E·XFL

Altera - EP1AGX50DF780I6 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2508
Number of Logic Elements/Cells	50160
Total RAM Bits	2475072
Number of I/O	350
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1agx50df780i6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Main device features:
 - TriMatrix memory consisting of three RAM block sizes to implement true dual-port memory and first-in first-out (FIFO) buffers with performance up to 380 MHz
 - Up to 16 global clock networks with up to 32 regional clock networks per device
 - High-speed DSP blocks provide dedicated implementation of multipliers, multiply-accumulate functions, and finite impulse response (FIR) filters
 - Up to four enhanced phase-locked loops (PLLs) per device provide spread spectrum, programmable bandwidth, clock switch-over, and advanced multiplication and phase shifting
 - Support for numerous single-ended and differential I/O standards
 - High-speed source-synchronous differential I/O support on up to 47 channels
 - Support for source-synchronous bus standards, including SPI-4 Phase 2 (POS-PHY Level 4), SFI-4.1, XSBI, UTOPIA IV, NPSI, and CSIX-L1
 - Support for high-speed external memory including DDR and DDR2 SDRAM, and SDR SDRAM
 - Support for multiple intellectual property megafunctions from Altera[®] MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM)
 - Support for remote configuration updates

Table 1–1 lists Arria GX device features for FineLine BGA (FBGA) with flip chip packages.

Eastura	EP1AGX20C	EP1AG	X35C/D	EP1AG	EP1AGX50C/D		EP1AGX60C/D/E		
reature	C	C	D	C	D	C	D	E	E
Package	484-pin,	484-pin	780-pin	484-pin	780-pin,	484-pin	780-pin	1152-pin	1152-pin
	(Flip chip)	(Flip chip)	(Flip chip)	(Flip chip)	1152-pin (Flip chip)	(Flip chip)	(Flip chip)	(Filp chip)	(Flip chip)
ALMs	8,632	13,	408	20,	064		24,040	1	36,088
Equivalent logic elements (LEs)	21,580	33,	520	50,	160	60,100		90,220	
Transceiver channels	4	4	8	4	8	4	8	12	12
Transceiver data rate	600 Mbps to 3.125 Gbps	600 Mbp Gt	s to 3.125 ops	600 Mbp Gl	s to 3.125 ops	600 Mbps to 3.125 Gbps		600 Mbps to 3.125 Gbps	
Source- synchronous receive channels	31	31	31	31	31, 42	31	31	42	47

 Table 1–1.
 Arria GX Device Features (Part 1 of 2)

Figure 2–7 shows the serializer block diagram.

Transmitter Buffer

The Arria GX transceiver buffers support the 1.2- and 1.5-V PCML I/O standard at rates up to 3.125 Gbps. The common mode voltage (V_{CM}) of the output driver may be set to 600 or 700 mV.

For more information about the Arria GX transceiver buffers, refer to the *Arria GX Transceiver Architecture* chapter.

The output buffer, as shown in Figure 2–8, is directly driven by the high-speed data serializer and consists of a programmable output driver, a programmable pre-emphasis circuit, and OCT circuitry.

Figure 2–24. Regional Clock Resources in Arria GX Devices

For the RCLK or GCLK network to route into the transceiver, a local route input output (LRIO) channel is required. Each LRIO clock region has up to eight clock paths and each transceiver block has a maximum of eight clock paths for connecting with LRIO clocks. These resources are limited and determine the number of clocks that can be used between the PLD and transceiver blocks. Table 2–7 and Table 2–8 list the number of LRIO resources available for Arria GX devices with different numbers of transceiver blocks.

