
E·XFL

Altera - EP1AGX35DF780C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1676
Number of Logic Elements/Cells	33520
Total RAM Bits	1348416
Number of I/O	341
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1agx35df780c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Arria GX Architecture

Transceivers

Arria[®] GX devices incorporate up to 12 high-speed serial transceiver channels that build on the success of the Stratix[®] II GX device family. Arria GX transceivers are structured into full-duplex (transmitter and receiver) four-channel groups called transceiver blocks located on the right side of the device. You can configure the transceiver blocks to support the following serial connectivity protocols (functional modes):

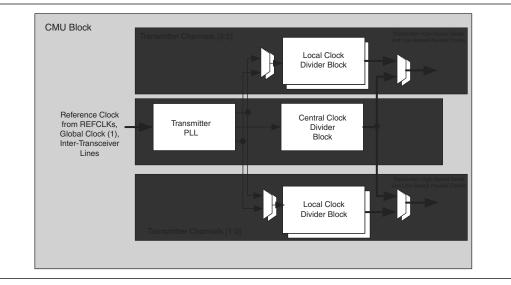
- PCI Express (PIPE)
- Gigabit Ethernet (GIGE)
- XAUI
- Basic (600 Mbps to 3.125 Gbps)
- SDI (HD, 3G)
- Serial RapidIO (1.25 Gbps, 2.5 Gbps, 3.125 Gbps)

Transceivers within each block are independent and have their own set of dividers. Therefore, each transceiver can operate at different frequencies. Each block can select from two reference clocks to provide two clock domains that each transceiver can select from.

Table 2–1 lists the number of transceiver channels for each member of the Arria GX family.

Device	Number of Transceiver Channels
EP1AGX20C	4
EP1AGX35C	4
EP1AGX35D	8
EP1AGX50C	4
EP1AGX50D	8
EP1AGX60C	4
EP1AGX60D	8
EP1AGX60E	12
EP1AGX90E	12

Table 2–1. Arria GX Transceiver Channels



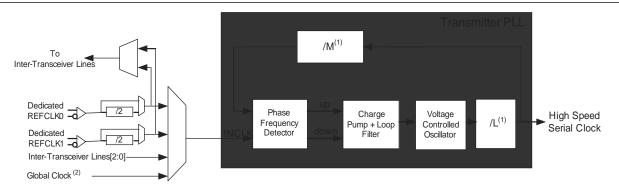

Figure 2–3 shows the block diagram of the clock multiplier unit.

Figure 2–3. Clock Multiplier Unit

The transmitter PLL multiplies the input reference clock to generate the high-speed serial clock required to support the intended protocol. It implements a half-rate voltage controlled oscillator (VCO) that generates a clock at half the frequency of the serial data rate for which it is configured.

Figure 2–4 shows the block diagram of the transmitter PLL.

Notes to Figure 2-4:

You only need to select the protocol and the available input reference clock frequency in the ALTGXB MegaWizard Plug-In Manager. Based on your selections, the MegaWizard Plug-In Manager automatically selects the necessary /M and /L dividers (clock multiplication factors).

(2) The global clock line must be driven from an input pin only.

The reference clock input to the transmitter PLL can be derived from:

- One of two available dedicated reference clock input pins (REFCLK0 or REFCLK1) of the associated transceiver block
- PLD global clock network (must be driven directly from an input clock pin and cannot be driven by user logic or enhanced PLL)

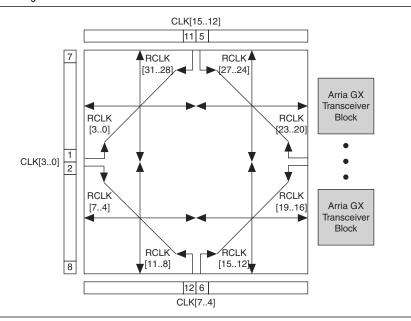


Figure 2–24. Regional Clock Resources in Arria GX Devices

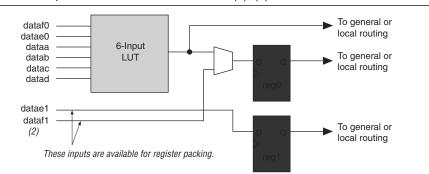
For the RCLK or GCLK network to route into the transceiver, a local route input output (LRIO) channel is required. Each LRIO clock region has up to eight clock paths and each transceiver block has a maximum of eight clock paths for connecting with LRIO clocks. These resources are limited and determine the number of clocks that can be used between the PLD and transceiver blocks. Table 2–7 and Table 2–8 list the number of LRIO resources available for Arria GX devices with different numbers of transceiver blocks.

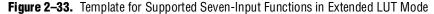
Table 2–7. Available Clocking Connections for Transceivers in EP1AGX35D, EP1AGX50D, and EP1AGX60D

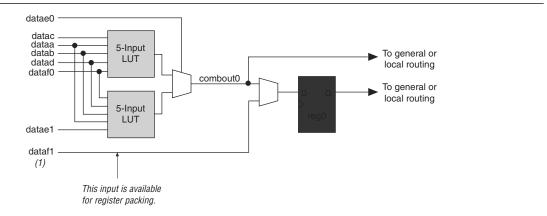
	Clock R	esource	Transceiver		
Source	Global Clock	Regional Clock	Bank13 8 Clock I/O	Bank14 8 Clock I/O	
Region0 8 LRIO clock	\checkmark	RCLK 20-27	\checkmark	—	
Region1 8 LRIO clock	\checkmark	RCLK 12-19		\checkmark	

