Microchip Technology - AT90PWM81-16SF Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

AVR

8-Bit

16MHz

SPI

Brown-out Detect/Reset, PWM, WDT
16

8KB (8K x 8)

FLASH

512x8

256 x 8

2.7V ~ 5.5V

A/D 8x10b; D/A 1x10b

Internal

-40°C ~ 105°C (TA)

Surface Mount

20-SOIC (0.295", 7.50mm Width)
20-S0IC

https://www.e-xfl.com/product-detail/microchip-technology/at90pwm81-16sf

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at90pwm81-16sf-4405477
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

32-pin packages.

Figure 2-2.

(+0dINV
(EdWOV/OSIN/8OA

\'
(VINIOSd/0L0aV) Lad
\'

(1dDI/22LN0DSd/60a
(LNO £dWOV/L1/€21N0DSd
(ZLNI/ao0/L3s3y

AT90PWM81/161
QFN 32 5*5

ON
) 9ad
) 9ad

) 29d
) 09d
) 03d

ON

N S S A

9l
Gl
145
€l
¢l
L
(013

~ <
N O
o N
= <
<3
Y o
< 33
O «© = <
oo TA/n
<o Z
n_vA = =
-~ n =
o O O
M_% Qo
To] <
odmnalBddo
Zoo<<<<aoaoz
I A A
<t MO N «— O O 00 I~
N N AN AN AN v~ v« «—
Gc
9c
X
8¢
6¢
0¢
1€
=0
~ N M < 10O © M~ 0
LT L7 LT LT T T LT T 1
o «— N ~
CBnm82 L
ooosSGao
°o_% I
< E E <
022 [
= OO0 X
N O O N
Do o z
oL 0
=2 2
Z =
(s2]
g o
Q z
< S
<

A [Y Y O Iy

ON

¥9d (ISOW/INdINOVY/€0AY)

€9d (141N0J2Sd/N2dINOVY/20aY)
€ad (LNO 2dNOV/10av)

2ad (LdINov/00av)

Ldd (8!N10Sd/041N0DSd)

23d (@IVLX/N FdINOV/INIOS)

ON

AIMEL

7734Q-AVR-02/12

* Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Summary” on page 301 for detailed information.

3.5 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:
¢ One 8-bit output operand and one 8-bit result input
¢ Two 8-bit output operands and one 8-bit result input
¢ Two 8-bit output operands and one 16-bit result input
¢ One 16-bit output operand and one 16-bit result input
Figure 3-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 3-2. AVR CPU General Purpose Working Registers.

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D

General R14 O0x0E

Purpose R15 O0xOF

Working R16 0x10

Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 3-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

3.5.1 The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 3-3 on page 12.

AIMEL 1

7734Q-AVR-02/12 ——— ——— —]

3.6

3.7

Stack Pointer

Figure 3-3. The X-register, Y-register, and Z-register.

15 XH XL
X-register I 7 0 I 7 0 I
R27 (0x1B) R26 (0x1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register |~ 0 |7 0 |
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see “Instruction Set Summary” on page 301 for
details).

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory loca-
tions to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x100. The Stack Pointer is decremented by one when data is pushed onto the
Stack with the PUSH instruction, and it is decremented by two when the return address is
pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one
when data is popped from the Stack with the POP instruction, and it is incremented by two when
data is popped from the Stack with return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0

Instruction Execution Timing

7734Q-AVR-02/12

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkgp, directly generated from the selected clock source for the
chip. No internal clock division is used.

AIMEL 12

&

Figure 3-4 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.

Figure 3-4. The parallel instruction fetches and instruction executions.
T1 T2 T3 T4

ok —4 0

CPU

1st Instruction Fetch

1
1 1
1 T
1 1
1st Instruction Execute : :
2nd Instruction Fetch | |

; ;

1 1

1 1

AN
2nd Instruction Execute +
3rd Instruction Fetch 7
3rd Instruction Execute !
4th Instruction Fetch \ \ \ i

Figure 3-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 3-5. Single cycle ALU operation.
1 T2 T3 T4

R A D A N S N A N

CPU
Total Execution Time

ALU Operation Execute

1

: l

1 1

Register Operands Fetch 4 > :
: :

1 1

| .