Table 2–7. Available Clocking Connections for Transceivers in EP1AGX35D, EP1AGX50D, and EP1AGX60D

	Clock R	esource	Transceiver			
Source	Global Clock	Regional Clock	Bank13 8 Clock I/O	Bank14 8 Clock I/O		
Region0 8 LRIO clock	\checkmark	RCLK 20-27	\checkmark	—		
Region1 8 LRIO clock	\checkmark	RCLK 12-19		\checkmark		

Table 2–8.	Available C	locking	Connections	for	Transceivers	in E	P1AGX60E	and F	EP1A	GX90	E
------------	-------------	---------	-------------	-----	--------------	------	----------	-------	------	------	---

	Clock R	lesource	Transceiver				
Source	Global Clock	Regional Clock	Bank13 8 Clock I/O	Bank14 8 Clock I/O	Bank15 8 Clock I/O		
Region0 8 LRIO clock	\checkmark	RCLK 20-27	\checkmark	—	_		
Region1 8 LRIO clock	~	RCLK 20-27	\checkmark	~	_		
Region2 8 LRIO clock	~	RCLK 12-19	_	~	\checkmark		
Region3 8 LRIO clock	\checkmark	RCLK 12-19	_	_	\checkmark		

Figure 2–32. Six-Input Function in Normal Mode Note (1), (2)

Notes to Figure 2-32:

- (1) If datael and datafl are used as inputs to the six-input function, datae0 and dataf0 are available for register packing.
- (2) The dataf1 input is available for register packing only if the six-input function is un-registered.

Extended LUT Mode

Extended LUT mode is used to implement a specific set of seven-input functions. The set must be a 2-to-1 multiplexer fed by two arbitrary five-input functions sharing four inputs. Figure 2–33 shows the template of supported seven-input functions utilizing extended LUT mode. In this mode, if the seven-input function is unregistered, the unused eighth input is available for register packing. Functions that fit into the template shown in Figure 2–33 occur naturally in designs. These functions often appear in designs as "if-else" statements in Verilog HDL or VHDL code.

Note to Figure 2-33:

(1) If the seven-input function is unregistered, the unused eighth input is available for register packing. The second register, reg1, is not available.

Figure 2–41. C4 Interconnect Connections (Note 1)

Note to Figure 2–41: (1) Each C4 interconnect can drive either up or down four rows.

C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, TriMatrix memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C16 interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly. All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (that is, TriMatrix memory and DSP blocks) connects to row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks, labclk [5..0].

Table 2–12 lists the input and output data signal connections along with the address and control signal input connections to the row unit interfaces (L0 to L5 and R0 to R5).

Unit Interface Block	Input Signals	Output Signals
10	datain_a[140]	dataout_a[110]
	byteena_a[10]	
11	datain_a[2915]	dataout_a[2312]
	byteena_a[32]	
	datain_a[3530]	dataout_a[3524]
	addressa[40]	
	addr_ena_a	
L2	clock_a	
	clocken_a	
	renwe_a	
	aclr_a	
13	addressa[155]	dataout_a[4736]
	datain a[4136]	

Table 2–12. M-RAM Row Interface Unit Signals (Part 1 of 2)

Figure 2–64 shows the global and regional clocking from enhanced PLL outputs and top and bottom CLK pins.

Note to Figure 2-64:

(1) If the design uses the feedback input, you might lose one (or two if FBIN is differential) external clock output pin.

The connections to the global and regional clocks from the top clock pins and enhanced PLL outputs are shown in Table 2–20. The connections to the clocks from the bottom clock pins are shown in Table 2–21.

Configuring Arria GX FPGAs with JRunner

The JRunner software driver configures Altera FPGAs, including Arria GX FPGAs, through the ByteBlaster[™] II or ByteBlasterMV cables in JTAG mode. The programming input file supported is in Raw Binary File (**.rbf**) format. JRunner also requires a Chain Description File (**.cdf**) generated by the Quartus II software. JRunner is targeted for embedded JTAG configuration. The source code is developed for the Windows NT operating system (OS), but can be customized to run on other platforms.

• For more information about the JRunner software driver, refer to the AN414: JRunner Software Driver: An Embedded Solution for PLD JTAG Configuration and the source files on the Altera website.

Programming Serial Configuration Devices with SRunner

You can program a serial configuration device in-system by an external microprocessor using SRunner[™]. SRunner is a software driver developed for embedded serial configuration device programming that can be easily customized to fit into different embedded systems. SRunner software driver reads a raw programming data file (**.rpd**) and writes to serial configuration devices. The serial configuration device programming time using SRunner software driver is comparable to the programming time when using the Quartus II software.