Table 2–8. Ava	ailable Clocking	Connections for	Transceivers in EF	P1AGX60E and EP1AGX90E
----------------	------------------	-----------------	--------------------	------------------------

	Clock R	esource	Transceiver			
Source	Global Clock Regional Clock		Bank13 8 Clock I/O	Bank14 8 Clock I/O	Bank15 8 Clock I/O	
Region0 8 LRIO clock	✓	RCLK 20-27	\checkmark	—	—	
Region1 8 LRIO clock	~	RCLK 20-27	\checkmark	\checkmark	_	
Region2 8 LRIO clock	~	RCLK 12-19	—	\checkmark	\checkmark	
Region3 8 LRIO clock	~	RCLK 12-19	_	—	\checkmark	




Figure 2–32. Six-Input Function in Normal Mode Note (1), (2)


Notes to Figure 2-32:

- (1) If datael and datafl are used as inputs to the six-input function, datae0 and dataf0 are available for register packing.
- (2) The dataf1 input is available for register packing only if the six-input function is un-registered.

Extended LUT Mode

Extended LUT mode is used to implement a specific set of seven-input functions. The set must be a 2-to-1 multiplexer fed by two arbitrary five-input functions sharing four inputs. Figure 2–33 shows the template of supported seven-input functions utilizing extended LUT mode. In this mode, if the seven-input function is unregistered, the unused eighth input is available for register packing. Functions that fit into the template shown in Figure 2–33 occur naturally in designs. These functions often appear in designs as "if-else" statements in Verilog HDL or VHDL code.

Note to Figure 2-33:

(1) If the seven-input function is unregistered, the unused eighth input is available for register packing. The second register, reg1, is not available.

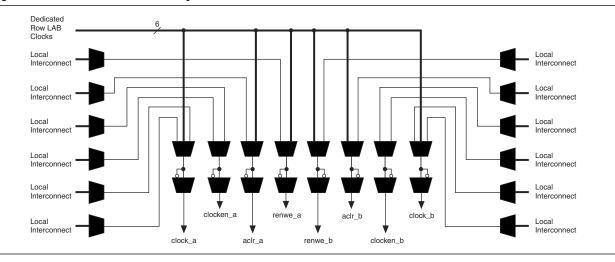


Figure 2-46. M-RAM Block Control Signals

The R4, R24, C4, and direct link interconnects from adjacent LABs on either the right or left side drive the M-RAM block local interconnect. Up to 16 direct link input connections to the M-RAM block are possible from the left adjacent LABs and another 16 are possible from the right adjacent LAB. M-RAM block outputs can also connect to left and right LABs through direct link interconnect. Figure 2–47 shows an example floorplan for the EP1AGX90 device and the location of the M-RAM interfaces. Figure 2–48 and Figure 2–49 show the interface between the M-RAM block and the logic array.

PLLs and Clock Networks

Arria GX devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution.

Global and Hierarchical Clocking

Arria GX devices provide 16 dedicated global clock networks and 32 regional clock networks (eight per device quadrant). These clocks are organized into a hierarchical clock structure that allows for up to 24 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains in Arria GX devices.

There are 12 dedicated clock pins (CLK [15..12] and CLK [7..0]) to drive either the global or regional clock networks. Four clock pins drive each side of the device except the right side, as shown in Figure 2–54 and Figure 2–55. Internal logic and enhanced and fast PLL outputs can also drive the global and regional clock networks. Each global and regional clock has a clock control block, which controls the selection of the clock source and dynamically enables or disables the clock to reduce power consumption. Table 2–16 lists the global and regional clock features.

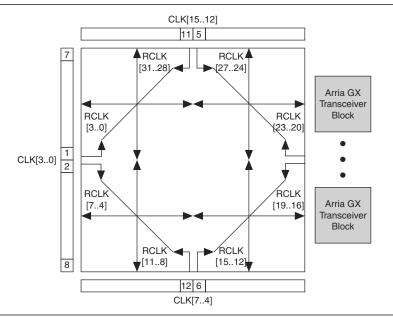
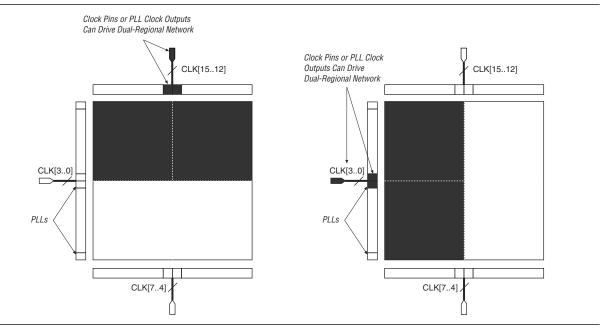

Feature **Global Clocks Regional Clocks** Number per device 16 32 Number available per 8 16 quadrant Clock pins, PLL outputs, core routings, Clock pins, PLL outputs, core routings, Sources inter-transceiver clocks inter-transceiver clocks Dynamic clock source selection \checkmark Dynamic enable/disable \checkmark

Table 2–16. Global and Regional Clock Features

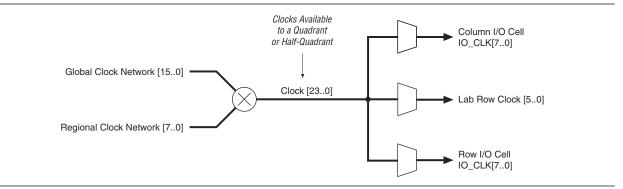
Global Clock Network

These clocks drive throughout the entire device, feeding all device quadrants. GCLK networks can be used as clock sources for all resources in the device IOEs, ALMs, DSP blocks, and all memory blocks. These resources can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin. The global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–54 shows the 12 dedicated CLK pins driving global clock networks.


