

AT90PWM81/161
vated by setting the bit ADSSEN in ADCSRB register. In this case the synchronization signal is
blocked until the ADCH registed is read.

Figure 17-2. ADC auto trigger logic.

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not. The free
running mode is not allowed on the amplified channels.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

17.4 Prescaling and Conversion Timing

Figure 17-3. ADC prescaler.

By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 2MHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 2MHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.

ADSC

ADIF

SOURCE 1

SOURCE n

ADTS[2:0]

CONVERSION
LOGIC

PRESCALER

START CLKADC

.

.

.

. EDGE
DETECTOR

ADATE

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

C
K

/1
28

C
K

/2

C
K

/4

C
K

/8

C
K

/1
6

C
K

/3
2

C
K

/6
4

Reset
ADEN
START
206
7734Q–AVR–02/12

AT90PWM81/161
Example 1:

– ADMUX = 0xED (ADC3 - ADC2, 10× gain, 2.56V reference, left adjusted result)

– Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV

– ADCR = 512 × 10 × (300 - 500) / 2560 = -400 = 0x270

– ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02

Example 2:

– ADMUX = 0xFB (ADC3 - ADC2, 1× gain, 2.56V reference, left adjusted result)

– Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV

– ADCR = 512 × 1 × (300 - 500) / 2560 = -41 = 0x029

– ADCL will thus read 0x40, and ADCH will read 0x0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29

17.8 ADC Register Description
The ADC of the AT90PWM81/161 is controlled through 3 different registers. The ADCSRA and
The ADCSRB registers which are the ADC Control and Status registers, and the ADMUX which
allows to select the VREF source and the channel to be converted.

The conversion result is stored on ADCH and ADCL register which contain respectively the most
significant bits and the less significant bits.

17.8.1 ADMUX - ADC Multiplexer Register

Table 17-2. Correlation between input voltage and output codes.

VADCn Read code Corresponding decimal value

 VADCm + VREF /GAIN 0x1FF 511

VADCm + 0.999 VREF /GAIN 0x1FF 511

VADCm + 0.998 VREF /GAIN 0x1FE 510

...

VADCm + 0.001 VREF /GAIN 0x001 1

VADCm 0x000 0

VADCm - 0.001 VREF /GAIN 0x3FF -1

...

VADCm - 0.999 VREF /GAIN 0x201 -511

VADCm - VREF /GAIN 0x200 -512

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR - MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W -R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
217
7734Q–AVR–02/12

AT90PWM81/161
• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kW. The pull-up
resistor is not required for debugWIRE functionality

• Connecting the RESET pin directly to VCC will not work

• Capacitors connected to the RESET pin must be disconnected when using debugWire

• All external reset sources must be disconnected

19.4 Software Break Points
The debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting
a Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The
instruction replaced by the BREAK instruction will be stored. When program execution is contin-
ued, the stored instruction will be executed before continuing from the Program memory. A
break can be inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

19.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, that is,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio).

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

19.6 debugWIRE Related Register in I/O Memory
The following section describes the registers used with the debugWire.

19.6.1 DWDR - debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
232
7734Q–AVR–02/12

AT90PWM81/161
ICC

Power supply current

Active 8MHz, VCC = 3V,
RC osc., PRR = 0xFF

3.5 5

mA

Active 16MHz, VCC = 5V,
Ext Clock, PRR = 0xFF

10.5 15

Idle 8MHz, VCC = 3V,
RC Osc

1.5 2

Idle 16MHz, VCC = 5V,
Ext Clock

4.5 7

Power-down mode (5)

WDT enabled,VCC = 3V
25°C

7 µA

WDT enabled, VCC = 3V
105°C

30

WDT enabled, VCC = 5V
25°C

10 µA

WDT enabled, VCC = 5V
105°C

50

WDT disabled, VCC = 3V
25°C

0.5 µA

WDT disabled, VCC = 3V
105°C

25

WDT disabled, VCC = 5V
25°C

1

WDT disabled, VCC = 5V
105°C

40 µA

VREF
Internal voltage reference
(7) @25°C 2.46 2.56 2.66

V
Analog comparator input
common mode range

0.1 VCC - 0.1

Input offset voltage
0.1<VIN<VCC - 0.1V

±1.5 ±10

mVVACIO
Analog comparator input
offset voltage

With ±10mV hysteresis
0.1<VIN<VCC - 0.1V

±10 ±20

With ± 25mV hysteresis
0.1<VIN<VCC - 0.1V

±25 ±60

IACLK
Analog comparator input
leakage current

VCC = 5V
VIN = VCC/2

-50 50 nA

tACID
Analog comparator
propagation delay

VCC = 2.7V
VCC = 5.0V

50 (6) ns

TA = -40°C to +105°C, VCC = 2.7V to 5.5V (unless otherwise noted). (Continued)

Symbol Parameter Condition Minimum Typical Maximum Units
267
7734Q–AVR–02/12

AT90PWM81/161
Figure 23-2. Active supply current vs. frequency (1MHz - 16MHz).

Figure 23-3. Active supply current vs. VCC (internal RC oscillator, 8MHz).