1

Result Write Back

-

3.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 248 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 62. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is PSC2 CAPT — the PSC2 Capture
Event. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the
IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 62 for more infor-
mation. The Reset Vector can also be moved to the start of the Boot Flash section by

AIMEL 13

7734Q-AVR-02/12 ——— ——— —]

4.3.2 EEARH and EEARL - EEPROM Address Registers
Bit 15 14 13 12 11 10 9 8
- - - - - - - EEARS8 EEARH
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R R R R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 X
X X X X X

* Bits 15..9 — Reserved Bits
These bits are reserved bits in the AT90PWM81/161 and will always read as zero.

e Bits 8..0 - EEARS..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the
512 bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and
511. The initial value of EEAR is undefined. A proper value must be written before the EEPROM
may be accessed.

4.3.3 EEDR - EEPROM Data Register
Bit 7 6 5 4 3 2 1 0
|EEDR7 | EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDRO |EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

EECR - EEPROM Control Register

7734Q-AVR-02/12

Bit 7 6 5 4 3 2 1 0

| NVMBSY | EEPAGE |EEPM1 EEPMO EERIE EEMWE EEWE EERE IEECR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value X X X X 0 0 X 0

e Bits 7 - NVMBSY: Non-volatile memory busy

The NVMBSY bit is a status bit that indicates that the NVM memory (FLASH, EEPROM, Lock-
bits) is busy programming. Once a program operation is started, the bit will be set and it remains
set until the program operation is completed.

Bits 6 — EEPAGE: EEPROM page access (multiple bytes access mode)

Writing EEPAGE to one enables the multiple bytes access mode. That means that several bytes
can be programmed simultaneously into the EEPROM. When the EEPAGE bit has been written
to one, the EEPAGE bit remains set until an EEPROM program operation is completed. Alterna-
tively the bit is cleared when the temporary EEPROM buffer is flushed in software (see EEPMn
bits description). Any write to EEPAGE while EEPE is one will be ignored. See
Section “Program multiple bytes in one Atomic operation”, page 21 for details on how to load
data into the temporary EEPROM page and the usage of the EEPAGE bit.

AIMEL 19

&

4.4

Fuse Bits

7734Q-AVR-02/12

The order the different bits and registers should be accessed is:

1

2
3
4
5

OR

Write EEPAGE in EECR (loading of temporary EEPROM buffer is enabled).
Write the address bits needed to address bytes within a page into EEARL.
Write data to EEDR.

Repeat 2 and 3 above until the buffer is filled up or until all data is loaded.

Write the remaining address bits into EEARH:EEARL.

Select which programming mode that should be executed (EEPMn bits). Write the EEPE
bit in EECR (within four cycles after EEMPE has been written) to start a program opera-
tion. The temporary EEPROM page buffer will auto-erase after program operation is
completed.

If an error situation occurred and the loading should be terminated by software: Write
EEPM1:0 to Ob11 and trigger the flushing by writing EEPE (within four cycles after
EEMPE has been written).

The AT9OPWMB81/161 has three Fuse bytes. Table 4-3 through Table 4-5 on page 23 describe
briefly the functionality of all the fuses and how they are mapped into the Fuse bytes. Note that
the fuses are read as logical zero, “0”, if they are programmed.

Table 4-3. Extended low fuse byte.