Figure 2–55. Regional Clocks

Dual-Regional Clock Network

A single source (CLK pin or PLL output) can generate a dual-RCLK by driving two RCLK network lines in adjacent quadrants (one from each quadrant), which allows logic that spans multiple quadrants to use the same low skew clock. The routing of this clock signal on an entire side has approximately the same speed but slightly higher clock skew when compared with a clock signal that drives a single quadrant. Internal logic-array routing can also drive a dual-regional clock. Clock pins and enhanced PLL outputs on the top and bottom can drive horizontal dual-regional clocks. Clock pins and fast PLL outputs on the left and right can drive vertical dual-regional clocks, as shown in Figure 2–56. Corner PLLs cannot drive dual-regional clocks.


Figure 2-56. Dual-Regional Clocks

Combined Resources

Within each quadrant, there are 24 distinct dedicated clocking resources consisting of 16 global clock lines and eight regional clock lines. Multiplexers are used with these clocks to form buses to drive LAB row clocks, column IOE clocks, or row IOE clocks. Another multiplexer is used at the LAB level to select three of the six row clocks to feed the ALM registers in the LAB (refer to Figure 2–57).

You can use the Quartus II software to control whether a clock input pin drives either a GCLK, RCLK, or dual-RCLK network. The Quartus II software automatically selects the clocking resources if not specified.


Table 2-18. Arria GX PLL Features (Part 2 of 2)

Feature	Enhanced PLL	Fast PLL
Number of feedback clock inputs	One single-ended or differential (7), (8)	_

Notes to Table 2-18:

- (1) For enhanced PLLs, *m*, *n* range from 1 to 256 and post-scale counters range from 1 to 512 with 50% duty cycle.
- (2) For fast PLLs, *m*, and post-scale counters range from 1 to 32. The *n* counter ranges from 1 to 4.
- (3) The smallest phase shift is determined by the voltage controlled oscillator (V_{CO}) period divided by 8.
- (4) For degree increments, Arria GX devices can shift all output frequencies in increments of at least 45. Smaller degree increments are possible depending on the frequency and divide parameters.
- (5) Arria GX fast PLLs only support manual clock switchover.
- (6) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data channel to generate txclkout.
- (7) If the feedback input is used, you lose one (or two, if f_{BIN} is differential) external clock output pin.
- (8) Every Arria GX device has at least two enhanced PLLs with one single-ended or differential external feedback input per PLL.

Figure 2–61 shows a top-level diagram of the Arria GX device and PLL floorplan.

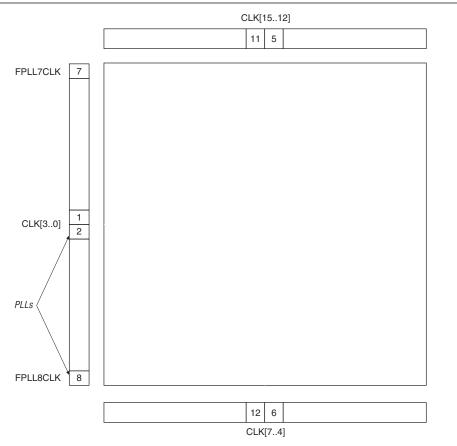
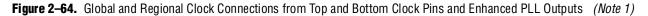
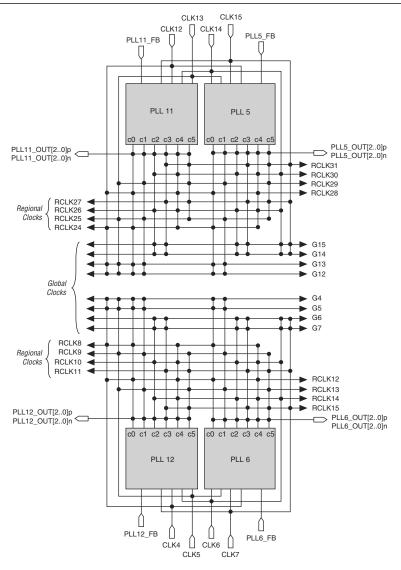




Figure 2–62 and Figure 2–63 shows global and regional clocking from the fast PLL outputs and side clock pins. The connections to the global and regional clocks from the fast PLL outputs, internal drivers, and CLK pins on the left side of the device are shown in Table 2–19.

Figure 2–64 shows the global and regional clocking from enhanced PLL outputs and top and bottom CLK pins.

Note to Figure 2-64:

(1) If the design uses the feedback input, you might lose one (or two if FBIN is differential) external clock output pin.

The connections to the global and regional clocks from the top clock pins and enhanced PLL outputs are shown in Table 2–20. The connections to the clocks from the bottom clock pins are shown in Table 2–21.

