E·XFL

Altera - EP1AGX35DF780I6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1676
Number of Logic Elements/Cells	33520
Total RAM Bits	1348416
Number of I/O	341
Number of Gates	
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1agx35df780i6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Once a pattern is detected and the data bus is aligned, the word boundary is locked. The two detection status signals (rx_syncstatus and rx_patterndetect) indicate that an alignment is complete.

Figure 2–15 is a block diagram of the word aligner.

Figure 2–15. Word Aligner

Control and Status Signals

The rx_enapatternalign signal is the FPGA control signal that enables word alignment in non-automatic modes. The rx_enapatternalign signal is not used in automatic modes (PCI Express [PIPE], XAUI, GIGE, and Serial RapidIO).

In manual alignment mode, after the rx_enapatternalign signal is activated, the rx_syncstatus signal goes high for one parallel clock cycle to indicate that the alignment pattern has been detected and the word boundary has been locked. If rx_enapatternalign is deactivated, the rx_syncstatus signal acts as a re-synchronization signal to signify that the alignment pattern has been detected but not locked on a different word boundary.

When using the synchronization state machine, the rx_syncstatus signal indicates the link status. If the rx_syncstatus signal is high, link synchronization is achieved. If the rx_syncstatus signal is low, link synchronization has not yet been achieved, or there were enough code group errors to lose synchronization.

•••

For more information about manual alignment modes, refer to the *Arria GX Device Handbook*.

The rx_patterndetect signal pulses high during a new alignment and whenever the alignment pattern occurs on the current word boundary.

Programmable Run Length Violation

The word aligner supports a programmable run length violation counter. Whenever the number of the continuous '0' (or '1') exceeds a user programmable value, the rx_rlv signal goes high for a minimum pulse width of two recovered clock cycles. The maximum run values supported are 128 UI for 8-bit serialization or 160 UI for 10-bit serialization.

Running Disparity Check

The running disparity error rx_disperr and running disparity value rx_runningdisp are sent along with aligned data from the 8B/10B decoder to the FPGA. You can ignore or act on the reported running disparity value and running disparity error signals.

• For more information about transceiver clocking in all supported functional modes, refer to the *Arria GX Transceiver Architecture* chapter.

PLD Clock Utilization by Transceiver Blocks

Arria GX devices have up to 16 global clock (GCLK) lines and 16 regional clock (RCLK) lines that are used to route the transceiver clocks. The following transceiver clocks use the available global and regional clock resources:

- pll_inclk (if driven from an FPGA input pin)
- rx_cruclk (if driven from an FPGA input pin)
- tx_clkout/coreclkout (CMU low-speed parallel clock forwarded to the PLD)
- Recovered clock from each channel (rx_clkout) in non-rate matcher mode
- Calibration clock (cal_blk_clk)
- Fixed clock (fixedclk used for receiver detect circuitry in PCI Express [PIPE] mode only)

Figure 2–23 and Figure 2–24 show the available GCLK and RCLK resources in Arria GX devices.

Logic Array Blocks

Each logic array block (LAB) consists of eight adaptive logic modules (ALMs), carry chains, shared arithmetic chains, LAB control signals, local interconnects, and register chain connection lines. The local interconnect transfers signals between ALMs in the same LAB. Register chain connections transfer the output of an ALM register to the adjacent ALM register in a LAB. The Quartus II Compiler places associated logic in a LAB or adjacent LABs, allowing the use of local, shared arithmetic chain, and register chain connections for performance and area efficiency. Table 2–9 lists Arria GX device resources. Figure 2–25 shows the Arria GX LAB structure.

Device	M512 RAM Columns/Blocks	M4K RAM Columns/Blocks	M-RAM Blocks	DSP Block Columns/Blocks
EP1AGX20	166	118	1	10
EP1AGX35	197	140	1	14
EP1AGX50	313	242	2	26
EP1AGX60	326	252	2	32
EP1AGX90	478	400	4	44

Table 2–9. Arria GX Device Resources

To pack two five-input functions into one ALM, the functions must have at least two common inputs. The common inputs are dataa and datab. The combination of a four-input function with a five-input function requires one common input (either dataa or datab).