Extended fuse byte Bit no. Description Default value

PSC2RB 7 PSC2 reset behavior 1

PSC2RBA 6 PSC2 reset behavior for OUT22 & 23 | 1

PSCRRB 5 PSC reduced reset behavior 1

PSCRV 4 PSCOUT & PSCOUTR reset value 1

PSCINRB 3 PSC & PSCR inputs reset behavior 1

BODLEVEL2 () 2 Brown-out detector trigger level 1 (unprogrammed)

BODLEVEL1 ™ 1 Brown-out detector trigger level 0 (programmed)

BODLEVELO (" 0 Brown-out detector trigger level 1 (unprogrammed)
Notes: 1. See Table 7-2 on page 53 for BODLEVEL fuse decoding.

AIMEL 22

be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “I/O-Ports” on page 68 for details on which pins are enabled. If the
input buffer is enabled and the input signal is left floating or have an analog signal level close to

Vcc/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to Vc/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to “DIDR1 - Digital Input Disable Register 1” on page 222 and “DIDRO - Digital

Input Disable Register 0” on page 202 for details.

6.7.7 On-chip Debug System

If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode, the
main clock source is enabled, and hence, always consumes power. In the deeper sleep modes,

this will contribute significantly to the total current consumption.

6.8 Register description

6.8.1 SMCR - Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

|smcr

Bit 7 6 5 4 3 2 1 0
I- |- |- |- |sm2 B |Smo |SE

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 3..1 - SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 6-2.

Table 6-2. Sleep mode select.

SM2 SM1 SMo Sleep mode
0 0 0 Idle
0 0 1 ADC noise reduction
0 1 0 Power-down
0 1 1 Reserved
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby ("
1 1 1 Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

e Bit 1 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of

the SLEEP instruction and to clear it immediately after waking up.

AIMEL

7734Q-AVR-02/12 ——— ——— —]

48

e Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See “Con-
figuring the Pin” on page 69 for more details about this feature.

9.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 9-3.

Table 9-3. Port B pins alternate functions.

Port pin | Alternate functions

PSCOUT22 output
PB7 ICP1 (Timer/Counter1 Input Capture Pin))
ADC9 (Analog Input Channel 9)

MISO (SPI Master In Slave Out)
PB6 ACMP3 (Analog Comparator 3 Positive Input)
ADCS8 (Analog Input Channel 8)

ADCS5 (Analog Input Channel 5)

ACMP2 (Analog Comparator 2 Positive Input)
INT1(External Interrupt 1 Input)

SCK (SPI Clock)

MOSI (SPI Master Out Slave In)
PB4 ADC3 (Analog Input Channel 3)
ACMPM reference for analog comparators

PSCOUTR1 Output
PB3 ADC2 (Analog Input Channel 2)
ACMP2M (Analog Comparator 2 Negative Input)

PB5

INTO (External Interrupt O Input)
PSCOUT21 output

PB1 PSCOUT20 output

PB2

T1 counter source
PBO PSCOUT23 output
ACMP3_OUT(Analog Comparator3 Output)

The alternate pin configuration is as follows:

* PSCOUT22/ICP1/ADC9 - Bit 7

PSCOUT22: Output 2 of PSC 2

ICP1 — Input Capture Pin1: This pin can act as an input capture pin for Timer/Counter1.
ADC9: Analog to Digital Converter, input channel 9.

¢ MISO/ACMP3/ADC8- Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB6. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB6. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTB6 and PUD bits.

ACMPS3: Analog Comparator 3 Positive Input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of the Ana-
log Comparator.

ADCS8: Analog to Digital Converter, input channel 8.

AIMEL 7

7734Q-AVR-02/12 ——— ——— —]

Table 12-6. Distribution of f,, in the modulated frame.