-6 Speed Grade Commercial and Industrial Symbol / Description Conditions Units Min Typ Max **Transmitter PLL** VCO frequency range 500 1562.5 MHz BW = Low____ 3 ____ Bandwidth at 3.125 Gbps BW = Med5 MHz BW = High9 1 BW = Low2 Bandwidth at 2.5 Gbps BW = Med MHz 4 BW = HighTX PLL lock time from gxb_powerdown 100 us de-assertion (9), (14) PCS Interface speed per mode 25 156.25 MHz **Digital Reset Pulse Width** Minimum is 2 parallel clock cycles

Table 4-6. Arria GX Transceiver Block AC Specification (Part 3 of 3)

Notes to Table 4-6:

- (1) Spread spectrum clocking is allowed only in PCI Express (PIPE) mode if the upstream transmitter and the receiver share the same clock source.
- (2) The reference clock DC coupling option is only available in PCI Express (PIPE) mode for the HCSL I/O standard.
- (3) The fixedclk is used in PIPE mode receiver detect circuitry.
- (4) The device cannot tolerate prolonged operation at this absolute maximum.
- (5) The rate matcher supports only up to \pm 300 PPM for PIPE mode and \pm 100 PPM for GIGE mode.
- (6) This parameter is measured by embedding the run length data in a PRBS sequence.
- (7) Signal detect threshold detector circuitry is available only in PCI Express (PIPE mode).
- (8) Time taken for rx_pll_locked to go high from rx_analogreset deassertion. Refer to Figure 4-1.
- (9) For lock times specific to the protocols, refer to protocol characterization documents.
- (10) Time for which the CDR needs to stay in LTR mode after rx_pll_locked is asserted and before rx_locktodata is asserted in manual mode. Refer to Figure 4-1.
- (11) Time taken to recover valid data from GXB after the rx_locktodata signal is asserted in manual mode. Measurement results are based on PRBS31, for native data rates only. Refer to Figure 4–1.
- (12) Time taken to recover valid data from GXB after the rx_freqlocked signal goes high in automatic mode. Measurement results are based on PRBS31, for native data rates only. Refer to Figure 4-2.
- (13) This is applicable only to PCI Express (PIPE) $\times 4$ and XAUI $\times 4$ mode.
- (14) Time taken to lock TX $\ \mbox{pll from gxb_powerdown}$ deassertion.
- (15) The 1.2 V RX VICM settings is intended for DC-coupled LVDS links.

Figure 4–1 shows the lock time parameters in manual mode. Figure 4–2 shows the lock time parameters in automatic mode.

 \square LTD = Lock to data

LTR = Lock to reference clock

Table 4–9. PCS Latency (Part 2 of 2)(Part 2 of 2)

				_	Rece	eiver PCS	Latenc	y			
Functional Mode	Configuration	Word Aligner	Deskew FIFO	Rate Matcher (3)	8B/10B Decoder	Receiver State Machine	Byte Deserializer	Byte Order	Receiver Phase Comp FIFO	Receiver PIPE	Sum (2)
	8/10-bit channel width; with Rate Matcher	4–5		11–13	1		1	1	1–2	1	19–23
BASIC Single	8/10-bit channel width; without Rate Matcher	4–5	_	_	1	_	1	1	1–2	_	8–10
Width	16/20-bit channel width; with Rate Matcher	2–2.5	_	5.5–6.5	0.5	_	1	1	1–2	_	11–14
	16/20-bit channel width; without Rate Matcher	2–2.5		_	0.5		1	1	1–2		6–7

Notes to Table 4-9:

(1) The latency numbers are with respect to the PLD-transceiver interface clock cycles.

- (2) The total latency number is rounded off in the Sum column.
- (3) The rate matcher latency shown is the steady state latency. Actual latency may vary depending on the skip ordered set gap allowed by the protocol, actual PPM difference between the reference clocks, and so forth.

Table 4–10 through Table 4–13 show the typical V_{OD} for data rates from 600 Mbps to 3.125 Gbps. The specification is for measurement at the package ball.

Table 4–10. Typical V_{\text{OD}} Setting, TX Term = 100 Ω

V _{cc} HTX = 1.5 V	V _{op} Setting (mV)				
	400	600	800	1000	1200
V _{oD} Typical (mV)	430	625	830	1020	1200

Table 4–11. Typical V_{OD} Setting, TX Term = 100 Ω

V _{cc} HTX = 1.2 V	V _{op} Setting (mV)				
	320	480	640	800	960
V _{od} Typical (mV)	344	500	664	816	960

Table 4–12. Typical Pre-Emphasis (First Post-Tap), (Note 1)

V_{cc} HTX = 1.5 V		First Post Tap Pre-Emphasis Level					
V _{op} Setting (mV)	1 2 3 4 5						
	TX Term = 100 Ω						
400	24%	62%	112%	184%	—		
600	—	31%	56%	86%	122%		
800	_	20%	35%	53%	73%		

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{OH}	High-level output voltage	I _{он} = -13.4 mA <i>(1)</i>	$V_{CCI0} - 0.28$	—	—	V
V _{OL}	Low-level output voltage	I _{oL} = 13.4 mA <i>(1)</i>		—	0.28	V

Table 4-27. SSTL-18 Class II Specifications

Note to Table 4-27:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the *Arria GX Architecture* chapter.