To implement two six-input functions in one ALM, four inputs must be shared and the combinational function must be the same. For example, a 4 × 2 crossbar switch (two 4-to-1 multiplexers with common inputs and unique select lines) can be implemented in one ALM, as shown in Figure 2–31. The shared inputs are dataa, datab, datac, and datad, while the unique select lines are datae0 and dataf0 for function0, and datae1 and dataf1 for function1. This crossbar switch consumes four LUTs in a four-input LUT-based architecture.

In a sparsely used device, functions that can be placed into one ALM can be implemented in separate ALMs. The Quartus II Compiler spreads a design out to achieve the best possible performance. As a device begins to fill up, the Quartus II software automatically uses the full potential of the Arria GX ALM. The Quartus II Compiler automatically searches for functions of common inputs or completely independent functions to be placed into one ALM and to make efficient use of the device resources. In addition, you can manually control resource usage by setting location assignments. Any six-input function can be implemented utilizing inputs dataa, datab, datac, datad, and either datae0 and dataf0 or datae1 and dataf1. If datae0 and dataf0 are used, the output is driven to register0, and/or register0 is bypassed and the data drives out to the interconnect using the top set of output drivers (refer to Figure 2–32). If datae1 and dataf1 are used, the output drives to register1 and/or bypasses register1 and drives to the interconnect using the bottom set of output drivers. The Quartus II Compiler automatically selects the inputs to the LUT. Asynchronous load data for the register comes from the datae or dataf input of the ALM. ALMs in normal mode support register packing.

Figure 2–38. Register Chain within a LAB (Note 1)

<sup>Note to Figure 2–38:
(1) The combinational or adder logic can be used to implement an unrelated, unregistered function.</sup>

Clear and Preset Logic Control

LAB-wide signals control the logic for the register's clear and load/preset signals. The ALM directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOT gate push-back technique. Arria GX devices support simultaneous asynchronous load/preset and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one load/preset signal.

Figure 2–41. C4 Interconnect Connections (Note 1)

Note to Figure 2–41: (1) Each C4 interconnect can drive either up or down four rows.

C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, TriMatrix memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C16 interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly. All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (that is, TriMatrix memory and DSP blocks) connects to row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks, labclk[5..0].

M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO

You cannot use an initialization file to initialize the contents of a M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed.

Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M-RAM block registers (renwe, address, byte enable, datain, and output registers). You can bypass the output register. The six labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. ALMs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–46.

Figure 2–47. EP1AGX90 Device with M-RAM Interface Locations (Note 1)

Note to Figure 2-47:

(1) The device shown is an EP1AGX90 device. The number and position of M-RAM blocks vary in other devices.

Figure 2–62. Global and Regional Clock Connections from Center Clock Pins and Fast PLL Outputs (Note 1)

Note to Figure 2-62:

(1) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A dedicated clock input pin or other PLL must drive the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.

					-	_	~	~ ~		10	(0	
Left Side Global & Regional Clock Network Connectivity	CLKO	CLK1	CLK2	CLK3	RCLK(RCLK	RCLK	RCLK	RCLK/	RCLK	RCLK	RCLK
RCLKDRV7		—	—		—	—	—	\checkmark	—	—	—	\checkmark
PLL 1 Outputs												
c0	\checkmark	\checkmark	_	_	\checkmark	—	\checkmark	_	\checkmark	_	\checkmark	—
c1	\checkmark	\checkmark	_	_	_	\checkmark	_	\checkmark		\checkmark	—	\checkmark
c2	_	_	\checkmark	\checkmark	\checkmark	_	\checkmark	_	\checkmark	_	\checkmark	—
с3		—	\checkmark	\checkmark	—	\checkmark	—	\checkmark	—	\checkmark	_	
PLL 2 Outputs												
c0	\checkmark	\checkmark		_	—	\checkmark		\checkmark	—	\checkmark	_	
c1	>	\checkmark	_		\checkmark	—	\checkmark		\checkmark		\checkmark	—
c2	_	_	\checkmark	\checkmark	—	\checkmark	_	~	—	\checkmark	—	\checkmark
с3		—	\checkmark	\checkmark	\checkmark	—	\checkmark		\checkmark		\checkmark	—
PLL 7 Outputs												
c0		_	\checkmark	\checkmark	—	\checkmark		\checkmark	—	_	_	—
c1		_	\checkmark	\checkmark	\checkmark	_	\checkmark		—		_	—
c2	\checkmark	~	_	_	_	\checkmark	_	~	—	_	—	—
c3	\checkmark	~	_	_	~	_	\checkmark	_	—	_	—	—
PLL 8 Outputs		-	-				-					
c0			\checkmark	\checkmark	_	_			\checkmark		\checkmark	—
c1	_	—	\checkmark	\checkmark	—	—	—	—	—	\checkmark	—	~
c2	\checkmark	\checkmark	_	—	—	—	_	—	\checkmark	—	\checkmark	—
c3	\checkmark	\checkmark	_	_	—	—	_	_	—	\checkmark	—	\checkmark