Distribution of fb2 in the modulated frame
PWM - cycle
giragi‘:rzg') 0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 11|12 13|14 |15
0
1 X
2 X X
3 X X X
4 X X X X
5 X X X X X
6 X X X X X X
7 X X X X X X X
8 X X X X X X X X
9 X X X X X X X X X
10 X X X X X X X X X X
11 X X X X X X X X X X X
12 X X X X X X X X X X X X
13 X X X X X X X X X X X X
14 X X X X X X X X X X X X
15 X X X X X X X X X X X X X
While ‘X’ in the table, f,, prime to f,; in cycle corresponding cycle.
So for each row, a number of b2 take place of fb1.
Figure 12-12. Resulting frequency versus d.
fh1 fb2

ML

12.7.2 Modes of Operation

12.7.2.1 Normal Mode
The simplest mode of operation is the normal mode. See Figure 12-6 on page 106.

The active time of PSCOUTNO is given by the OTO value. The active time of PSCOUTn1 is given
by the OT1 value. Both of them are 12 bit values. Thanks to DTO & DT1 to adjust the dead time

between PSCOUTNO and PSCOUTN1 active signals.

AIMEL

7734Q-AVR-02/12 ——— ——— —]

113

Table 12-22. PSC n ramp number description.

PRNn1 PRNNnO Description

0 0 The last event which has generated an interrupt occurred during ramp 1
0 1 The last event which has generated an interrupt occurred during ramp 2
1 0 The last event which has generated an interrupt occurred during ramp 3
1 1 The last event which has generated an interrupt occurred during ramp 4

e Bit 0 — PEOPNn: End Of PSC n Interrupt
This bit is set by hardware when PSC n achieves its whole cycle.

Must be cleared by software by writing a one to its location.
12.26.4 PSC Output Behavior During Reset

For external component safety reason, the state of PSC outputs during Reset can be pro-
grammed by fuses PSCRV, PSCRRB & PSC2RB.

These fuses are located in the Extended Fuse Byte:
Table 12-23. Extended Low Fuse byte.

Extended fuse byte Bit No Description Default value
PSC2RB 7 PSC2 reset behavior 1
PSC2 reset behavior for
PSC2RBA 6 OUT22 & 23 1
PSCRRB 5 PSC reduced reset behavior 1
PSCRV 4 PSCOUT & PSCOUTR reset 1
value
PSCINRB 3 PSC & PSCR inputs reset 1
behavior

Brown-out detector trigger

BODLEVEL2 (" 2 1 (unprogrammed)
level

BODLEVEL1 () 1 g{‘:’l"”'o“t detectortrigger | 4 (programmed)

BODLEVELO ™ 0 Brown-out detector trigger 1 (unprogrammed)

level

Notes: 1. See Table 7-2 on page 53 for BODLEVEL Fuse decoding.
PSCRYV gives the state low or high which will be forced on PSC outputs selected by PSCORB &
PSC2RB fuses.

If PSCRYV fuse equals 0 (programmed), the selected PSC outputs will be forced to low state. If
PSCRYV fuse equals 1 (unprogrammed), the selected PSC outputs will be forced to high state.

If PSCRRB fuse equals 1 (unprogrammed), PSCOUTRO & PSCOUTR1 keep a standard port
behavior. If PSCORB fuse equals 0 (programmed), PSCOUTRO0 & PSCOUTR1 are forced at
reset to low level or high level according to PSCRYV fuse bit. In this second case, PSCOUTRO &
PSCOUTR1 keep the forced state until PSOCO register is written.

AIMEL 145

7734Q-AVR-02/12 ——— ——— —]

13.4 Signal Description

Figure 13-2. PSCR external block view.

13.4.1 Input Description
Table 13-1.

CLK pLL
12
OCRrRB[11:O]+> | p PSCOUTO
12
OCRrSBI[11:0] +> L p PSCOUTM
12
OCRrRA[11:0] +>
12
OCRrSA[11:0] +>
12 3
PICRr[11:0] <7L H PSCINr
IRQPSCr g— g¢—— Analog
Comparator
Output

l

PSCrASY

Internal inputs.