Table 4-28.	SSTL-18 Class I & II Differential Specifications
-------------	--

Symbol	Parameter	Minimum	Typical	Maximum	Units
V _{CCIO}	Output supply voltage	1.71	1.8	1.89	V
$V_{SWING}(DC)$	DC differential input voltage	0.25	_	—	V
V _x (AC)	AC differential input cross point voltage	(V _{CCI0} /2) - 0.175		(V _{CCI0} /2) + 0.175	V
V_{SWING} (AC)	AC differential input voltage	0.5	—	—	V
V _{ISO}	Input clock signal offset voltage	—	0.5 V _{CCIO}		V
ΔV_{ISO}	Input clock signal offset voltage variation	—	200	_	mV
V _{ox} (AC)	AC differential cross point voltage	$(V_{CCI0}/2) - 0.125$	_	(V _{CCIO} /2) + 0.125	V

Table 4–29. SSTL-2 Class I Specifications

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	Output supply voltage	—	2.375	2.5	2.625	V
V _{TT}	Termination voltage	—	$V_{REF} - 0.04$	V _{REF}	V _{REF} + 0.04	V
V _{ref}	Reference voltage	_	1.188	1.25	1.313	V
V _{IH} (DC)	High-level DC input voltage		V _{REF} + 0.18	_	3.0	V
V _{IL} (DC)	Low-level DC input voltage	—	-0.3	—	V _{REF} - 0.18	V
V _⊪ (АС)	High-level AC input voltage	—	V _{REF} + 0.35	—	_	V
V _{IL} (AC)	Low-level AC input voltage	_	_	_	V _{REF} - 0.35	V
V _{OH}	High-level output voltage	$I_{OH} = -8.1 \text{ mA}$ (1)	V _π + 0.57	_		V
V _{ol}	Low-level output voltage	I _{0L} = 8.1 mA (1)			V _{TT} - 0.57	V

Note to Table 4-29:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX Architecture chapter.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V _{CCIO}	Output supply voltage	—	2.375	2.5	2.625	V
V _{TT}	Termination voltage		V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	V
V _{REF}	Reference voltage		1.188	1.25	1.313	V
V _{IH} (DC)	High-level DC input voltage		V _{REF} + 0.18		V _{CCI0} + 0.3	V

Table 4-30. SSTL-2 Class II Specifications (Part 1 of 2)

I/O Timing Measurement Methodology

Different I/O standards require different baseline loading techniques for reporting timing delays. Altera characterizes timing delays with the required termination for each I/O standard and with 0 pF (except for PCI and PCI-X which use 10 pF) loading and the timing is specified up to the output pin of the FPGA device. The Quartus II software calculates the I/O timing for each I/O standard with a default baseline loading as specified by the I/O standards.

The following measurements are made during device characterization. Altera measures clock-to-output delays (t_{CO}) at worst-case process, minimum voltage, and maximum temperature (PVT) for default loading conditions shown in Table 4–44.

Use the following equations to calculate clock pin to output pin timing for Arria GX devices:

Equation 4-1.

 t_{CO} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay

 t_{xz}/t_{zx} from clock pin to I/O pin = delay from clock pad to I/O output register + IOE output register clock-to-output delay + delay from output register to output pin + I/O output delay + output enable pin delay

Simulation using IBIS models is required to determine the delays on the PCB traces in addition to the output pin delay timing reported by the Quartus II software and the timing model in the device handbook.

- 1. Simulate the output driver of choice into the generalized test setup, using values from Table 4–44.
- 2. Record the time to V_{MEAS} .
- 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load.
- 4. Record the time to V_{MEAS} .
- 5. Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Standard Output Adder delays to yield the actual worst-case propagation delay (clock-to-output) of the PCB trace.

The Quartus II software reports the timing with the conditions shown in Table 4–44 using the above equation. Figure 4–7 shows the model of the circuit that is represented by the output timing of the Quartus II software.

1/0 Ctondord	Drive	Oleek	Devemeter	Fast	Model	–6 Speed	Unite
I/O Standard	Strength	Clock	Parameter	Industrial	Commercial	Grade	Units
0 E V	0	GCLK	t _{co}	2.656	2.656	5.775	ns
2.5 V	8 mA	GCLK PLL	t _{co}	1.237	1.237	2.703	ns
2.5 V	12 mA	GCLK	t _{co}	2.637	2.637	5.661	ns
2.5 V	IZ IIIA	GCLK PLL	t _{co}	1.218	1.218	2.589	ns
1.8 V	2 mA	GCLK	t _{co}	2.829	2.829	7.052	ns
1.0 V	2 IIIA	GCLK PLL	t _{co}	1.410	1.410	3.980	ns
1.8 V	4 mA	GCLK	t _{co}	2.818	2.818	6.273	ns
1.0 V	4 IIIA	GCLK PLL	t _{co}	1.399	1.399	3.201	ns
1.8 V	6 mA	GCLK	t _{co}	2.707	2.707	5.972	ns
1.0 V	UIIA	GCLK PLL	t _{co}	1.288	1.288	2.900	ns
1.8 V	8 mA	GCLK	t _{co}	2.676	2.676	5.858	ns
1.0 V	UIIIA	GCLK PLL	t _{co}	1.257	1.257	2.786	ns
1.5 V	2 mA	GCLK	t _{co}	2.789	2.789	6.551	ns
1.5 V	ZIIIA	GCLK PLL	t _{co}	1.370	1.370	3.479	ns
1.5 V	4 mA	GCLK	t _{co}	2.682	2.682	5.950	ns
1.5 V	4 IIIA	GCLK PLL	t _{co}	1.263	1.263	2.878	ns
SSTL-2	9 m /	GCLK	t _{co}	2.626	2.626	5.614	ns
CLASS I	8 mA	GCLK PLL	t _{co}	1.207	1.207	2.542	ns
SSTL-2	10	GCLK	t _{co}	2.602	2.602	5.538	ns
CLASS I	12 mA	GCLK PLL	t _{co}	1.183	1.183	2.466	ns
SSTL-2	16 mA	GCLK	t _{co}	2.568	2.568	5.407	ns
CLASS II	TO IIIA	GCLK PLL	t _{co}	1.149	1.149	2.335	ns
SSTL-18	4 mA	GCLK	t _{co}	2.614	2.614	5.556	ns
CLASS I	4 IIIA	GCLK PLL	t _{co}	1.195	1.195	2.484	ns
SSTL-18	6 mA	GCLK	t _{co}	2.618	2.618	5.485	ns
CLASS I	0 IIIA	GCLK PLL	t _{co}	1.199	1.199	2.413	ns
SSTL-18	8 mA	GCLK	t _{co}	2.594	2.594	5.468	ns
CLASS I	UIIIA	GCLK PLL	t _{co}	1.175	1.175	2.396	ns
SSTL-18	10 mA	GCLK	t _{co}	2.597	2.597	5.447	ns
CLASS I	TO IIIA	GCLK PLL	t _{co}	1.178	1.178	2.375	ns
1.8-V HSTL	4 mA	GCLK	t _{co}	2.595	2.595	5.466	ns
CLASS I	4 IIIA	GCLK PLL	t _{co}	1.176	1.176	2.394	ns
1.8-V HSTL	6 mA	GCLK	t _{co}	2.598	2.598	5.430	ns
CLASS I	UIIIA	GCLK PLL	t _{co}	1.179	1.179	2.358	ns
1.8-V HSTL	0 m ^	GCLK	t _{co}	2.580	2.580	5.426	ns
CLASS I	8 mA	GCLK PLL	t _{co}	1.161	1.161	2.354	ns
1.8-V HSTL	10 m^	GCLK	t _{co}	2.584	2.584	5.415	ns
CLASS I	10 mA	GCLK PLL	t _{co}	1.165	1.165	2.343	ns

