

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

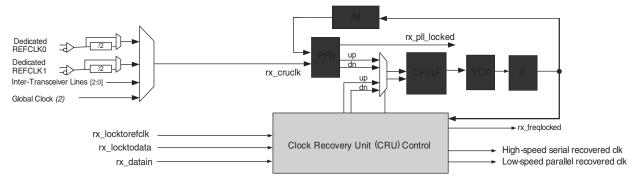
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1079
Number of Logic Elements/Cells	21580
Total RAM Bits	1229184
Number of I/O	341
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1agx20cf780c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


The receiver equalization circuit is comprised of a programmable amplifier. Each stage is a peaking equalizer with a different center frequency and programmable gain. This allows varying amounts of gain to be applied, depending on the overall frequency response of the channel loss. Channel loss is defined as the summation of all losses through the PCB traces, vias, connectors, and cables present in the physical link. The Quartus II software allows five equalization settings for Arria GX devices.

Receiver PLL and Clock Recovery Unit (CRU)

Each transceiver block has four receiver PLLs and CRU units, each of which is dedicated to a receiver channel. The receiver PLL is fed by an input reference clock. The receiver PLL, in conjunction with the CRU, generates two clocks: a high-speed serial recovered clock that clocks the deserializer and a low-speed parallel recovered clock that clocks the receiver's digital logic.

Figure 2–13 shows a block diagram of the receiver PLL and CRU circuits.

Figure 2–13. Receiver PLL and Clock Recovery Unit

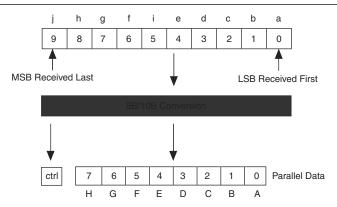
Notes to Figure 2-13:

- (1) You only need to select the protocol and the available input reference clock frequency in the ALTGXB MegaWizard Plug-In Manager. Based on your selections, the ALTGXB MegaWizard Plug-In Manager automatically selects the necessary /M and /L dividers.
- (2) The global clock line must be driven from an input pin only.

The reference clock input to the receiver PLL can be derived from:

- One of the two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)
- Inter-transceiver block lines driven by reference clock input pins of other transceiver blocks

All the parameters listed are programmable in the Quartus II software. The receiver PLL has the following features:

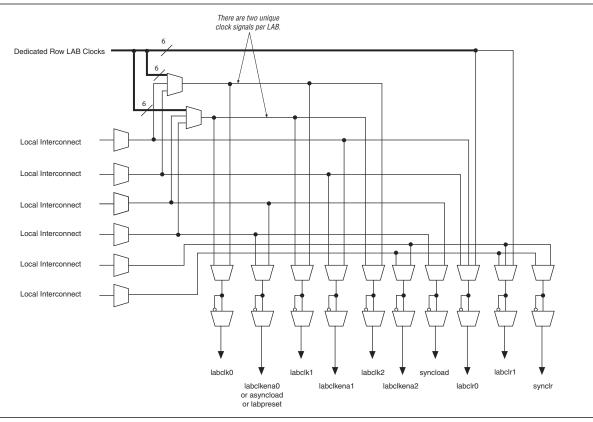

- Operates from 600 Mbps to 3.125 Gbps.
- Uses a reference clock between 50 MHz and 622.08 MHz.
- Programmable bandwidth settings: low, medium, and high.
- Programmable rx_locktorefclk (forces the receiver PLL to lock to reference clock) and rx locktodata (forces the receiver PLL to lock to data).

8B/10B Decoder

The 8B/10B decoder is used in all supported functional modes. The 8B/10B decoder takes in 10-bit data from the rate matcher and decodes it into 8-bit data + 1-bit control identifier, thereby restoring the original transmitted data at the receiver. The 8B/10B decoder indicates whether the received 10-bit character is a data or control code through the rx_ctrldetect port. If the received 10-bit code group is a control character (Kx.y), the rx_ctrldetect signal is driven high and if it is a data character (Dx.y), the rx_ctrldetect signal is driven low.

Figure 2–17 shows a 10-bit code group decoded to an 8-bit data and a 1-bit control indicator.

Figure 2–17. 10-Bit to 8-Bit Conversion


If the received 10-bit code is not a part of valid Dx.y or Kx.y code groups, the 8B/10B decoder block asserts an error flag on the rx_errdetect port. If the received 10-bit code is detected with incorrect running disparity, the 8B/10B decoder block asserts an error flag on the rx_disperr and rx_errdetect ports. The error flag signals (rx_errdetect and rx_disperr) have the same data path delay from the 8B/10B decoder to the PLD-transceiver interface as the bad code group.