Name

Description

Type width

OCRrRB[11:0]

Compare value which reset signal on Part B (PSCOUTr1)

Register 12 bits

OCRrSBJ[11:0]

Compare value which set signal on Part B (PSCOUTr1)

Register 12 bits

OCRrRA[11:0]

Compare value which reset signal on Part A (PSCOUTr0)

Register 12 bits

OCRrSA[11:0]

Compare value which set signal on Part A (PSCOUT0)

Register 12 bits

CLK I/O

Clock input from I/O clock

Signal

CLK PLL

Clock input from PLL

Signal

7734Q-AVR-02/12

AIMEL

149

14. Serial Peripheral Interface — SPI:

14.1 Features

14.2 Overview

7734Q-AVR-02/12

* Full-duplex, three-wire synchronous data transfer
* Master or Slave operation

» LSB first or MSB first data transfer

* Seven programmable bit rates

* End of transmission interrupt flag

* Write collision flag protection

* Wake-up from idle mode

* Double speed (CK/2) Master SPI mode

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the

AT90PWM81/161 and peripheral devices or between several AVR devices.
The AT90PWM81/161 SPI includes the following features.

Figure 14-1. SPI block diagram (),

MISO

MosI

SCK

oS
M
M
clkio MSB LSB g
- RN ® s 9
l 8 BIT SHIFT REGISTER o
READ DATA BUFFER 3
DIVIDER &
12/4/8/16/32/64/128 : Z
$ o}
O
Yy v v v CLOCK Z
SPI CLOCK (MASTER) T
SELECT | CLOCK S
LOGIC M
A‘_ ou d
E E g A A A
ARG
x o
= w| X
25 8
3 <MSTR
SPI CONTROL «SPE
o ¥l 4 < <« o
_. Whw X = O I x «
L 3 % 8, G| & 8 2| & & & &
W L1116
r v | SPI CONTROL REGISTER
| SPI STATUS REGISTER |
L 8, | 8 ., |
v :

SPIINTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Figure 2-1 on page 3, and Table 9-3 on page 75 for SPI pin placement.

AIMEL

&

SSs

180

vated by setting the bit ADSSEN in ADCSRB register. In this case the synchronization signal is
blocked until the ADCH registed is read.

Figure 17-2. ADC auto trigger logic.

ADTS[2:0]
PRESCALER
START ClK,pc
ADIF — ADATE
SOURCE 1 — t
***** 5 } CONVERSION
,,,,, LOGIC
S EDGE
SOURCE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not. The free
running mode is not allowed on the amplified channels.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be
read as one during a conversion, independently of how the conversion was started.

17.4 Prescaling and Conversion Timing

Figure 17-3. ADC prescaler.

D
ese
START 7-BIT ADC PRESCALER

CK —
oo}
of 2| o & 8 3| &
[4 IR IR vl v B
O| O| o ©| o] O ©

ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 2MHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 2MHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.

AIMEL 206

7734Q-AVR-02/12 ——— ——— —]

Table 17-2. Correlation between input voltage and output codes.

Vapcn Read code Corresponding decimal value
Vaocm + Veer /GAIN Ox1FF 511
Vapcm + 0.999 Vger /GAIN Ox1FF 511
Vapcm + 0.998 Ve /GAIN Ox1FE 510
Vapcm + 0.001 Ve /GAIN 0x001 1
Vabcm 0x000 0
Vapcm - 0.001 Ve /GAIN Ox3FF -1
Vapcm - 0.999 Vger /GAIN 0x201 -511
Vaocm - Veer /GAIN 0x200 512
Example 1:

— ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
— Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV
— ADCR =512 x 10 x (300 - 500) / 2560 = -400 = 0x270

— ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02

Example 2:

— ADMUX = 0xFB (ADC3 - ADC2, 1x gain, 2.56V reference, left adjusted result)
— Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV
— ADCR =512 x 1 x (300 - 500) / 2560 = -41 = 0x029

— ADCL will thus read 0x40, and ADCH will read Ox0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29

17.8 ADC Register Description

The ADC of the AT9OPWM81/161 is controlled through 3 different registers. The ADCSRA and
The ADCSRB registers which are the ADC Control and Status registers, and the ADMUX which
allows to select the Vggr source and the channel to be converted.