Table 4–56. EP1AGX35 Row Pins Output Timing Parameters (Part 2 of 3)

1/0 Otenderd	Drive	Oleak	Devenueter	Fast	Corner	–6 Speed	Unite
I/O Standard	Strength	Clock	Parameter	Industrial	Commercial	Grade	Units
SSTL-2	24 mA	GCLK	t _{co}	2.587	2.587	5.624	ns
CLASS II		GCLK PLL	t _{co}	1.142	1.142	2.512	ns
SSTL-18	4 mA	GCLK	t _{co}	2.626	2.626	5.733	ns
CLASS I		GCLK PLL	t _{co}	1.184	1.184	2.627	ns
SSTL-18	6 mA	GCLK	t _{co}	2.630	2.630	5.694	ns
CLASS I		GCLK PLL	t _{co}	1.185	1.185	2.582	ns
SSTL-18	8 mA	GCLK	t _{co}	2.609	2.609	5.675	ns
CLASS I		GCLK PLL	t _{co}	1.164	1.164	2.563	ns
SSTL-18	10 mA	GCLK	t _{co}	2.614	2.614	5.673	ns
CLASS I		GCLK PLL	t _{co}	1.169	1.169	2.561	ns
SSTL-18	12 mA	GCLK	t _{co}	2.608	2.608	5.659	ns
CLASS I		GCLK PLL	t _{co}	1.163	1.163	2.547	ns
SSTL-18	8 mA	GCLK	t _{co}	2.597	2.597	5.625	ns
CLASS II		GCLK PLL	t _{co}	1.152	1.152	2.513	ns
SSTL-18	16 mA	GCLK	t _{co}	2.609	2.609	5.603	ns
CLASS II		GCLK PLL	t _{co}	1.164	1.164	2.491	ns
SSTL-18	18 mA	GCLK	t _{co}	2.605	2.605	5.611	ns
CLASS II	CLASS II	GCLK PLL	t _{co}	1.160	1.160	2.499	ns
SSTL-18	20 mA	GCLK	t _{co}	2.605	2.605	5.609	ns
CLASS II		GCLK PLL	t _{co}	1.160	1.160	2.497	ns
1.8-V HSTL	4 mA	GCLK	t _{co}	2.629	2.629	5.664	ns
CLASS I		GCLK PLL	t _{co}	1.187	1.187	2.558	ns
1.8-V HSTL	6 mA	GCLK	t _{co}	2.634	2.634	5.649	ns
CLASS I		GCLK PLL	t _{co}	1.189	1.189	2.537	ns
1.8-V HSTL	8 mA	GCLK	t _{co}	2.612	2.612	5.638	ns
CLASS I		GCLK PLL	t _{co}	1.167	1.167	2.526	ns
1.8-V HSTL	10 mA	GCLK	t _{co}	2.616	2.616	5.644	ns
CLASS I		GCLK PLL	t _{co}	1.171	1.171	2.532	ns
1.8-V HSTL	12 mA	GCLK	t _{co}	2.608	2.608	5.637	ns
CLASS I		GCLK PLL	t _{co}	1.163	1.163	2.525	ns
1.8-V HSTL	16 mA	GCLK	t _{co}	2.591	2.591	5.401	ns
CLASS II		GCLK PLL	t _{co}	1.146	1.146	2.289	ns
1.8-V HSTL	18 mA	GCLK	t _{co}	2.593	2.593	5.412	ns
CLASS II		GCLK PLL	t _{co}	1.148	1.148	2.300	ns
1.8-V HSTL	20 mA	GCLK	t _{co}	2.593	2.593	5.421	ns
CLASS II		GCLK PLL	t _{co}	1.148	1.148	2.309	ns
1.5-V HSTL	4 mA	GCLK	t _{co}	2.629	2.629	5.663	ns
CLASS I		GCLK PLL	t _{co}	1.187	1.187	2.557	ns