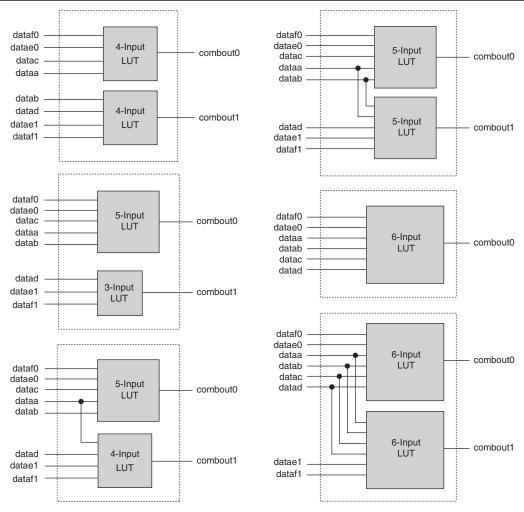
Receiver State Machine

The receiver state machine operates in Basic, GIGE, PCI Express (PIPE), and XAUI modes. In GIGE mode, the receiver state machine replaces invalid code groups with K30.7. In XAUI mode, the receiver state machine translates the XAUI PCS code group to the XAUI XGMII code group.

Figure 2–27 shows the LAB control signal generation circuit.

Figure 2–27. LAB-Wide Control Signals

Adaptive Logic Modules


The basic building block of logic in the Arria GX architecture is the ALM. The ALM provides advanced features with efficient logic utilization. Each ALM contains a variety of look-up table (LUT)-based resources that can be divided between two adaptive LUTs (ALUTs). With up to eight inputs to the two ALUTs, one ALM can implement various combinations of two functions. This adaptability allows the ALM to be completely backward-compatible with four-input LUT architectures. One ALM can also implement any function of up to six inputs and certain seven-input functions.

In addition to the adaptive LUT-based resources, each ALM contains two programmable registers, two dedicated full adders, a carry chain, a shared arithmetic chain, and a register chain. Through these dedicated resources, the ALM can efficiently implement various arithmetic functions and shift registers. Each ALM drives all types of interconnects: local, row, column, carry chain, shared arithmetic chain, register chain, and direct link interconnects. Figure 2–28 shows a high-level block diagram of the Arria GX ALM while Figure 2–29 shows a detailed view of all the connections in the ALM.

Normal Mode

Normal mode is suitable for general logic applications and combinational functions. In this mode, up to eight data inputs from the LAB local interconnect are inputs to the combinational logic. Normal mode allows two functions to be implemented in one Arria GX ALM, or an ALM to implement a single function of up to six inputs. The ALM can support certain combinations of completely independent functions and various combinations of functions which have common inputs. Figure 2–30 shows the supported LUT combinations in normal mode.

Figure 2–30. ALM in Normal Mode (*Note 1*)

Note to Figure 2-30:

(1) Combinations of functions with less inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, and so on.

Normal mode provides complete backward compatibility with four-input LUT architectures. Two independent functions of four inputs or less can be implemented in one Arria GX ALM. In addition, a five-input function and an independent three-input function can be implemented without sharing inputs.

Unit Interface Block	Input Signals	Output Signals
L4	datain_a[5642]	dataout_a[5948]
LT	byteena_a[54]	
L5	datain_a[7157]	dataout_a[7160]
LO	byteena_a[76]	
R0	datain_b[140]	dataout_b[110]
110	byteena_b[10]	
R1	datain_b[2915]	dataout_b[2312]
111	byteena_b[32]	
	datain_b[3530]	dataout_b[3524]
	addressb[40]	
	addr_ena_b	
R2	clock_b	
	clocken_b	
	renwe_b	
	aclr_b	
R3	addressb[155]	dataout_b[4736]
TIO .	datain_b[4136]	
R4	datain_b[5642]	dataout_b[5948]
117	byteena_b[54]	
R5	datain_b[7157]	dataout_b[7160]
ΠU	byteena_b[76]	

Table 2-12. M-RAM Row Interface Unit Signals (Part 2 of 2)

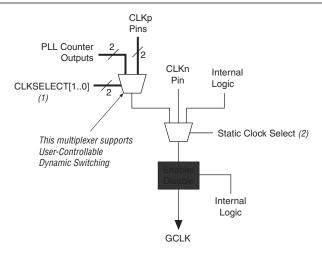
For more information about TriMatrix memory, refer to the *TriMatrix Embedded Memory Blocks in Arria GX Devices* chapter.

Digital Signal Processing Block

The most commonly used DSP functions are finite impulse response (FIR) filters, complex FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct cosine transform (DCT) functions, and correlators. All of these use the multiplier as the fundamental building block. Additionally, some applications need specialized operations such as multiply-add and multiply-accumulate operations. Arria GX devices provide DSP blocks to meet the arithmetic requirements of these functions.

Each Arria GX device has two to four columns of DSP blocks to efficiently implement DSP functions faster than ALM-based implementations. Each DSP block can be configured to support up to:

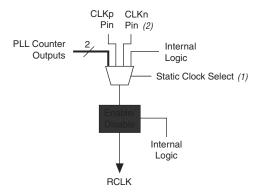
- Eight 9×9 -bit multipliers
- Four 18 × 18-bit multipliers
- One 36 × 36-bit multiplier


Clock Control Block

Each GCLK, RCLK, and PLL external clock output has its own clock control block. The control block has two functions:

- Clock source selection (dynamic selection for global clocks)
- Clock power-down (dynamic clock enable or disable)

Figure 2–58 through Figure 2–60 show the clock control block for the global clock, regional clock, and PLL external clock output, respectively.