- For more information about SRunner, refer to the *AN418: SRunner: An Embedded Solution for Serial Configuration Device Programming* and the source code on the Altera website.
 - For more information about programming serial configuration devices, refer to the *Serial Configuration Devices (EPCS1, EPCS4, EPCS64, and EPCS128) Data Sheet* in the *Configuration Handbook*.

Configuring Arria GX FPGAs with the MicroBlaster Driver

The MicroBlaster[™] software driver supports a raw binary file (RBF) programming input file and is ideal for embedded FPP or PS configuration. The source code is developed for the Windows NT operating system, although it can be customized to run on other operating systems.

For more information about the MicroBlaster software driver, refer to the Configuring the MicroBlaster Fast Passive Parallel Software Driver White Paper or the AN423: Configuring the MicroBlaster Passive Serial Software Driver.

PLL Reconfiguration

The phase-locked loops (PLLs) in the Arria GX device family support reconfiguration of their multiply, divide, VCO-phase selection, and bandwidth selection settings without reconfiguring the entire device. You can use either serial data from the logic array or regular I/O pins to program the PLL's counter settings in a serial chain. This option provides considerable flexibility for frequency synthesis, allowing real-time variation of the PLL frequency and delay. The rest of the device is functional while reconfiguring the PLL.

· · ·	``````````````````````````````````````	, 						
Symbol / Description	Conditions	–6 Speed	Grade Comm Industrial	ercial and	Units			
		Min	Тур	Max				
Bandwidth at 2.5 Gbps	BW = Low	_	35					
	BW = Med	_	50		MHz			
	BW = High	_	60					
Return loss differential mode	50 MHz to 1.25 GHz (PCI Express) 100 MHz to 2.5 GHz (XAUI)		-10		dB			
Return loss common mode	50 MHz to 1.25 GHz (PCI Express) 100 MHz to 2.5 GHz (XAUI)	-6			6 dl			dB
Programmable PPM detector (5)	_	± 62.5, 100, 125, 200, 250, 300, 500, 1000			PPM			
Run length (6)		80		80		UI		
Programmable equalization		_	_	5	dB			
Signal detect/loss threshold (7)		65		175	mV			
CDR LTR TIme <i>(8)</i> , <i>(9)</i>	—	_		75	us			
CDR Minimum T1b (9), (10)	—	15			us			
LTD lock time (9), (11)	—	0	100	4000	ns			
Data lock time from rx_freqlocked (9), (12)	_	_	_	4	us			
Programmable DC gain	—		0, 3, 6		dB			
Transmitter Buffer								
Output Common Mode voltage (V_{ocm})	—		580 ± 10%		mV			
On-chip termination resistors	—		108±10%		Ω			
	50 MHz to 1.25 GHz (PCI Express) 312 MHz to 625	-	-10		dB			
Return loss differential mode	MHz (XAUI) 625 MHz to 3.125GHz (XAUI)		-10		dB decade slope			
Return loss common mode	50 MHz to 1.25 GHz (PCI Express)		-6		dB			
Rise time	—	35	—	65	ps			
Fall time	—	35	—	65	ps			
Intra differential pair skew	V _{OD} = 800 mV	_	_	15	ps			

Table 4-6. Arria GX Transceiver Block AC Specification (Part 2 of 3)

Intra-transceiver block skew (×4) (13)