 Table 4–57.
 EP1AGX35 Column Pins Output Timing Parameters (Part 3 of 4)

I/O Standard	Drive	Clock	Doromotor	Fast	Model	–6 Speed	Units
iyo ətanınai U	Strength	GIUCK	Parameter	Industrial	Commercial	Grade	
1.8-V HSTL	4 mA	GCLK	t _{co}	2.606	2.606	5.480	ns
CLASS I		GCLK PLL	t _{co}	1.178	1.178	2.396	ns
1.8-V HSTL	6 mA	GCLK	t _{co}	2.608	2.608	5.442	ns
CLASS I		GCLK PLL	t _{co}	1.181	1.181	2.360	ns
1.8-V HSTL	8 mA	GCLK	t _{co}	2.590	2.590	5.438	ns
CLASS I		GCLK PLL	t _{co}	1.163	1.163	2.356	ns
1.8-V HSTL	10 mA	GCLK	t _{co}	2.594	2.594	5.427	ns
CLASS I		GCLK PLL	t _{co}	1.167	1.167	2.345	ns
1.8-V HSTL	12 mA	GCLK	t _{co}	2.585	2.585	5.426	ns
CLASS I		GCLK PLL	t _{co}	1.158	1.158	2.344	ns
1.5-V HSTL	4 mA	GCLK	t _{co}	2.605	2.605	5.457	ns
CLASS I		GCLK PLL	t _{co}	1.177	1.177	2.373	ns
1.5-V HSTL	6 mA	GCLK	t _{co}	2.607	2.607	5.441	ns
CLASS I		GCLK PLL	t _{co}	1.180	1.180	2.359	ns
1.5-V HSTL	8 mA	GCLK	t _{co}	2.592	2.592	5.433	ns
CLASS I		GCLK PLL	t _{co}	1.165	1.165	2.351	ns
LVDS	—	GCLK	t _{co}	2.654	2.654	5.613	ns
		GCLK PLL	t _{co}	1.226	1.226	2.530	ns

Table 4-62.	EP1AGX50 Row F	Pins Output Timi	ng Parameters	(Part 3 of 3)

Table 4–63 lists I/O timing specifications.

Table 4-63.	EF	P1AGX50 Colum	n Pins Output T	iming Paramete	rs (Part 1 of 4)

I/O Standard	Drive	Clock	Parameter	Fast Corner		–6 Speed	Unite
Strength	Strength		Industrial	Commercial	Grade	Units	
3.3-V LVTTL	4 mA	GCLK	t _{co}	2.948	2.948	6.608	ns
		GCLK PLL	t _{co}	1.476	1.476	3.447	ns
3.3-V LVTTL	8 mA	GCLK	t _{co}	2.797	2.797	6.203	ns
		GCLK PLL	t _{co}	1.331	1.331	3.075	ns
3.3-V LVTTL	12 mA	GCLK	t _{co}	2.722	2.722	6.204	ns
		GCLK PLL	t _{co}	1.264	1.264	3.075	ns
3.3-V LVTTL	16 mA	GCLK	t _{co}	2.694	2.694	6.024	ns
		GCLK PLL	t _{co}	1.238	1.238	2.906	ns
3.3-V LVTTL	20 mA	GCLK	t _{co}	2.670	2.670	5.896	ns
		GCLK PLL	t _{co}	1.216	1.216	2.781	ns
3.3-V LVTTL	24 mA	GCLK	t _{co}	2.660	2.660	5.895	ns
		GCLK PLL	t _{co}	1.209	1.209	2.783	ns
3.3-V	4 mA	GCLK	t _{co}	2.797	2.797	6.203	ns
LVCMOS		GCLK PLL	t _{co}	1.331	1.331	3.075	ns

Table 4–69 lists I/O timing specifications.

Table 4-69.	EP1AGX60 Column Pins Output Tir	ning Parameters (Part 1 of 4)