ACTIVE SUPPLY CURRENT vs. FREQUENCY

5.5V

5.0V

4.5V

4.0V
3.6V
3.3V

2.7V

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15

Frequency [MHz]

I C
C
 [m

A
]

TEMPLATE

TO BE CHARACTERIZED

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 8MHz

125°C
105°C
25°C

-40°C

0

1

2

3

4

5

6

7

8

9

10

2.7 3.2 3.7 4.2 4.7 5.2

VCC [V]

I C
C
 [m

A
]

281
7734Q–AVR–02/12

AT90PWM81/161
26.2 QFN32
306
7734Q–AVR–02/12

AT90PWM81/161
27. In chapter “PFRC0B - PSCR Input B Control Register” on page 175, in bullet point “Bit 3:0 –
PRFM0x3:0: PSCR Fault Mode”, page 176, the text “PSCR Functional Specification” has
been replaced by “Table 13-5 on page 160”.

28. In “Bit 2, 1, 0– AC3M2, AC3M1, AC3M0: Analog Comparator 3 Multiplexer register”,
page 199, the reference “Table 16-4” has been corrected to “Table 16-6”.

29. In Table 21-5 on page 250, the reference “Table 113” has been corrected to “Table 20-7 on

page 246” two places.
30. In chapter “Signal Names” on page 252, the text “in the following table” has been replaced

by the reference “Table 21-8 on page 252”.
31. Several cross references have been corrected.
32. The text “The accuracy of this calibration is shown as Factory calibration in Table 24-1 on

page 277” on page 30 has been changed into “The accuracy of this calibration is shown as
Factory calibration in Table 22-2 on page 270”.

33. The first Note in Bit 2– CKRC81: Frequency Selection of the calibrated 8/1MHz RC
Oscillator on page 42 is corrected to This bit only can be changed only when the RC
oscillator is enabled.

34. Note 1 below Figure 16-1 on page 195 is changed to “Refer to Figure 2-1 on page 3 and
Figure 2-2 on page 4 for Analog Comparator pin placement.”

35. Figure 16-2 on page 196 has been corrected.
36. In “MISO/ACMP3/ADC8– Bit 6” on page 75 the “DDB0” has been corrected to “DDB6”, and

the “PORTB0” has been corrected to “PORTB6”.
37. In “ADC5/ACMP2/INT1/SCK – Bit 5” on page 76 the “DDD4” has been corrected to “DDB5”,

and the “PORT” has been corrected to “PORTB5”.
38. In “MOSI/ADC3/ACMPM– Bit 4” on page 76 the “DDB1” has been corrected to “DDB4”, and

the “PORTB1” has been corrected to “PORTB4”.
39. Missing information in Table 9-4 on page 77, Table 9-5 on page 77, Table 9-7 on page 79,

Table 9-8 on page 80 and Table 9-10 on page 81 has been added.
40. Paragraphs one and two in “In-System Reprogrammable Flash Program Memory” on page

16 have been changed to to include more data regarding the AT90PWM161.
41. The text “TBD” in Table 21-7 on page 251 has been changed into “8B”.
42. The text in bullet point number three below Table 21-7 on page 251 has been expanded to

include the AT90PWM161.
43. The text “Calibration accuracy” in the heading of Table 22-2 on page 270 has been changed

into “Accuracy”.
44. The text “AT90PWM161 revA” has been added to the heading in Section 27.5 on page 311.
45. JMP and CALL instructions are added to “BRANCH INSTRUCTIONS” in Section 25. on

page 301.
46. “Errata AT90PWM161 revA” on page 312 and “Errata AT90PWM161 revB” on page 313 are

added.
47. In “Errata AT90PWM161 revB” on page 313, and in “Errata AT90PWM161 revA” on page

312 the PSCRRB fuse is added.
48. In “Features” on page 227 the bullet points “The DAC could be connected to the negative

inputs of the analog comparators and/or to a dedicated output driver” and “Output
impedance around 1KOhm” have been removed.

49. The text “AMP3D” has been replaced by “ACMP3D” in “DIDR0 - Digital Input Disable
Register 0” on page 202, “DIDR0 - Digital Input Disable Register 0” on page 222, and
“Register Summary” on page 297.
318
7734Q–AVR–02/12

AT90PWM81/161
18 Digital to Analog Converter - DAC ... 227

18.1 Features ..227

18.2 Operation ...228

18.3 Starting a Conversion ..228

18.4 DAC Register Description ..228

19 debugWIRE On-chip Debug System .. 231

19.1 Features ..231

19.2 Overview ..231

19.3 Physical Interface ..231

19.4 Software Break Points ...232

19.5 Limitations of debugWIRE ...232

19.6 debugWIRE Related Register in I/O Memory ..232

20 Boot Loader Support – Read-While-Write Self-Programming 233

20.1 Boot Loader Features ..233

20.2 Application and Boot Loader Flash Sections ...233

20.3 Read-While-Write and No Read-While-Write Flash Sections233

20.4 Boot Loader Lock Bits ...236

20.5 Entering the Boot Loader Program ..237

20.6 Addressing the Flash During Self-Programming ...239

20.7 Self-Programming the Flash ..240

21 Memory Programming ... 248

21.1 Program And Data Memory Lock Bits ...248

21.2 Fuse Bits ..249

21.3 Signature Bytes ...251

21.4 Calibration Byte ...252

21.5 Parallel Programming Parameters, Pin Mapping, and Commands252

21.6 Serial Programming Pin Mapping ..254

21.7 Parallel Programming ..254

21.8 Serial Downloading ..261

22 Electrical Characteristics (1) ... 265

22.1 Absolute Maximum Ratings* ...265

22.2 DC Characteristics ...266

22.3 Clock Drive Characteristics ...270

22.4 Maximum Speed vs. VCC .. 271

22.5 PLL Characteristics ...271
v
7734Q–AVR–02/12