The conversion result is stored on ADCH and ADCL register which contain respectively the most
significant bits and the less significant bits.

17.8.1 ADMUX - ADC Multiplexer Register

Bit 7 6 5 4 3 2 1 0
REFs1 REFS0 ADLAR | MUX3 MUX2 MUX1 MUX0 |ADMUX

Read/Write R/W R/W R/W -R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

AIMEL 217

7734Q-AVR-02/12 ——— ——— —]

¢ Pull-up resistors on the dW/(RESET) line must not be smaller than 10kW. The pull-up
resistor is not required for debugWIRE functionality

* Connecting the RESET pin directly to V¢ will not work
e Capacitors connected to the RESET pin must be disconnected when using debugWire
¢ All external reset sources must be disconnected

19.4 Software Break Points
The debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting
a Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The
instruction replaced by the BREAK instruction will be stored. When program execution is contin-
ued, the stored instruction will be executed before continuing from the Program memory. A
break can be inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

19.5 Limitations of debugWIRE

The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, that is,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the 1/0O Registers via the debugger (AVR Studio).

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

19.6 debugWIRE Related Register in I/O Memory
The following section describes the registers used with the debugWire.

19.6.1 DWDR - debugWire Data Register

Bit 7 6 5 4 3 2 1 0

| DWDR([7:0] | DWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

AIMEL 232

7734Q-AVR-02/12 ——— ——— —]

T, =-40°C to +105°C, Vo = 2.7V to 5.5V (unless otherwise noted). (Continued)

Symbol | Parameter

Condition

Minimum

Typical

Maximum

Units

Active 8MHz, V; =3V,
RC osc., PRR = 0xFF

3.5

5

Active 16MHz, V¢ =5V,
Ext Clock, PRR = OxFF

10.5

15

Power supply current

Idle 8MHz, V¢ = 3V,
RC Osc

1.5

Idle 16MHz, V¢ =5V,
Ext Clock

4.5

mA

WDT enabled,V¢c = 3V
25°C

pHA

WDT enabled, V¢ = 3V
105°C

30

WDT enabled, Vo =5V
25°C

10

HA

WDT enabled, Vg =5V
105°C

50

Power-down mode ®

WDT disabled, Vg = 3V
25°C

0.5

HA

WDT disabled, Vg = 3V
105°C

25

WDT disabled, Vg = 5V
25°C

WDT disabled, Vg = 5V
105°C

40

MA

VREF (7)

Internal voltage reference

@25°C

2.46

2.56

2.66

Analog comparator input
common mode range

0.1

Ve - 0.1

VACIO

Input offset voltage
0.1 <V|N<VCC - 01V

Analog comparator input
offset voltage

With +10mV hysteresis
01 <V|N<VCC - 01V

With £ 25mV hysteresis
0.1<Vj\<Vee - 0.1V

mV

IACLK

Analog comparator input
leakage current

VCC = 5V
Vin = Vo2

50

nA

tACID

Analog comparator
propagation delay

50 ©

ns

7734Q-AVR-02/12

267

Figure 23-2. Active supply current vs. frequency (1MHz - 16MHz).

ACTIVE SUPPLY CURRENT vs. FREQUENCY

14
12 5.5V
/'
10 =] |50V
/
// 45y
— 8
<
z L _Laov
8 5 e 1 _l3ev
_— 1 ——+33v
./..//

4 — e - 2.7V
W*X ///
W‘—*—-———/

2 e

0 ‘

1 3 5 7 9 11 13 15

Frequency [MHz]

Figure 23-3. Active supply current vs. V¢ (internal RC oscillator, 8MHz).