ps

100

Description	Condition	–6 Speed Grade Commercial & Industrial	Units
	refclk = 156.25 MHz		
Datarminiatia iittar at 2,125 Chao	Pattern = CJPAT	0.17	
	$V_{0D} = 1200 \text{ mV}$	0.17	01
	No Pre-emphasis		
XAUI Receiver Jitter Tolerance (4)			
	Pattern = CJPAT		
Total jitter	No Equalization	> 0.65	UI
	DC Gain = 3 dB		
	Pattern = CJPAT	-	
Deterministic jitter	No Equalization	> 0.37	UI
	DC Gain = 3 dB		
Peak-to-peak jitter	Jitter frequency = 22.1 KHz	> 8.5	UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz	> 0.1	UI
Peak-to-peak jitter	Jitter frequency = 20 MHz	> 0.1	UI
PCI Express (PIPE) Transmitter Jitter Ge	neration (5)		
Total Transmitter Jitter Generation	Compliance Pattern; V _{OD} = 800 mV; Pre-emphasis = 49%	< 0.25	UI p-p
PCI Express (PIPE) Receiver Jitter Toler	ance (5)		
Total Receiver Jitter Tolerance	Compliance Pattern; DC Gain = 3 db	> 0.6	UI p-p
Gigabit Ethernet (GIGE) Transmitter Jitto	er Generation (7)		
Total Transmitter, litter Consertion (TI)	CRPAT: V _{0D} = 800 mV;	. 0.070	
lotal fransmitter Jitter Generation (1J)	Pre-emphasis = 0%	< 0.279	огр-р
Deterministic Transmitter Jitter	CRPAT; $V_{0D} = 800 \text{ mV}$;	.0.14	
Generation (DJ)	Pre-emphasis = 0%	< 0.14	UI p-p
Gigabit Ethernet (GIGE) Receiver Jitter	rolerance		
Tatal littar Talarana	CJPAT Compliance Pattern;	0.00	
Iotal Jitter Iolerance	DC Gain = 0 dB	> 0.66	UI p-p
Deterministic litter Televenes	CJPAT Compliance Pattern;	0.4	
Deterministic Jitter Tolerance	DC Gain = 0 dB	> 0.4	огр-р
Serial RapidIO (1.25 Gbps, 2.5 Gbps, an	d 3.125 Gbps) Transmitter Jitter Generation (6)	<u> </u>	1
	CJPAT Compliance Pattern;		
Total Transmitter Jitter Generation (TJ)	V _{0D} = 800 mV;	< 0.35	UI p-p
	Pre-emphasis = 0%		
	CJPAT Compliance Pattern;	+	
Deterministic Transmitter Jitter	V _{0D} = 800 mV;	< 0.17	UI p-p
	Pre-emphasis = 0%		

Table 4–7. Arria GX Transceiver Block AC Specification (Note 1), (2), (3) (Part 2 of 4)

Table 4–8 and Table 4–9 list the transmitter and receiver PCS latency for each mode, respectively.

Table 4–8. PCS Latency(Note 1)

		Transmitter PCS Latency							
Functional Mode	Configuration	TX PIPE	TX Phase Comp FIFO	Byte Serializer	TX State Machine	8B/10B Encoder	Sum (2)		
XAUI	—		2–3	1	0.5	0.5	4–5		
PIPE	×1, ×4, ×8 8-bit channel width	1	3–4	1	_	1	6–7		
	×1, ×4, ×8 16-bit channel width	1	3–4	1	_	0.5	6–7		
GIGE	_	—	2–3	1	_	1	4–5		
Serial RapidIO	1.25 Gbps, 2.5 Gbps, 3.125 Gbps		2–3	1		0.5	4–5		
נחפ	HD10-bit channel width	_	2–3	1		1	4–5		
1 201	HD, 3G 20-bit channel width		2–3	1		0.5	4–5		
BASIC Single	8-bit/10-bit channel width	_	2–3	1	_	1	4–5		
Width	16-bit/20-bit channel width		2–3	1		0.5	4–5		

Notes to Table 4-8:

(1) The latency numbers are with respect to the PLD-transceiver interface clock cycles.

(2) The total latency number is rounded off in the Sum column.

			Receiver PCS Latency								
Functional Mode	Configuration	Word Aligner	Deskew FIFO	Rate Matcher (3)	8B/10B Decoder	Receiver State Machine	Byte Deserializer	Byte Order	Receiver Phase Comp FIFO	Receiver PIPE	Sum (2)
XAUI	_	2–2.5	2–2.5	5.5–6.5	0.5	1	1	1	1–2	—	14–17
DIDE	×1, ×4 8-bit channel width	4–5	_	11–13	1		1	1	2–3	1	21–25
	×1, ×4 16-bit channel width	2–2.5	_	5.5–6.5	0.5	_	1	1	2–3	1	13–16
GIGE	—	4–5		11–13	1	_	1	1	1–2		19–23
Serial RapidIO	1.25 Gbps, 2.5 Gbps, 3.125 Gbps	2–2.5	_		0.5		1	1	1–2	_	6–7
	HD 10-bit channel width	5	_	_	1	—	1	1	1–2	—	9–10
SDI	HD, 3G 20-bit channel width	2.5	_		0.5		1	1	1–2		6–7