Figure 2-58. Global Clock Control Blocks

Notes to Figure 2-58:

- (1) These clock select signals can be dynamically controlled through internal logic when the device is operating in user mode.
- (2) These clock select signals can only be set through a configuration file (SRAM Object File [.sof] or Programmer Object File [.pof]) and cannot be dynamically controlled during user mode operation.

Figure 2-59. Regional Clock Control Blocks

Notes to Figure 2-59:

- (1) These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode operation.
- (2) Only the CLKn pins on the top and bottom of the device feed to regional clock select.

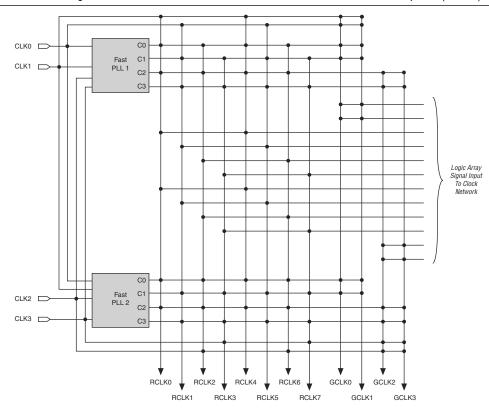


Figure 2–62. Global and Regional Clock Connections from Center Clock Pins and Fast PLL Outputs (Note 1)

Note to Figure 2-62:

(1) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A dedicated clock input pin or other PLL must drive the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.

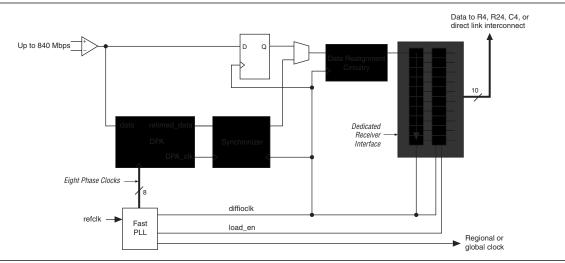
Table 2–19. Global and Regional Clock Connections from Left Side Clock Pins and Fast PLL Outputs (Part 2 of 2)

Left Side Global & Regional Clock Network Connectivity	CLKO	CLK1	CLK2	СЦКЗ	RCLKO	RCLK1	RCLK2	RCLK3	RCLK4	RCLK5	RCLK6	RCLK7
RCLKDRV7	_	_	_	_	_	_	_	✓	_	_	_	✓
PLL 1 Outputs		•										
c0	✓	✓	_	_	✓	_	✓	_	✓	_	✓	_
c1	✓	✓	_		_	✓		✓		✓	_	✓
c2	_	_	✓	✓	✓	_	✓	_	✓	_	✓	_
c3	_	_	✓	✓	_	✓	_	✓	_	✓	_	✓
PLL 2 Outputs												
c0	✓	✓	_	_	_	✓	_	✓	_	✓	_	✓
c1	✓	✓	_	_	✓	_	✓	_	✓	_	✓	_
c2	_	_	✓	~	_	✓	_	✓	_	✓	_	✓
c3	_	_	✓	✓	✓	_	✓	_	✓	_	✓	_
PLL 7 Outputs	•				•					•		
c0	_	_	✓	✓	_	✓	_	✓	_	_	_	_
c1	_	_	✓	✓	✓	_	✓	_	_	_	_	_
c2	✓	✓	_		_	✓	_	✓	_	_	_	_
c3	✓	✓	_	_	✓	_	✓	_	_	_	_	_
PLL 8 Outputs	•											
c0	_	_	✓	✓	_	_		_	✓	_	✓	_
c1	_	_	✓	✓	_	_	_	_	_	✓	_	✓
c2	✓	✓	_	_	_	_	_	_	✓	_	✓	_
c3	✓	✓	_	_	_	_	_	_	_	✓	_	✓

For the specific sustaining current driven through this resistor and overdrive current used to identify the next-driven input level, refer to the *DC & Switching Characteristics* chapter.

Programmable Pull-Up Resistor

Each Arria GX device I/O pin provides an optional programmable pull-up resistor during user mode. If you enable this feature for an I/O pin, the pull-up resistor (typically 25 k Ω) holds the output to the V_{CCIO} level of the output pin's bank.


Advanced I/O Standard Support

Arria GX device IOEs support the following I/O standards:

- 3.3-V LVTTL/LVCMOS
- 2.5-V LVTTL/LVCMOS
- 1.8-V LVTTL/LVCMOS
- 1.5-V LVCMOS
- 3.3-V PCI
- 3.3-V PCI-X mode 1
- LVDS
- LVPECL (on input and output clocks only)
- Differential 1.5-V HSTL class I and II
- Differential 1.8-V HSTL class I and II
- Differential SSTL-18 class I and II
- Differential SSTL-2 class I and II
- 1.2-V HSTL class I and II
- 1.5-V HSTL class I and II
- 1.8-V HSTL class I and II
- SSTL-2 class I and II
- SSTL-18 class I and II

Figure 2-80 shows the block diagram of the Arria GX receiver channel.