Table 2–19. Global and Regional Clock Connections from Left Side Clock Pins and Fast PLL Outputs (Part 2 of 2)

Bottom Side Global and Regional Clock Network Connectivity	DLLCLK	CLK4	CLK5	CLK6	CLK7	RCLK8	RCLK9	RCLK10	RCLK11	RCLK12	RCLK13	RCLK14	RCLK15
Clock pins	1	1	1								1		
CLK4p	\checkmark	\checkmark	\checkmark	_	—	\checkmark	—	_	_	\checkmark	_	_	_
CLK5p	\checkmark	\checkmark	\checkmark		—	_	\checkmark	_		_	\checkmark	_	_
CLK6p	~	_	_	\checkmark	\checkmark	_	_	\checkmark		_	_	\checkmark	_
CLK7p	\checkmark			\checkmark	\checkmark		_		\checkmark	_	—		\checkmark
CLK4n	_	\checkmark	_		—	~	_	_		\checkmark			_
CLK5n			\checkmark	_	—		\checkmark	_	_	_	~	_	_
CLK6n	_		_	~	—		_	\checkmark		_		\checkmark	_
CLK7n	_		_		\checkmark		_	_	~	_			\checkmark
Drivers from internal logic	;												
GCLKDRV0	_	\checkmark	_	_	—	_	—	_	_	_		_	_
GCLKDRV1	_		~		_		_	_		_			_
GCLKDRV2	_	_	_	\checkmark	—	_	_	_		_		_	_
GCLKDRV3	_	_	_	_	\checkmark	_	_	_		_		_	_
RCLKDRV0	_	_	_	_	—	\checkmark		_		\checkmark		_	_
RCLKDRV1	_	_	_	_	—	_	\checkmark	_		_	~	_	_
RCLKDRV2	_	_	_	_	_	_	_	\checkmark		_	_	\checkmark	_
RCLKDRV3	_	_	_		_			_	\checkmark	_	_	_	\checkmark
RCLKDRV4	_	_	_		_	\checkmark	—	_		\checkmark	_	_	_
RCLKDRV5				_	—		\checkmark	_	_	_	\checkmark	_	_
RCLKDRV6	_		_		—		_	\checkmark		_		\checkmark	_
RCLKDRV7	_		_		_		_	_	~	_			\checkmark
Enhanced PLL 6 outputs													
cO	\checkmark	\checkmark	\checkmark	_	—	\checkmark	_	_	—	\checkmark	_	—	_
c1	~	\checkmark	~	_	—	_	\checkmark	_		_	~	_	_
c2	~	_	_	\checkmark	\checkmark		_	\checkmark	_	_		\checkmark	
c3	\checkmark		—	\checkmark	\checkmark		—	_	\checkmark	—	—	_	\checkmark
c4	~	_	—	_	—	\checkmark	—	\checkmark	_	\checkmark	—	\checkmark	_
c5	\checkmark		_		—		\checkmark	_	\checkmark	_	\checkmark		\checkmark
Enhanced PLL 12 outputs													
c0	_	\checkmark	\checkmark	_	—	\checkmark	—	—	—	\checkmark		—	_
c1	_	\checkmark	~		—		\checkmark	_	_	_	~	_	_
c2	_	_	_	\checkmark	\checkmark		_	\checkmark	_	_	—	\checkmark	_
c3	_		_	\checkmark	\checkmark		_	_	\checkmark	_	—	_	\checkmark
c4	_	_	_		—	\checkmark	_	\checkmark	—	\checkmark	—	\checkmark	_
c5	_	_	_	_	—		\checkmark		\checkmark	_	~		\checkmark

Table 2-21. Global and Regional Clock Connections from Bottom Clock Pins and Enhanced PLL Outputs

Arria GX devices provide two types of termination:

- On-chip differential termination ($R_D OCT$)
- On-chip series termination (R_s OCT)

Table 2–26 lists the Arria GX OCT support per I/O bank.