 Table 4–9.
 PCS Latency (Part 1 of 2) (Part 1 of 2)

4-1	6	

Symbol	Parameter	Conditions	Minimum	Maximum	Units
V _{ccio} (1)	Output supply voltage	_	2.375	2.625	V
V _{IH}	High-level input voltage	_	1.7	4.0	V
VIL	Low-level input voltage		-0.3	0.7	V
V _{OH}	High-level output voltage	I _{OH} = -1 mA <i>(2)</i>	2.0	—	V
V _{OL}	Low-level output voltage	I _{oL} = 1 mA <i>(2)</i>		0.4	V

Table 4-17. 2.5-V I/O Specifications

Notes to Table 4-17:

(1) The Arria GX device V_{CCI0} voltage level support of 2.5 to 5% is narrower than defined in the normal range of the EIA/JEDEC standard.

(2) This specification is supported across all the programmable drive settings available for this I/O standard.

Table 4-18. 1.	-V I/O Specifications
----------------	-----------------------

Symbol	Parameter	Conditions	Minimum	Maximum	Units
V _{CCI0} (1)	Output supply voltage		1.71	1.89	V
V _{IH}	High-level input voltage		$0.65 \times V_{CC10}$	2.25	V
V _{IL}	Low-level input voltage	—	-0.3	$0.35 \times V_{CC10}$	V
V _{OH}	High-level output voltage	I _{он} = -2 mA <i>(2)</i>	$V_{CCI0} - 0.45$		V
V _{OL}	Low-level output voltage	I _{oL} = 2 mA <i>(2)</i>		0.45	V

Notes to Table 4-18:

(1) The Arria GX device V_{CCIO} voltage level support of 1.8 to 5% is narrower than defined in the normal range of the EIA/JEDEC standard.

(2) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in Arria GX Architecture chapter.

Symbol	Parameter	Conditions	Minimum	Maximum	Units
V _{CCI0} (1)	Output supply voltage	_	1.425	1.575	V
V _{IH}	High-level input voltage	—	0.65 V _{ccio}	V _{CCI0} + 0.3	V
V _{IL}	Low-level input voltage	—	-0.3	0.35 V _{CCIO}	V
V _{OH}	High-level output voltage	I _{он} = -2 mA <i>(2)</i>	0.75 V _{ccio}		V
V _{OL}	Low-level output voltage	I _{0L} = 2 mA <i>(2)</i>	—	0.25 V _{CCIO}	V

Table 4-19. 1.5-V I/O Specifications

Notes to Table 4-19:

(1) The Arria GX device V_{CCI0} voltage level support of 1.5 to 5% is narrower than defined in the normal range of the EIA/JEDEC standard.

(2) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in the *Arria GX Architecture* chapter.

Figure 4–5 and Figure 4–6 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS and LVPECL).

Table 4–45 specifies the input timing measurement setup.

Table 4-45.	Timing Measurement	Methodology for Input Pins	(Note 1), (2), ((3), (4)	(Part 1 of 2)
-------------	--------------------	----------------------------	------------------	----------	---------------