Figure 2–80. GX Receiver Channel

An external pin or global or regional clock can drive the fast PLLs, which can output up to three clocks: two multiplied high-speed clocks to drive the SERDES block and/or external pin, and a low-speed clock to drive the logic array. In addition, eight phase-shifted clocks from the V_{CO} can feed to the DPA circuitry.

For more information about fast PLL, refer to the *PLLs in Arria GX Devices* chapter.

The eight phase-shifted clocks from the fast PLL feed to the DPA block. The DPA block selects the closest phase to the center of the serial data eye to sample the incoming data. This allows the source-synchronous circuitry to capture incoming data correctly regardless of channel-to-channel or clock-to-channel skew. The DPA block locks to a phase closest to the serial data phase. The phase-aligned DPA clock is used to write the data into the synchronizer.

The synchronizer sits between the DPA block and the data realignment and SERDES circuitry. Because every channel using the DPA block can have a different phase selected to sample the data, the synchronizer is needed to synchronize the data to the high-speed clock domain of the data realignment and the SERDES circuitry.

For high-speed source-synchronous interfaces such as POS-PHY 4 and the Parallel RapidIO standard, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols because the source synchronous clock does not provide a byte or word boundary as the clock is one half the data rate, not one eighth. The Arria GX device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for user-controlled byte boundary shifting. This simplifies designs while saving ALM resources. You can use an ALM-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

 V_{CCSEL} is sampled during power up. Therefore, the V_{CCSEL} setting cannot change on-the-fly or during a reconfiguration. The V_{CCSEL} input buffer is powered by V_{CCINT} and must be hard-wired to V_{CCPD} or ground. A logic high V_{CCSEL} connection selects the 1.8-V/1.5-V input buffer, and a logic low selects the 3.3-V/2.5-V input buffer. V_{CCSEL} should be set to comply with the logic levels driven out of the configuration device or MAX II microprocessor.

If the design must support configuration input voltages of 3.3 V/2.5 V, set $V_{\rm CCSEL}$ to a logic low. You can set the $V_{\rm CCIO}$ voltage of the I/O bank that contains the configuration inputs to any supported voltage. If the design must support configuration input voltages of 1.8 V/1.5 V, set $V_{\rm CCSEL}$ to a logic high and the $V_{\rm CCIO}$ of the bank that contains the configuration inputs to 1.8 V/1.5 V.

For more information about multi-volt support, including information about using TDO and nCEO in multi-volt systems, refer to the *Arria GX Architecture* chapter.

Configuration Schemes

You can load the configuration data for an Arria GX device with one of five configuration schemes (refer to Table 3–4), chosen on the basis of the target application. You can use a configuration device, intelligent controller, or the JTAG port to configure an Arria GX device. A configuration device can automatically configure an Arria GX device at system power up.

You can configure multiple Arria GX devices in any of the five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. Arria GX FPGAs offer the following:

- Configuration data decompression to reduce configuration file storage
- Remote system upgrades for remotely updating Arria GX designs

Table 3–4 lists which configuration features can be used in each configuration scheme.

For more information about configuration schemes in Arria GX devices, refer to the *Configuring Arria GX Devices* chapter.

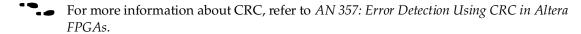
Table 3-4. Arria GX Configuration Features (Part 1 of 2)

Configuration Scheme	Configuration Method	Decompression	Remote System Upgrade
FPP	MAX II device or microprocessor and flash device	√ (1)	~
	Enhanced configuration device	√ (2)	✓
AS	Serial configuration device	✓	√ (3)
D0	MAX II device or microprocessor and flash device	✓	~
PS	Enhanced configuration device	✓	✓
	Download cable (4)	✓	_
PPA	MAX II device or microprocessor and flash device		~

For more information about Arria GX PLLs, refer to the *PLLs in Arria GX Devices* chapter.

Automated Single Event Upset (SEU) Detection

Arria GX devices offer on-chip circuitry for automated checking of single event upset (SEU) detection. Some applications that require the device to operate error free at high elevations or in close proximity to Earth's North or South Pole requires periodic checks to ensure continued data integrity. The error detection cyclic redundancy check (CRC) feature controlled by the **Device and Pin Options** dialog box in the Quartus II software uses a 32-bit CRC circuit to ensure data reliability and is one of the best options for mitigating SEU.


You can implement the error detection CRC feature with existing circuitry in Arria GX devices, eliminating the need for external logic. Arria GX devices compute CRC during configuration. The Arria GX device checks the computed-CRC against an automatically computed CRC during normal operation. The CRC_ERROR pin reports a soft error when configuration SRAM data is corrupted, triggering device reconfiguration.

Custom-Built Circuitry

Dedicated circuitry is built into Arria GX devices to automatically perform error detection. This circuitry constantly checks for errors in the configuration SRAM cells while the device is in user mode. You can monitor one external pin for the error and use it to trigger a reconfiguration cycle. You can select the desired time between checks by adjusting a built-in clock divider.