Table 2-26. On-Chip Termination Support by I/O Banks

On-Chip Termination Support	I/O Standard Support	Top and Bottom Banks (3, 4, 7, 8)	Left Bank (1, 2)
	3.3-V LVTTL	\checkmark	\checkmark
	3.3-V LVCMOS	\checkmark	\checkmark
	2.5-V LVTTL	\checkmark	\checkmark
	2.5-V LVCMOS	\checkmark	\checkmark
	1.8-V LVTTL	\checkmark	\checkmark
	1.8-V LVCMOS	\checkmark	\checkmark
	1.5-V LVTTL	\checkmark	\checkmark
Series termination	1.5-V LVCMOS	\checkmark	\checkmark
	SSTL-2 class I and II	\checkmark	\checkmark
	SSTL-18 class I	\checkmark	\checkmark
	SSTL-18 class II	\checkmark	_
	1.8-V HSTL class I	\checkmark	\checkmark
	1.8-V HSTL class II	\checkmark	_
	1.5-V HSTL class I	\checkmark	\checkmark
	1.2-V HSTL	\checkmark	_
	LVDS	—	\checkmark
Differential termination (1)	HyperTransport technology	—	\checkmark

Note to Table 2-26:

(1) Clock pins CLK1 and CLK3, and pins FPLL [7..8] CLK do not support differential on-chip termination. Clock pins CLK0 and CLK2, do support differential on-chip termination. Clock pins in the top and bottom banks (CLK [4..7, 12..15]) do not support differential on-chip termination.

On-Chip Differential Termination (Ro OCT)

Arria GX devices support internal differential termination with a nominal resistance value of 100 Ω for LVDS input receiver buffers. LVPECL input signals (supported on clock pins only) require an external termination resistor. R_D OCT is supported across the full range of supported differential data rates as shown in the *High-Speed I/O Specifications* section of the *DC & Switching Characteristics* chapter.

- ► For more information about R_D OCT, refer to the *High-Speed Differential I/O Interfaces* with DPA in Arria GX Devices chapter.
- For more information about tolerance specifications for R_D OCT, refer to the *DC* & *Switching Characteristics* chapter.

On-Chip Series Termination (Rs OCT)

Arria GX devices support driver impedance matching to provide the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, reflections can be significantly reduced. Arria GX devices support R_s OCT for single-ended I/O standards with typical R_s values of 25 and 50 Ω . Once matching impedance is selected, current drive strength is no longer selectable. Table 2–26 shows the list of output standards that support R_s OCT.

•••

• For more information about R_s OCT supported by Arria GX devices, refer to the *Selectable I/O Standards in Arria GX Devices* chapter.

• For more information about tolerance specifications for OCT without calibration, refer to the *DC* & *Switching Characteristics* chapter.

MultiVolt I/O Interface

The Arria GX architecture supports the MultiVolt I/O interface feature that allows Arria GX devices in all packages to interface with systems of different supply voltages. Arria GX VCCINT pins must always be connected to a 1.2-V power supply. With a 1.2-V V_{CCINT} level, input pins are 1.2-, 1.5-, 1.8-, 2.5-, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.2-, 1.5-, 1.8-, 2.5-, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (for example, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). Arria GX VCCPD power pins must be connected to a 3.3-V power supply. These power pins are used to supply the pre-driver power to the output buffers, which increases the performance of the output pins. The VCCPD pins also power configuration input pins and JTAG input pins.

Table 2–27 lists Arria GX MultiVolt I/O support.