1/0 Standard	Drive	Oleek	Devemeter	Fast	Corner	–6 Speed	Unite
I/O Standard	Strength	Clock	Parameter	Industrial	Commercial	Grade	Units
	4 mA	GCLK	t _{co}	3.036	3.036	6.963	ns
3.3-V LVTTL		GCLK PLL	t _{co}	1.466	1.466	3.528	ns
	8 mA	GCLK	t _{co}	2.891	2.891	6.591	ns
3.3-V LVTTL		GCLK PLL	t _{co}	1.321	1.321	3.156	ns
3.3-V LVTTL	12 mA	GCLK	t _{co}	2.824	2.824	6.591	ns
3.3-V LVIIL		GCLK PLL	t _{co}	1.254	1.254	3.156	ns
3.3-V LVTTL	16 mA	GCLK	t _{co}	2.798	2.798	6.422	ns
3.3-V LVIIL		GCLK PLL	t _{co}	1.228	1.228	2.987	ns
3.3-V LVTTL	20 mA	GCLK	t _{co}	2.776	2.776	6.297	ns
3.3-V LVIIL		GCLK PLL	t _{co}	1.206	1.206	2.862	ns
3.3-V LVTTL	24 mA	GCLK	t _{co}	2.769	2.769	6.299	ns
3.3-V LVIIL		GCLK PLL	t _{co}	1.199	1.199	2.864	ns
3.3-V	4 mA	GCLK	t _{co}	2.891	2.891	6.591	ns
LVCMOS		GCLK PLL	t _{co}	1.321	1.321	3.156	ns
3.3-V	8 mA	GCLK	t _{co}	2.799	2.799	6.296	ns
LVCMOS		GCLK PLL	t _{co}	1.229	1.229	2.861	ns
3.3-V	12 mA	GCLK	t _{co}	2.771	2.771	6.218	ns
LVCMOS		GCLK PLL	t _{co}	1.201	1.201	2.783	ns
3.3-V	16 mA	GCLK	t _{co}	2.778	2.778	6.186	ns
LVCMOS		GCLK PLL	t _{co}	1.208	1.208	2.751	ns
3.3-V	20 mA	GCLK	t _{co}	2.765	2.765	6.168	ns
LVCMOS		GCLK PLL	t _{co}	1.195	1.195	2.733	ns
3.3-V	24 mA	GCLK	t _{co}	2.754	2.754	6.146	ns
LVCMOS		GCLK PLL	t _{co}	1.184	1.184	2.711	ns
2.5 V	4 mA	GCLK	t _{co}	2.853	2.853	6.623	ns
		GCLK PLL	t _{co}	1.283	1.283	3.188	ns
2.5 V	8 mA	GCLK	t _{co}	2.801	2.801	6.361	ns
		GCLK PLL	t _{co}	1.231	1.231	2.926	ns
2.5 V	12 mA	GCLK	t _{co}	2.780	2.780	6.244	ns
		GCLK PLL	t _{co}	1.210	1.210	2.809	ns
2.5 V	16 mA	GCLK	t _{co}	2.762	2.762	6.170	ns
		GCLK PLL	t _{co}	1.192	1.192	2.735	ns
1.8 V	2 mA	GCLK	t _{co}	2.893	2.893	7.615	ns
		GCLK PLL	t _{co}	1.323	1.323	4.180	ns
1.8 V	4 mA	GCLK	t _{co}	2.898	2.898	6.841	ns
		GCLK PLL	t _{co}	1.328	1.328	3.406	ns

I/O Standards	Drive Strength	–6 Speed Grade	Units
	4 mA	215	MHz
	8 mA	411	MHz
3.3-V LVCMOS	12 mA	626	MHz
3.3-V LV0IVIU3	16 mA	819	MHz
	20 mA	874	MHz
	24 mA	934	MHz
	4 mA	168	MHz
2.5 V	8 mA	355	MHz
2.3 V	12 mA	514	MHz
	16 mA	766	MHz
	2 mA	97	MHz
	4 mA	215	MHz
1.8 V	6 mA	336	MHz
1.0 V	8 mA	486	MHz
	10 mA	706	MHz
	12 mA	925	MHz
	2 mA	168	MHz
1 5 1/	4 mA	303	MHz
1.5 V	6 mA	350	MHz
	8 mA	392	MHz
SSTL-2 CLASS I	8 mA	280	MHz
331L-2 ULA331	12 mA	327	MHz
	16 mA	280	MHz
SSTL-2 CLASS II	20 mA	327	MHz
	24 mA	327	MHz
	4 mA	140	MHz
	6 mA	186	MHz
SSTL-18 CLASS I	8 mA	280	MHz
	10 mA	373	MHz
	12 mA	373	MHz
	8 mA	140	MHz
SSTL-18 CLASS II	16 mA	327	MHz
	18 mA	373	MHz
	20 mA	420	MHz
	4 mA	280	MHz
	6 mA	420	MHz
1.8-V HSTL CLASS I	8 mA	561	MHz
	10 mA	561	MHz
	12 mA	607	MHz

 Table 4–105.
 Arria GX Maximum Output Toggle Rate for Column I/O Pins (Part 2 of 3)

Table 4-117.	Fast PLL Specifications	(Part 2 of 2)
--------------	-------------------------	---------------

Name	Description	Min	Тур	Max	Units
t _{areset_reconfig}	Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandone goes high.	500	_	_	ns

Note to Table 4–117:

(1) This is limited by the I/O f_{MAX} .

External Memory Interface Specifications

Table 4–118 through Table 4–122 list Arria GX device specifications for the dedicated circuitry used for interfacing with external memory devices.

Table 4–118. DLL Frequency Range Specifications

Frequency Mode	Frequency Range (MHz)
0	100 to 175
1	150 to 230
2	200 to 310

Table 4–119. DQS Jitter Specifications for DLL-Delayed Clock (tDQS_JITTER), (Note 1)

Number of DQS Delay Buffer Stages (2)	Commercial (ps)	Industrial (ps)
1	80	110
2	110	130
3	130	180
4	160	210

Notes to Table 4-119:

(1) Peak-to-peak period jitter on the phase-shifted DQS clock. For example, jitter on two delay stages under commercial conditions is 200 ps peak-to-peak or 100 ps.

(2) Delay stages used for requested DQS phase shift are reported in a project's Compilation Report in the Quartus II software.

Table 4-120.	DQS Phase-Shift Error S	pecifications for DLL-Dela	yed Clock (t _{DQS PSERB})
--------------	-------------------------	----------------------------	-------------------------------------

Number of DQS Delay Buffer Stages	–6 Speed Grade (ps)
1	35
2	70
3	105
4	140