Software Interface

Beginning with version 7.1 of the Quartus II software, you can turn on the automated error detection CRC feature in the **Device and Pin Options** dialog box. This dialog box allows you to enable the feature and set the internal frequency of the CRC between 400 kHz to 50 MHz. This controls the rate that the CRC circuitry verifies the internal configuration SRAM bits in the Arria GX FPGA.

Table 4–7. Arria GX Transceiver Block AC Specification (Note 1), (2), (3) (Part 2 of 4)

Description	Condition	-6 Speed Grade Commercial & Industrial	Units
	REFCLK = 156.25 MHz		
Deterministic litter at 0.105 Ohns	Pattern = CJPAT	0.17	
Deterministic jitter at 3.125 Gbps	V _{OD} = 1200 mV	0.17	UI
	No Pre-emphasis		
XAUI Receiver Jitter Tolerance (4)			
	Pattern = CJPAT		
Total jitter	No Equalization	> 0.65	UI
	DC Gain = 3 dB		
	Pattern = CJPAT		
Deterministic jitter	No Equalization	> 0.37	UI
	DC Gain = 3 dB		
Peak-to-peak jitter	Jitter frequency = 22.1 KHz	> 8.5	UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz	> 0.1	UI
Peak-to-peak jitter	Jitter frequency = 20 MHz	> 0.1	UI
PCI Express (PIPE) Transmitter Jitter Ge	eneration (5)	•	
Total Transmitter Jitter Generation	Compliance Pattern; V _{OD} = 800 mV; Pre-emphasis = 49%	< 0.25	UI p-p
PCI Express (PIPE) Receiver Jitter Toler	ance (5)		
Total Receiver Jitter Tolerance	Compliance Pattern; DC Gain = 3 db	> 0.6	UI p-p
Gigabit Ethernet (GIGE) Transmitter Jitt	er Generation (7)		
Total Transmitter Litter Congretion (T.I.)	CRPAT: V _{OD} = 800 mV;	< 0.279	lll n n
Total Transmitter Jitter Generation (TJ)	Pre-emphasis = 0%	< 0.279	UI p-p
Deterministic Transmitter Jitter	CRPAT; V _{OD} = 800 mV;	< 0.14	UI p-p
Generation (DJ)	Pre-emphasis = 0%	< 0.14	от р-р
Gigabit Ethernet (GIGE) Receiver Jitter	Tolerance		
Total Jitter Tolerance	CJPAT Compliance Pattern;	> 0.66	UI p-p
Total officer Tolerance	DC Gain = 0 dB	> 0.00	ОГРР
Deterministic Jitter Tolerance	CJPAT Compliance Pattern;	> 0.4	UI p-p
Deterministic ditter folerance	DC Gain = 0 dB	> 0.4	огрр
Serial RapidlO (1.25 Gbps, 2.5 Gbps, an	d 3.125 Gbps) Transmitter Jitter Generation (6)		
	CJPAT Compliance Pattern;		
Total Transmitter Jitter Generation (TJ)	V _{OD} = 800 mV;	< 0.35	UI p-p
	Pre-emphasis = 0%		
Determination Transcription 199	CJPAT Compliance Pattern;		
Deterministic Transmitter Jitter Generation (DJ)	V _{OD} = 800 mV;	< 0.17	UI p-p
Soliviation (DO)	Pre-emphasis = 0%		

Table 4–12. Typical Pre-Emphasis (First Post-Tap), (Note 1)

V _{cc} HTX = 1.5 V		First Post Tap Pre-Emphasis Level								
V _{op} Setting (mV)	1	1 2 3 4 5								
1000	_	_	23%	36%	49%					
1200	_	_	17%	25%	35%					

Note to Table 4-12:

(1) Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.

Table 4–13. Typical Pre-Emphasis (First Post-Tap), (Note 1)

V _{cc} HTX = 1.2 V		First Post Tap Pre-Emphasis Level								
V _{op} Setting (mV)	1	1 2 3 4								
		1	TX Term = 100 9	2						
320	24%	61%	114%	_	_					
480	_	31%	55%	86%	121%					
640	_	20%	35%	54%	72%					
800	_	_	23%	36%	49%					
960	_	_	18%	25%	35%					

Note to Table 4-13:

(1) Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.

DC Electrical Characteristics

Table 4–14 lists the Arria GX device family DC electrical characteristics.

Table 4–14. Arria GX Device DC Operating Conditions (Part 1 of 2) (Note 1)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Units
I _I	Input pin leakage current	$V_I = V_{CCIOmax}$ to 0 V (2)	All	-10	_	10	μΑ
I _{oz}	Tri-stated I/O pin leakage current	$V_0 = V_{CCIOmax}$ to 0 V (2)	All	-10	_	10	μА
	V	V _I = ground, no load, no	EP1AGX20/35	_	0.30	(3)	Α
I _{CCINTO}	V _{CCINT} supply current (standby)	toggling inputs	EP1AGX50/60	_	0.50	(3)	Α
		T _J = 25 °C	EP1AGX90		0.62	(3)	Α
		V _I = ground, no load, no	EP1AGX20/35	_	2.7	(3)	mA
I _{CCPD0}	V _{CCPD} supply current	toggling inputs	EP1AGX50/60	_	3.6	(3)	mA
001 20	(standby)	$ \begin{array}{l} T_J = 25 ^{\circ}C, \\ V_{CCPD} = 3.3V \end{array} $	EP1AGX90	_	4.3	(3)	mA
	V	V _I = ground, no load, no	EP1AGX20/35	_	4.0	(3)	mA
I _{CC100}	V _{ccio} supply current (standby)	toggling inputs	EP1AGX50/60	_	4.0	(3)	mA
	(Stariosy)	T _J = 25 °C	EP1AGX90		4.0	(3)	mA