V AN		Inj	out Signal	(V)		Output Signal (V)					
CCIO ()	1.2	1.5	1.8	2.5	3.3	1.2	1.5	1.8	2.5	3.3	5.0
1.2	(4)	✓ (2)	✓ (2)	✓ (2)	✓ (2)	✓ (4)		_	_	—	_
1.5	(4)	 ✓ 	~	✓ (2)	✓ (2)	🗸 (3)	\checkmark		_		
1.8	(4)	 ✓ 	~	✓ (2)	✓ (2)	✓ (3)	🗸 (3)	\checkmark		—	_
2.5	(4)	—	_	\checkmark	\checkmark	🗸 (3)	🗸 (3)	🗸 (3)	\checkmark	—	_
3.3	(4)			\checkmark	\checkmark	✓ (3)	✓ (3)	✓ (3)	✓ (3)	\checkmark	\checkmark

 Table 2–27.
 Arria GX MultiVolt I/O Support (Note 1)

Notes to Table 2-27:

(1) To drive inputs higher than V_{CCIO} but less than 4.0 V, disable the PCI clamping diode and select the Allow LVTTL and LVCMOS input levels to overdrive input buffer option in the Quartus II software.

(2) The pin current may be slightly higher than the default value. You must verify that the driving device's V_{0L} maximum and V_{0H} minimum voltages do not violate the applicable Arria GX V_{1L} maximum and V_{1H} minimum voltage specifications.

(3) Although V_{CC10} specifies the voltage necessary for the Arria GX device to drive out, a receiving device powered at a different level can still interface with the Arria GX device if it has inputs that tolerate the V_{CC10} value.

(4) Arria GX devices support 1.2-V HSTL. They do not support 1.2-V LVTTL and 1.2-V LVCMOS.

		D	Fast	Model	–6 Speed	
I/U Standard	CIOCK	Parameter	Industrial	Commercial	Grade	Units
	a a tr	t _{su}	1.417	1.417	3.118	ns
	GCLK	t _H	-1.312	-1.312	-2.841	ns
551L-10 ULA55 II		t _{su}	2.836	2.836	6.190	ns
	GCLK PLL	t _H	-2.731	-2.731	-5.913	ns
		t _{su}	1.417	1.417	3.118	ns
1.8-V HSTL CLASS I	GCTK	t _H	-1.312	-1.312	-2.841	ns
		t _{su}	2.836	2.836	6.190	ns
	GCLK PLL	t _H	-2.731	-2.731	-5.913	ns
	CCLK	t _{su}	1.417	1.417	3.118	ns
	GCIIK	t _H	-1.312	-1.312	-2.841	ns
1.8-V HSTL GLASS II		t _{su}	2.836	2.836	6.190	ns
	GCTIK LTT	t _H	-2.731	-2.731	-5.913	ns
	GCLK	t _{su}	1.443	1.443	3.246	ns
		t _H	-1.338	-1.338	-2.969	ns
1.5-1 11012 024051		t _{su}	2.862	2.862	6.318	ns
	GCTIK LTT	t _H	-2.757	-2.757	-6.041	ns
	CCIK	t _{su}	1.443	1.443	3.246	ns
	GCTIK	t _H	-1.338	-1.338	-2.969	ns
		t _{su}	2.862	2.862	6.318	ns
	GCTK LTT	t _H	-2.757	-2.757	-6.041	ns
	CCLK	t _{su}	1.341	1.341	3.088	ns
	GCTV	t _H	-1.236	-1.236	-2.811	ns
		t _{su}	2.769	2.769	6.171	ns
	GCTV LTT	t _H	-2.664	-2.664	-5.894	ns

 Table 4–54.
 EP1AGX35 Row Pins Input Timing Parameters (Part 2 of 2)

Table 4–55 lists I/O timing specifications.

 Table 4–55.
 EP1AGX35 Column Pins Input Timing Parameters (Part 1 of 3)

I/N Standard	Clock	Doromotor	Fast	Corner	–6 Speed	Units	
i/U Stanuaru	GIUCK	Falainetei	Industrial	Commercial	Grade	Units	
	COLY	t _{su}	1.251	1.251	2.915	ns	
3 3-V I VTTI	GCLK	t _H	-1.146	-1.146	-2.638	ns	
	GCLK PLL	t _{su}	2.693	2.693	6.021	ns	
		t _H	-2.588	-2.588	-5.744	ns	
	0.07.11	t _{su}	1.251	1.251	2.915	ns	
	GCLIK	t _H	-1.146	-1.146	-2.638	ns	
		t _{su}	2.693	2.693	6.021	ns	
	GCLК РLL -	t _H	-2.588	-2.588	-5.744	ns	