1/0 Ober devid	Mea	ions	Measurement Point	
I/U Standard	V _{ccio} (V)	V _{REF} (V)	Edge Rate (ns)	VMEAS (V)
LVTTL (5)	3.135		3.135	1.5675
LVCMOS (5)	3.135		3.135	1.5675
2.5 V (5)	2.375	_	2.375	1.1875
1.8 V <i>(5)</i>	1.710		1.710	0.855
1.5 V <i>(5)</i>	1.425	_	1.425	0.7125
PCI (6)	2.970	_	2.970	1.485
PCI-X (6)	2.970		2.970	1.485
SSTL-2 Class I	2.325	1.163	2.325	1.1625
SSTL-2 Class II	2.325	1.163	2.325	1.1625
SSTL-18 Class I	1.660	0.830	1.660	0.83
SSTL-18 Class II	1.660	0.830	1.660	0.83
1.8-V HSTL Class I	1.660	0.830	1.660	0.83
1.8-V HSTL Class II	1.660	0.830	1.660	0.83
1.5-V HSTL Class I	1.375	0.688	1.375	0.6875
1.5-V HSTL Class II	1.375	0.688	1.375	0.6875
1.2-V HSTL with OCT	1.140	0.570	1.140	0.570
Differential SSTL-2 Class I	2.325	1.163	2.325	1.1625
Differential SSTL-2 Class II	2.325	1.163	2.325	1.1625
Differential SSTL-18 Class I	1.660	0.830	1.660	0.83

 $[\]mathbf{t_{zx}}$

Figure 4–9. Measurement Setup for t_{zx}

	Drive		_ .	Fast	Model	–6 Speed	11	
I/U Standard	Strength	LIOCK	Parameter	Industrial	Commercial	Grade	Units	
SSTL-2	8 mA	GCLK	t _{co}	2.626	2.626	5.614	ns	
CLASS I		GCLK PLL	t _{co}	1.207	1.207	2.542	ns	
SSTL-2	12 mA	GCLK	t _{co}	2.602	2.602	5.538	ns	
CLASS I		GCLK PLL	t _{co}	1.183	1.183	2.466	ns	
SSTL-2	16 mA	GCLK	t _{co}	2.568	2.568	5.407	ns	
CLASS II		GCLK PLL	t _{co}	1.149	1.149	2.335	ns	
SSTL-18	4 mA	GCLK	t _{co}	2.614	2.614	5.556	ns	
CLASS I		GCLK PLL	t _{co}	1.195	1.195	2.484	ns	
SSTL-18	6 mA	GCLK	t _{co}	2.618	2.618	5.485	ns	
CLASS I		GCLK PLL	t _{co}	1.199	1.199	2.413	ns	
SSTL-18	8 mA	GCLK	t _{co}	2.594	2.594	5.468	ns	
CLASS I		GCLK PLL	t _{co}	1.175	1.175	2.396	ns	
SSTL-18	10 mA	GCLK	t _{co}	2.597	2.597	5.447	ns	
CLASS I		GCLK PLL	t _{co}	1.178	1.178	2.375	ns	
1.8-V HSTL	4 mA	GCLK	t _{co}	2.595	2.595	5.466	ns	
CLASS I		GCLK PLL	t _{co}	1.176	1.176	2.394	ns	
1.8-V HSTL	6 mA	GCLK	t _{co}	2.598	2.598	5.430	ns	
CLASS I		GCLK PLL	t _{co}	1.179	1.179	2.358	ns	
1.8-V HSTL	8 mA	GCLK	t _{co}	2.580	2.580	5.426	ns	
CLASS I		GCLK PLL	t _{co}	1.161	1.161	2.354	ns	
1.8-V HSTL	10 mA	GCLK	t _{co}	2.584	2.584	5.415	ns	
CLASS I		GCLK PLL	t _{co}	1.165	1.165	2.343	ns	
1.8-V HSTL	12 mA	GCLK	t _{co}	2.575	2.575	5.414	ns	
CLASS I		GCLK PLL	t _{co}	1.156	1.156	2.342	ns	
1.5-V HSTL	4 mA	GCLK	t _{co}	2.594	2.594	5.443	ns	
CLASS I		GCLK PLL	t _{co}	1.175	1.175	2.371	ns	
1.5-V HSTL	6 mA	GCLK	t _{co}	2.597	2.597	5.429	ns	
CLASS I		GCLK PLL	t _{co}	1.178	1.178	2.357	ns	
1.5-V HSTL	8 mA	GCLK	t _{co}	2.582	2.582	5.421	ns	
CLASS I		GCLK PLL	t _{co}	1.163	1.163	2.349	ns	
LVDS	_	GCLK	t _{co}	2.654	2.654	5.613	ns	
		GCLK PLL	t _{co}	1.226	1.226	2.530	ns	