 Table 4–67.
 EP1AGX60 Column Pins Input Timing Parameters (Part 3 of 3)

I/O Standard	Clock Parameter		Fast (Corner	–6 Speed	Units
i/O Stanuaru	GIUCK	raiailietei	Industrial	Commercial	Grade	UIIILS
	GCLK	t _{su}	0.980	0.980	2.062	ns
LVDS		t _H	-0.875	-0.875	-1.785	ns
LVD3	GCLK PLL	t _{su}	2.557	2.557	5.512	ns
		t _H	-2.452	-2.452	-5.235	ns

Table 4–68 lists I/O timing specifications.

 Table 4–68.
 EP1AGX60 Row Pins Output Timing Parameters (Part 1 of 2)

I/O Otamband	Drive	Olerele	Parameter	Fast	Model	–6 Speed	11
I/O Standard	Strength	Clock	raiailletei	Industrial	Commercial	Grade	Units
2 2 1/ 11/77	4 mA	GCLK	t _{co}	3.052	3.052	7.142	ns
3.3-V LVTTL		GCLK PLL	t _{co}	1.490	1.490	3.719	ns
0.0.1/11/771	8 mA	GCLK	t _{co}	2.924	2.924	6.502	ns
3.3-V LVTTL		GCLK PLL	t _{co}	1.362	1.362	3.079	ns
2 2 1/11/77	12 mA	GCLK	t _{co}	2.868	2.868	6.465	ns
3.3-V LVTTL		GCLK PLL	t _{co}	1.306	1.306	3.042	ns
3.3-V	4 mA	GCLK	t _{co}	2.924	2.924	6.502	ns
LVCMOS		GCLK PLL	t _{co}	1.362	1.362	3.079	ns
3.3-V	8 mA	GCLK	t _{co}	2.818	2.818	6.196	ns
LVCMOS		GCLK PLL	t _{co}	1.256	1.256	2.773	ns
2.5 V	4 mA	GCLK	t _{co}	2.907	2.907	6.476	ns
2.3 V		GCLK PLL	t _{co}	1.345	1.345	3.053	ns
2.5 V	8 mA	GCLK	t _{co}	2.804	2.804	6.218	ns
2.3 V		GCLK PLL	t _{co}	1.242	1.242	2.795	ns
2.5 V	12 mA	GCLK	t _{co}	2.785	2.785	6.104	ns
		GCLK PLL	t _{co}	1.223	1.223	2.681	ns
1.8 V	2 mA	GCLK	t _{co}	2.991	2.991	7.521	ns
		GCLK PLL	t _{co}	1.419	1.419	4.078	ns
1.8 V	4 mA	GCLK	t _{co}	2.980	2.980	6.742	ns
		GCLK PLL	t _{co}	1.408	1.408	3.299	ns
1.8 V	6 mA	GCLK	t _{co}	2.869	2.869	6.441	ns
		GCLK PLL	t _{co}	1.297	1.297	2.998	ns
1.8 V	8 mA	GCLK	t _{co}	2.838	2.838	6.327	ns
		GCLK PLL	t _{co}	1.266	1.266	2.884	ns
1.5 V	2 mA	GCLK	t _{co}	2.951	2.951	7.020	ns
1.5 V		GCLK PLL	t _{co}	1.379	1.379	3.577	ns
1 5 V	4 mA	GCLK	t _{co}	2.844	2.844	6.419	ns
1.5 V		GCLK PLL	t _{co}	1.272	1.272	2.976	ns

Table 4-69. EP1AGX60 Column Pins Output Timing Parameters (Part 2 of 4)