ACTIVE SUPPLY CURRENT vs. V¢
INTERNAL RC OSCILLATOR, 8MHz

10
9
8 125°C
t 105°C
25°C
-40°C

ICC [mA]

27 32 37 4.2 4.7 5.2
Vee V]

AIMEL 281

7734Q-AVR-02/12 ——— ——— —]

26.2 QFN32

AT90PWM81/161

[

0.30
DIA. TYP| LASER MARKING

Ty el

Pin 1# Chamfer Pin 1# Notch Pin

Compliant JEDEC Standard MO-220 variation VHHD-2

CE]]
_SEATING PLANE
0
T
™[0, 080| C
1OF VIEW DRAWINGS NOT SCALED SIDE VIEW
D2
--‘ i—b -—D2/2— COMMON DIMENSIONS IN MM
U U U U U U U SYMBOL| MIN. | NOM. | MaX. [NOTES
- — A 0.80 | -—-——- | 1.00
— — | J 0.00 | ---- | 0.05
D)] E2/2 D/E 5.00 BSC
— - ' D2/E2 | 1.25 | ———- | 3. 60
= E2 N 32
- e 0.50 BSC
W - L 0.30 | 0.40 | 0.50
1 - b 0.18 | 0.25 | 0.30
Ty N00N
Option A Option B Option C

See
W oorion v @ @ @

14

(C 0.30 (0. 20 R> Triangle

07/26/07
TITLE DRAWING No. REV.
AEL - -vvere S5 70002 PN, 32 - Lead 5.0x5.0 mm Body, 0.50 mm Pitch
EEe———0 44306 Nantes Cedex 3 - France Quad Flat No Lead Package (QFN) PN G

AIMEL

7734Q-AVR-02/12 ——— ——— —]

306

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.
42.

43.

44,
45.

46.

47.

48.

49.

7734Q-AVR-02/12

In chapter “PFRCOB - PSCR Input B Control Register” on page 175, in bullet point “Bit 3:0 —
PRFMO0x3:0: PSCR Fault Mode”, page 176, the text “PSCR Functional Specification” has
been replaced by “Table 13-5 on page 160”.

In “Bit 2, 1, 0— AC3M2, AC3M1, AC3MO: Analog Comparator 3 Multiplexer register”,

page 199, the reference “Table 16-4” has been corrected to “Table 16-6.

In Table 21-5 on page 250, the reference “Table 113” has been corrected to “Table 20-7 on
page 246” two places.

In chapter “Signal Names” on page 252, the text “in the following table” has been replaced
by the reference “Table 21-8 on page 252”.

Several cross references have been corrected.

The text “The accuracy of this calibration is shown as Factory calibration in Table 24-1 on
page 277" on page 30 has been changed into “The accuracy of this calibration is shown as
Factory calibration in Table 22-2 on page 270".

The first Note in Bit 2— CKRC81: Frequency Selection of the calibrated 8/1MHz RC
Oscillator on page 42 is corrected to This bit only can be changed only when the RC
oscillator is enabled.

Note 1 below Figure 16-1 on page 195 is changed to “Refer to Figure 2-1 on page 3 and
Figure 2-2 on page 4 for Analog Comparator pin placement.”

Figure 16-2 on page 196 has been corrected.

In “MISO/ACMP3/ADCS8- Bit 6” on page 75 the “DDBO0” has been corrected to “DDB6”, and
the “PORTBO0” has been corrected to “PORTB6".

In “ADC5/ACMP2/INT1/SCK — Bit 5” on page 76 the “DDD4” has been corrected to “DDB5”,
and the “PORT” has been corrected to “PORTB5”.

In “MOSI/ADC3/ACMPM- Bit 4” on page 76 the “DDB1” has been corrected to “DDB4”, and
the “PORTB1” has been corrected to “PORTB4”.

Missing information in Table 9-4 on page 77, Table 9-5 on page 77, Table 9-7 on page 79,
Table 9-8 on page 80 and Table 9-10 on page 81 has been added.

Paragraphs one and two in “In-System Reprogrammable Flash Program Memory” on page
16 have been changed to to include more data regarding the AT9OPWM161.

The text “TBD” in Table 21-7 on page 251 has been changed into “8B”.

The text in bullet point number three below Table 21-7 on page 251 has been expanded to
include the AT90PWM161.