Table 4-50. EP1AGX20 Row Pins output Timing Parameters (Part 2 of 2)

I/O Standard	Oleak	Deremeter	Fast	Corner	-6 Speed	Unite
I/U Standard	LIOCK	Parameter	Industrial	Commercial	Grade	Units
		t _{su}	1.261	1.261	2.897	ns
25.1	GCLK	t _H	-1.156	-1.156	-2.620	ns
2.5 V		t _{su}	2.703	2.703	6.003	ns
	GCLK PLL	t _H	-2.598	-2.598	-5.726	ns
	CCLK	t _{su}	1.327	1.327	3.107	ns
1.8.1/	GCTV	t _H	-1.222	-1.222	-2.830	ns
1.0 V		t _{su}	2.769	2.769	6.213	ns
	GCLK PLL	t _H	-2.664	-2.664	-5.936	ns
	CCLK	t _{su}	1.330	1.330	3.200	ns
151	GCLK	t _H	-1.225	-1.225	-2.923	ns
1.5 V		t _{su}	2.772	2.772	6.306	ns
	GCLK PLL	t _H	-2.667	-2.667	-6.029	ns
		t _{su}	1.075	1.075	2.372	ns
	GCLK	t _H	-0.970	-0.970	-2.095	ns
331L-2 0LA331	GCLK PLL	t _{su}	2.517	2.517	5.480	ns
		t _H	-2.412	-2.412	-5.203	ns
	GCLK	t _{su}	1.075	1.075	2.372	ns
		t _H	-0.970	-0.970	-2.095	ns
331L-2 0LA3311		t _{su}	2.517	2.517	5.480	ns
	GCLK PLL	t _H	-2.412	-2.412	-5.203	ns
	a at ti	t _{su}	1.113	1.113	2.479	ns
	GCLK	t _H	-1.008	-1.008	-2.202	ns
331L-10 0LA331		t _{su}	2.555	2.555	5.585	ns
	GCLK PLL	t _H	-2.450	-2.450	-5.308	ns
		t _{su}	1.114	1.114	2.479	ns
	GCLK	t _H	-1.009	-1.009	-2.202	ns
331L-10 0LA33 II		t _{su}	2.556	2.556	5.587	ns
	GCLK PLL	t _H	-2.451	-2.451	-5.310	ns
	CCLK	t _{su}	1.113	1.113	2.479	ns
	GCLK	t _H	-1.008	-1.008	-2.202	ns
1.0-V 1131L 0LA331		t _{su}	2.555	2.555	5.585	ns
	СПК БПП	t _H	-2.450	-2.450	-5.308	ns
		t _{su}	1.114	1.114	2.479	ns
	GCTR	t _H	-1.009	-1.009	-2.202	ns
1.0-V 1131L 0LA35 II	GCLK PLL -	t _{su}	2.556	2.556	5.587	ns
		t _H	-2.451	-2.451	-5.310	ns

Table 4–55. EP1AGX35 Column Pins Input Timing Parameters (Part 2 of 3)

1/0 Standard	Drive	Oleek	Devemeter	Fast	Model	–6 Speed	Unite
i/U Standard	Strength	GIOCK	Parameter	Industrial	Commercial	Grade	Units
1.8-V HSTL	4 mA	GCLK	t _{co}	2.606	2.606	5.480	ns
CLASS I		GCLK PLL	t _{co}	1.178	1.178	2.396	ns
1.8-V HSTL	6 mA	GCLK	t _{co}	2.608	2.608	5.442	ns
CLASS I		GCLK PLL	t _{co}	1.181	1.181	2.360	ns
1.8-V HSTL	8 mA	GCLK	t _{co}	2.590	2.590	5.438	ns
CLASS I		GCLK PLL	t _{co}	1.163	1.163	2.356	ns
1.8-V HSTL	10 mA	GCLK	t _{co}	2.594	2.594	5.427	ns
CLASS I		GCLK PLL	t _{co}	1.167	1.167	2.345	ns
1.8-V HSTL	12 mA	GCLK	t _{co}	2.585	2.585	5.426	ns
CLASS I		GCLK PLL	t _{co}	1.158	1.158	2.344	ns
1.5-V HSTL	4 mA	GCLK	t _{co}	2.605	2.605	5.457	ns
CLASS I		GCLK PLL	t _{co}	1.177	1.177	2.373	ns
1.5-V HSTL	6 mA	GCLK	t _{co}	2.607	2.607	5.441	ns
CLASS I		GCLK PLL	t _{co}	1.180	1.180	2.359	ns
1.5-V HSTL	8 mA	GCLK	t _{co}	t _{co} 2.592 2.592		5.433	ns
CLASS I		GCLK PLL	t _{co}	1.165	1.165	2.351	ns
LVDS	—	GCLK	t _{co}	2.654	2.654	5.613	ns
		GCLK PLL	t _{co}	1.226	1.226	2.530	ns