I/O Ctondord	Drive	Oleak	Dovometer	Fast	Corner	–6 Speed	Units
I/O Standard	Strength	Clock	Parameter	Industrial	Commercial	Grade	Units
1.0.1/	6 mA	GCLK	t _{co}	2.822	2.822	6.577	ns
1.8 V		GCLK PLL	t _{co}	1.252	1.252	3.142	ns
101/	8 mA	GCLK	t _{co}	2.824	2.824	6.486	ns
1.8 V		GCLK PLL	t _{co}	1.254	1.254	3.051	ns
101/	10 mA	GCLK	t _{co}	2.778	2.778	6.409	ns
1.8 V		GCLK PLL	t _{co}	1.208	1.208	2.974	ns
1.8 V	12 mA	GCLK	t _{co}	2.779	2.779	6.352	ns
		GCLK PLL	t _{co}	1.209	1.209	2.917	ns
1.5 V	2 mA	GCLK	t _{co}	2.873	2.873	7.145	ns
		GCLK PLL	t _{co}	1.303	1.303	3.710	ns
1.5 V	4 mA	GCLK	t _{co}	2.809	2.809	6.576	ns
		GCLK PLL	t _{co}	1.239	1.239	3.141	ns
1.5 V	6 mA	GCLK	t _{co}	2.812	2.812	6.458	ns
		GCLK PLL	t _{co}	1.242	1.242	3.023	ns
1.5 V	8 mA	GCLK	t _{co}	2.771	2.771	6.405	ns
		GCLK PLL	t _{co}	1.201	1.201	2.970	ns
SSTL-2	8 mA	GCLK	t _{co}	2.757	2.757	6.184	ns
CLASS I		GCLK PLL	t _{co}	1.184	1.184	2.744	ns
SSTL-2	12 mA	GCLK	t _{co}	2.740	2.740	6.134	ns
CLASS I		GCLK PLL	t _{co}	1.167	1.167	2.694	ns
SSTL-2	16 mA	GCLK	t _{co}	2.718	2.718	6.061	ns
CLASS II		GCLK PLL	t _{co}	1.145	1.145	2.621	ns
SSTL-2	20 mA	GCLK	t _{co}	2.719	2.719	6.048	ns
CLASS II		GCLK PLL	t _{co}	1.146	1.146	2.608	ns
SSTL-2	24 mA	GCLK	t _{co}	2.715	2.715	6.046	ns
CLASS II		GCLK PLL	t _{co}	1.142	1.142	2.606	ns
SSTL-18	4 mA	GCLK	t _{co}	2.753	2.753	6.155	ns
CLASS I		GCLK PLL	t _{co}	1.183	1.183	2.720	ns
SSTL-18	6 mA	GCLK	t _{co}	2.758	2.758	6.116	ns
CLASS I		GCLK PLL	t _{co}	1.185	1.185	2.676	ns
SSTL-18	8 mA	GCLK	t _{co}	2.737	2.737	6.097	ns
CLASS I		GCLK PLL	t _{co}	1.164	1.164	2.657	ns
SSTL-18	10 mA	GCLK	t _{co}	2.742	2.742	6.095	ns
CLASS I		GCLK PLL	t _{co}	1.169	1.169	2.655	ns
SSTL-18	12 mA	GCLK	t _{co}	2.736	2.736	6.081	ns
CLASS I		GCLK PLL	t _{co}	1.163	1.163	2.641	ns
SSTL-18	8 mA	GCLK	t _{co}	2.725	2.725	6.047	ns
CLASS II		GCLK PLL	t _{co}	1.152	1.152	2.607	ns

Table 4–74. EP1AGX90 Row Pins Output Timing Parameters (Part 3 of 3)

I/O Standard	Drive	Clock	Parameter Fast Model		Fast Model –6 Speed		Units		
i/O Stanuaru	Strength	GIUCK	Parameter	Industrial Commercial		I PARA			UIIILS
1.5-V HSTL	6 mA	GCLK	t_{co}	2.857	2.857	6.106	ns		
CLASS I		GCLK PLL	t _{co}	0.779	0.779	1.950	ns		
1.5-V HSTL	8 mA	GCLK	t _{co}	2.842	2.842	6.098	ns		
CLASS I		GCLK PLL	t _{co}	0.764	0.764	1.942	ns		
LVDS	_	GCLK	t _{co}	2.898	2.898	6.265	ns		
LVDO		GCLK PLL	t _{co}	0.831	0.831	2.129	ns		

Table 4–75 lists I/O timing specifications.

Table 4-75. EP1AGX90 Column Pins Output Timing Parameters (Part 1 of 4)

I/O Standard	Drive Strength	Clock	Parameter	Fast	Corner	–6 Speed Grade	Units
				Industrial	Commercial		
3.3-V LVTTL	4 mA	GCLK	t _{co}	3.141	3.141	7.164	ns
		GCLK PLL	t _{co}	1.077	1.077	3.029	ns
3.3-V LVTTL	8 mA	GCLK	t _{co}	2.996	2.996	6.792	ns
		GCLK PLL	t _{co}	0.932	0.932	2.657	ns
3.3-V LVTTL	12 mA	GCLK	t _{co}	2.929	2.929	6.792	ns
		GCLK PLL	t _{co}	0.865	0.865	2.657	ns
3.3-V LVTTL	16 mA	GCLK	t _{co}	2.903	2.903	6.623	ns
		GCLK PLL	t _{co}	0.839	0.839	2.488	ns
3.3-V LVTTL	20 mA	GCLK	t _{co}	2.881	2.881	6.498	ns
		GCLK PLL	t _{co}	0.817	0.817	2.363	ns
3.3-V LVTTL	24 mA	GCLK	t _{co}	2.874	2.874	6.500	ns
		GCLK PLL	t _{co}	0.810	0.810	2.365	ns
3.3-V LVCMOS	4 mA	GCLK	t _{co}	2.996	2.996	6.792	ns
		GCLK PLL	t _{co}	0.932	0.932	2.657	ns
3.3-V LVCMOS	8 mA	GCLK	t _{co}	2.904	2.904	6.497	ns
		GCLK PLL	t _{co}	0.840	0.840	2.362	ns
3.3-V LVCMOS	12 mA	GCLK	t _{co}	2.876	2.876	6.419	ns
		GCLK PLL	t _{co}	0.812	0.812	2.284	ns
3.3-V LVCMOS	16 mA	GCLK	t _{co}	2.883	2.883	6.387	ns
		GCLK PLL	t _{co}	0.819	0.819	2.252	ns
3.3-V LVCMOS	20 mA	GCLK	t _{co}	2.870	2.870	6.369	ns
		GCLK PLL	t _{co}	0.806	0.806	2.234	ns
3.3-V LVCMOS	24 mA	GCLK	t _{co}	2.859	2.859	6.347	ns
		GCLK PLL	t _{co}	0.795	0.795	2.212	ns
2.5 V	4 mA	GCLK	t _{co}	2.958	2.958	6.824	ns
		GCLK PLL	t _{co}	0.894	0.894	2.689	ns