	Drive		Deremeter	Fast	Model	–6 Sneed	Unite	
I/U Standard	Strength	LIOCK	Parameter	Industrial	Commercial	Grade	Units	
SSTL-2	8 mA	GCLK	t _{co}	2.774	2.774	6.057	ns	
CLASS I		GCLK PLL	t _{co}	1.211	1.211	2.633	ns	
SSTL-2	12 mA	GCLK	t _{co}	2.750	2.750	5.981	ns	
CLASS I		GCLK PLL	t _{co}	1.187	1.187	2.557	ns	
SSTL-2	16 mA	GCLK	t _{co}	2.716	2.716	5.850	ns	
CLASS II		GCLK PLL	t _{co}	1.153	1.153	2.426	ns	
SSTL-18	4 mA	GCLK	t _{co}	2.776	2.776	6.025	ns	
CLASS I		GCLK PLL	t _{co}	1.204	1.204	2.582	ns	
SSTL-18	6 mA	GCLK	t _{co}	2.780	2.780	5.954	ns	
CLASS I		GCLK PLL	t _{co}	1.208	1.208	2.511	ns	
SSTL-18	8 mA	GCLK	t _{co}	2.756	2.756	5.937	ns	
CLASS I		GCLK PLL	t _{co}	1.184	1.184	2.494	ns	
SSTL-18	10 mA	GCLK	t _{co}	2.759	2.759	5.916	ns	
CLASS I		GCLK PLL	t _{co}	1.187	1.187	2.473	ns	
1.8-V HSTL	4 mA	GCLK	t _{co}	2.757	2.757	5.935	ns	
CLASS I		GCLK PLL	t _{co}	1.185	1.185	2.492	ns	
1.8-V HSTL	6 mA	GCLK	t _{co}	2.760	2.760	5.899	ns	
CLASS I		GCLK PLL	t _{co}	1.188	1.188	2.456	ns	
1.8-V HSTL	8 mA	GCLK	t _{co}	2.742	2.742	5.895	ns	
CLASS I		GCLK PLL	t _{co}	1.170	1.170	2.452	ns	
1.8-V HSTL	10 mA	GCLK	t _{co}	2.746	2.746	5.884	ns	
CLASS I		GCLK PLL	t _{co}	1.174	1.174	2.441	ns	
1.8-V HSTL	12 mA	GCLK	t _{co}	2.737	2.737	5.883	ns	
CLASS I		GCLK PLL	t _{co}	1.165	1.165	2.440	ns	
1.5-V HSTL	4 mA	GCLK	t _{co}	2.756	2.756	5.912	ns	
CLASS I		GCLK PLL	t _{co}	1.184	1.184	2.469	ns	
1.5-V HSTL	6 mA	GCLK	t _{co}	2.759	2.759	5.898	ns	
CLASS I		GCLK PLL	t _{co}	1.187	1.187	2.455	ns	
1.5-V HSTL	8 mA	GCLK	t _{co}	2.744	2.744	5.890	ns	
CLASS I		GCLK PLL	t _{co}	1.172	1.172	2.447	ns	
	_	GCLK	t _{co}	2.787	2.787	6.037	ns	
		GCLK PLL	t _{co}	1.228	1.228	2.618	ns	

 Table 4–68.
 EP1AGX60 Row Pins Output Timing Parameters (Part 2 of 2)