The text “Calibration accuracy” in the heading of Table 22-2 on page 270 has been changed
into “Accuracy”.

The text “AT90PWM161 revA” has been added to the heading in Section 27.5 on page 311.
JMP and CALL instructions are added to “BRANCH INSTRUCTIONS” in Section 25. on
page 301.

“Errata AT9OPWM161 revA” on page 312 and “Errata AT9OPWM161 revB” on page 313 are
added.

In “Errata AT90PWM161 revB” on page 313, and in “Errata AT9OPWM161 revA” on page
312 the PSCRRB fuse is added.

In “Features” on page 227 the bullet points “The DAC could be connected to the negative
inputs of the analog comparators and/or to a dedicated output driver” and “Output
impedance around 1KOhm” have been removed.

The text “AMP3D” has been replaced by “ACMP3D” in “DIDRO - Digital Input Disable
Register 0” on page 202, “DIDRO - Digital Input Disable Register 0” on page 222, and
“Register Summary” on page 297.

AIMEL 318

&

7734Q-AVR-02/12

18 Digital to Analog Converter - DACooeeeeeeevvvccccecesssssssssssnmnnnnnnnnns 227
18.1 FRATUIES ... 227

LR © o 1= - 1o] o F PO UR U POURRRRN 228

18.3 Starting @ CONVEISIONcoiiuiiiiiiiiiiie ettt e e sre e e saeee e 228

18.4 DAC Register DeSCHPHIONccciiiiiiiiiiiiieieriee ettt be e 228

19 debugWIRE On-chip Debug Systemeeeeevveveevvcisssssssssssnnnnnnnnns 231
19.1 FRATUIES ... 231

1.2 OVEIVIEBW ittt ettt e a e e st e e e st e e e sabee e sbe e e s beeasanneaans 231

19.3 Physical INterfaceceeviiiiiiii e 231

19.4 Software Break POINtSccoiiiiiiiiiie e 232

19.5 Limitations of debUgGWIREoooii e 232

19.6 debugWIRE Related Register in I/O MeMOIYcccoiriiiiiiiiiiiiieeieee e 232

20 Boot Loader Support — Read-While-Write Self-Programming 233
201 BoOt Loader FEAtUIESccooiuiiiiiiiiieeee e 233

20.2 Application and Boot Loader Flash Sectionscccoceeriiiiiiiienniine e 233

20.3 Read-While-Write and No Read-While-Write Flash Sections 233

20.4 Boot Loader LOCK BitSccccuiiiiiiiiiiiie et 236

20.5 Entering the Boot Loader Programcccccoviiiiiieeiiiiieee e 237

20.6 Addressing the Flash During Self-Programmingccccocoeeiiieniiienenieeene 239

20.7 Self-Programming the FIash ..o 240

21 Memory Programmingccccccccceessssssssssssssssssmsmsssssmsssssssssssssssssssssnnnns 248
211 Program And Data Memory LOCK BitSccooiiiiiiiiiiieie e 248

21.2 FUSE BIS .. s 249

21.3 SIgNature BYLESoooiieiiiii i 251

21.4 Calibration BYIEoooiiiiiiiiiie e 252

21.5 Parallel Programming Parameters, Pin Mapping, and Commands 252

21.6 Serial Programming Pin Mappingc.coocoueeiiiniieieieee e 254

21.7 Parallel Programming ...t 254

21.8 Serial DOWNIOAAINGeeiiiiiiiiiie e 261

22 Electrical Characteristics (1) - 265
22.1 Absolute Maximum RatingS™ooouiiiiiiiiiee e 265

22.2 DO CharacteriStiCscuueeiiiiiiiiie et 266

22.3 Clock Drive CharacteriStiCsicuueeiiiiiiiiieieiiieee et 270

224 Maximum Speedvs.Voe 271

22.5 PLL CharacteriStiCSuuiiiiiiiiiiiieeeeee e 271
AIMEL v

—— ©