I/O Standards **Drive Strength** -6 Speed Grade Units 1.5 V SERIES_50_OHMS 373 MHz SSTL-2 CLASS I SERIES_50_OHMS 467 MHz SSTL-2 CLASS II 467 MHz SERIES_25_OHMS SSTL-18 CLASS I SERIES_50_OHMS 327 MHz SSTL-18 CLASS II SERIES 25 OHMS 420 MHz 1.8-V HSTL CLASS I SERIES_50_OHMS 561 MHz 1.8-V HSTL CLASS II SERIES_25_OHMS 420 MHz 1.5-V HSTL CLASS I SERIES 50 OHMS 467 MHz 1.2-V HSTL MHz SERIES_50_OHMS 233 **DIFFERENTIAL SSTL-2** 467 MHz SERIES_50_OHMS MHz **DIFFERENTIAL 2.5-V** SERIES 25 OHMS 467 SSTL CLASS II **DIFFERENTIAL 1.8-V** MHz SERIES_50_OHMS 327 SSTL CLASS I **DIFFERENTIAL 1.8-V** SERIES 25 OHMS MHz 420 SSTL CLASS II **DIFFERENTIAL 1.8-V** SERIES_50_OHMS 561 MHz HSTL CLASS I **DIFFERENTIAL 1.8-V** SERIES_25_0HMS 420 MHz HSTL CLASS II **DIFFERENTIAL 1.5-V** SERIES_50_OHMS 467 MHz HSTL CLASS I **DIFFERENTIAL 1.2-V** SERIES 50 OHMS 233 MHz HSTL

Table 4–107. Arria GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 4 of 4)

Duty Cycle Distortion

Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from its ideal position. The ideal position is when both the clock high time (CLKH) and the clock low time (CLKL) equal half of the clock period (T), as shown in Figure 4–10. DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as D1 for the falling edge A and D2 for the falling edge B (refer to Figure 4–10). The maximum DCD for a clock is the larger value of D1 and D2.

Table 4-115. High-Speed I/O Specifications (Part 2 of 2) Note (1), (2)

Sumbol	Conditions			-6 Speed Grade			Units
Symbol				Min	Тур	Max	UIIILS
	Standard	Training Pattern	Transition Density		_	_	
	SPI-4	000000000011 11111111	10%	256	_	_	Number of
DPA lock time	Parallel Rapid	00001111	25%	256	_	_	repetitions
	1/0	10010000	50%	256	_	_	
	Miscellaneous	10101010	100%	256	_	_	
		01010101	_	256	_	_	

Notes to Table 4-115:

- (1) When J = 4 to 10, the SERDES block is used.
- (2) When J = 1 or 2, the SERDES block is bypassed.
- (3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: $150 \le \text{input clock frequency} \times \text{W} \le 1,040$.
- (4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource (global, regional, or local) used. The I/O differential buffer and input register do not have a minimum toggle rate.

About this Handbook

This handbook provides comprehensive information about the Altera® Arria® GX family of devices.

How to Contact Altera

For the most up-to-date information about Altera products, see the following table.

Contact (Note 1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
	Email	custrain@altera.com
Product literature	Email	www.altera.com/literature
Non-technical support (General)	Email	nacomp@altera.com
(Software Licensing)	Email	authorization@altera.com

Note:

Typographic Conventions

The following table shows the typographic conventions that this document uses.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Indicates command names and dialog box titles. For example, Save As dialog box.
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, dialog box options, software utility names, and other GUI labels. For example, \qdesigns directory, d: drive, and chiptrip.gdf file.
Italic Type with Initial Capital Letters	Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.
Italic type	Indicates variables. For example, $n + 1$.
	Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file>
Initial Capital Letters	Indicates keyboard keys and menu names. For example, Delete key and the Options menu.
"Subheading Title"	Quotation marks indicate references to sections within a document and titles of Quartus II Help topics. For example, "Typographic Conventions."

⁽¹⁾ You can also contact your local Altera sales office or sales representative.