1/0 Oberderd	Drive	Olash	Devender	Fast	Fast Model		Unite
i/U Standard	Strength	GIOCK	Parameter	Industrial	Commercial	Grade	Units
1.8 V	2 mA	GCLK	t _{co}	3.087	3.087	7.723	ns
		GCLK PLL	t _{co}	1.034	1.034	3.605	ns
1.8 V	4 mA	GCLK	t _{co}	3.076	3.076	6.944	ns
		GCLK PLL	t _{co}	1.023	1.023	2.826	ns
1.8 V	6 mA	GCLK	t _{co}	2.965	2.965	6.643	ns
		GCLK PLL	t _{co}	0.912	0.912	2.525	ns
1.8 V	8 mA	GCLK	t _{co}	2.934	2.934	6.529	ns
		GCLK PLL	t _{co}	0.881	0.881	2.411	ns
1.5 V	2 mA	GCLK	t _{co}	3.047	3.047	7.222	ns
		GCLK PLL	t _{co}	0.994	0.994	3.104	ns
1.5 V	4 mA	GCLK	t _{co}	2.940	2.940	6.621	ns
		GCLK PLL	t _{co}	0.887	0.887	2.503	ns
SSTL-2	8 mA	GCLK	t _{co}	2.890	2.890	6.294	ns
CLASS I		GCLK PLL	t _{co}	0.824	0.824	2.157	ns
SSTL-2	12 mA	GCLK	t _{co}	2.866	2.866	6.218	ns
CLASS I		GCLK PLL	t _{co}	0.800	0.800	2.081	ns
SSTL-2	16 mA	GCLK	t _{co}	2.832	2.832	6.087	ns
CLASS II		GCLK PLL	t _{co}	0.766	0.766	1.950	ns
SSTL-18	4 mA	GCLK	t _{co}	2.872	2.872	6.227	ns
CLASS I		GCLK PLL	t _{co}	0.819	0.819	2.109	ns
SSTL-18	6 mA	GCLK	t _{co}	2.878	2.878	6.162	ns
CLASS I		GCLK PLL	t _{co}	0.800	0.800	2.006	ns
SSTL-18	8 mA	GCLK	t _{co}	2.854	2.854	6.145	ns
CLASS I		GCLK PLL	t _{co}	0.776	0.776	1.989	ns
SSTL-18	10 mA	GCLK	t _{co}	2.857	2.857	6.124	ns
CLASS I		GCLK PLL	t _{co}	0.779	0.779	1.968	ns
1.8-V HSTL	4 mA	GCLK	t _{co}	2.853	2.853	6.137	ns
CLASS I		GCLK PLL	t _{co}	0.800	0.800	2.019	ns
1.8-V HSTL	6 mA	GCLK	t _{co}	2.858	2.858	6.107	ns
CLASS I		GCLK PLL	t _{co}	0.780	0.780	1.951	ns
1.8-V HSTL	8 mA	GCLK	t _{co}	2.840	2.840	6.103	ns
CLASS I		GCLK PLL	t _{co}	0.762	0.762	1.947	ns
1.8-V HSTL	10 mA	GCLK	t _{co}	2.844	2.844	6.092	ns
CLASS I		GCLK PLL	t _{co}	0.766	0.766	1.936	ns
1.8-V HSTL	12 mA	GCLK	t _{co}	2.835	2.835	6.091	ns
CLASS I		GCLK PLL	t _{co}	0.757	0.757	1.935	ns
1.5-V HSTL	4 mA	GCLK	t _{co}	2.852	2.852	6.114	ns
CLASS I		GCLK PLL	t _{co}	0.799	0.799	1.996	ns

Table 4–74. EP1AGX90 Row Pins Output Timing Parameters (Part 2 of 3)

Table 4–90 lists clock timing specifications.

Paramotor	Fast	Model	6 Speed Grade	Unito	
ratameter	Industrial	Commercial	-o speeu diade	UIII13	
t _{CIN}	1.653	1.653	3.841	ns	
t _{cour}	1.651	1.651	3.839	ns	
t _{PLLCIN}	0.245	0.245	0.755	ns	
t _{PLLCOUT}	0.245	0.245	0.755	ns	

Table 4-90. EP1AGX50 Row Pins Regional Clock Timing Parameters

EP1AGX60 Clock Timing Parameters

Table 4–91 to Table 4–92 on page 4–82 list the GCLK clock timing parameters for EP1AGX60 devices.

Table 4–91 lists clock timing specifications.

 Table 4–91.
 EP1AGX60 Row Pins Global Clock Timing Parameters

Parameter	Fast	Model	6 Speed Grade	Unito
	Industrial	Commercial	-o speeu uraue	Units
t _{cin}	1.531	1.531	3.593	ns
t _{cour}	1.536	1.536	3.587	ns
t _{PLLCIN}	-0.023	-0.023	0.188	ns
t _{PLLCOUT}	-0.018	-0.018	0.182	ns

Table 4–92 lists clock timing specifications.

Table 4-92. EP1AGX60 Row Pins Global Clock Timing Parameters

Parameter	Fast	Model	6 Speed Greede	Unito	
	Industrial	Commercial	-o speeu uraue	Units	
t _{CIN}	1.792	1.792	4.165	ns	
t _{cour}	1.792	1.792	4.165	ns	
t _{PLLCIN}	0.238	0.238	0.758	ns	
tPLLCOUT	0.238	0.238	0.758	ns	

Table 4–93 through Table 4–94 list the RCLK clock timing parameters for EP1AGX60 devices.

Table 4–93 lists clock timing specifications.

Table 4–93.	EP1AGX	60 Row	Pins	Regional	Clock	Timing	Para	ameters

Parameter	Fast Model		6 Speed Grede	Unito	
	Industrial	Commercial	-o speeu uraue	Units	
t _{CIN}	1.382	1.382	3.268	ns	
t _{cour}	1.387	1.387	3.262	ns	
t _{PLLCIN}	-0.031	-0.031	0.174	ns	
tPLLCOUT	-0.026	-0.026	0.168	ns	

Table 4–94 lists clock timing specifications.

 Table 4–94.
 EP1AGX60 Row Pins Regional Clock Timing Parameters

Parameter	Fast	Model	6 Speed Greede	Units	
	Industrial	Commercial	-o speeu u aue		
t _{CIN}	1.649	1.649	3.835	ns	
t _{cour}	1.651	1.651	3.839	ns	
t _{PLLCIN}	0.245	0.245	0.755	ns	
t _{PLLCOUT}	0.245	0.245	0.755	ns	

EP1AGX90 Clock Timing Parameters

Table 4–95 through Table 4–96 list the GCLK clock timing parameters for EP1AGX90 devices.

Table 4–95 lists clock timing specifications.

Table 4–95. EP1AGX90 Row Pins Global Clock Timing Parameters

Parameter	Fast	Model	6 Speed Grade	Unito	
	Industrial	Commercial	-o speeu diade	Units	
t _{cin}	1.630	1.630	3.799	ns	
t _{cour}	1.635	1.635	3.793	ns	
t _{PLLCIN}	-0.422	-0.422	-0.310	ns	
tPLLCOUT	-0.417	-0.417	-0.316	ns	

Table 4–96 lists clock timing specifications.

Paramatar	Fast Model		6 Speed Grade	Unito	
Falailletei	Industrial	Commercial	-o speen al aue	Units	
t _{CIN}	1.904	1.904	4.376	ns	
t _{cour}	1.904	1.904	4.376	ns	
t _{PLLCIN}	-0.153	-0.153	0.254	ns	
t _{pllcour}	-0.153	-0.153	0.254	ns	

 Table 4–96.
 EP1AGX90 Row Pins Global Clock Timing Parameters

Table 4–97 through Table 4–98 list the RCLK clock timing parameters for EP1AGX90 devices.

Table 4–97 lists clock timing specifications.

Table 4–97. EP1AGX90 Row Pins Regional Clock Timing Parameters

Parameter	Fast	Model	-6 Spood Grado	Units	
	Industrial	Commercial	-o speeu di aue		
t_{CIN}	1.462	1.462	3.407	ns	
t _{cour}	1.467	1.467	3.401	ns	
t _{PLLCIN}	-0.430	-0.430	-0.322	ns	
tPLLCOUT	-0.425	-0.425	-0.328	ns	

Table 4–98 lists clock timing specifications.

 Table 4–98.
 EP1AGX90 Row Pins Regional Clock Timing Parameters

Parameter	Fast	Model	6 Smood Grada	Unito	
	Industrial	Commercial	-o speeu uraue	Units	
t _{CIN}	1.760	1.760	4.011	ns	
t _{cour}	1.760	1.760	4.011	ns	
t _{PLLCIN}	-0.118	-0.118	0.303	ns	
t _{PLLCOUT}	-0.118	-0.118	0.303	ns	

Block Performance

Table 4–99 shows the Arria GX performance for some common designs. All performance values were obtained with the Quartus II software compilation of library of parameterized modules (LPM) or MegaCore functions for finite impulse response (FIR) and fast Fourier transform (FFT) designs.