Table 4-62.	EP	1AGX50 Row	Pins	Output	Timin	g Parameters	(Part 3 of 3)

Table 4–63 lists I/O timing specifications.

Table 4-63.	EF	1AGX50 Colum	n Pins	Output	Timing	g Paramete	ers	(Part 1	of 4)
[

I/O Standard	Drive	Clock	Perometer	Fast	Corner	–6 Speed	Unito
i/U Standard	Strength		Parameter	Industrial	Commercial	Grade	Units
3.3-V LVTTL	4 mA	GCLK	t _{co}	2.948	2.948	6.608	ns
		GCLK PLL	t _{co}	1.476	1.476	3.447	ns
3.3-V LVTTL	8 mA	GCLK	t _{co}	2.797	2.797	6.203	ns
		GCLK PLL	t _{co}	1.331	1.331	3.075	ns
3.3-V LVTTL	12 mA	GCLK	t _{co}	2.722	2.722	6.204	ns
		GCLK PLL	t _{co}	1.264	1.264	3.075	ns
3.3-V LVTTL	16 mA	GCLK	t _{co}	2.694	2.694	6.024	ns
		GCLK PLL	t _{co}	1.238	1.238	2.906	ns
3.3-V LVTTL	20 mA	GCLK	t _{co}	2.670	2.670	5.896	ns
		GCLK PLL	t _{co}	1.216	1.216	2.781	ns
3.3-V LVTTL	24 mA	GCLK	t _{co}	2.660	2.660	5.895	ns
		GCLK PLL	t _{co}	1.209	1.209	2.783	ns
3.3-V	4 mA	GCLK	t _{co}	2.797	2.797	6.203	ns
LVCMOS		GCLK PLL	t _{co}	1.331	1.331	3.075	ns

 Table 4–99.
 Arria GX Performance Notes

			Performance		
Applic	ations	ALUTS	TriMatrix Memory Blocks	DSP Blocks	–6 Speed Grade
	16-to-1 multiplexer	5	0	0	168.41
LE	32-to-1 multiplexer	11	0	0	334.11
	16-bit counter	16	0	0	374.0
	64-bit counter	64	0	0	168.41
TriMatrix Memory	Simple dual-port RAM 32 x 18 bit	0	1	0	348.0
WIJTZ DIOCK	FIFO 32 x 18 bit	0	1	0	333.22
TriMatrix Memory	Simple dual-port RAM 128 x 36 bit	0	1	0	344.71
M4K block	True dual-port RAM 128 x 18 bit	0	1	0	348.0
	Single port RAM 4K x 144 bit	0	2	0	244.0
	Simple dual-port RAM 4K x 144 bit	0	1	0	292.0
	True dual-port RAM 4K x 144 bit	0	2	0	244.0
	Single port RAM 8K x 72 bit	0	1	0	247.0
TriMatrix Memory MegaRAM block	Simple dual-port RAM 8K x 72 bit	0	1	0	292.0
	Single port RAM 16K x 36 bit	0	1	0	254.0
	Simple dual-port RAM 16K x 36 bit	0	1	0	292.0
	True dual-port RAM 16K x 36 bit	0	1	0	251.0
	Single port RAM 32K x 18 bit	0	1	0	317.36
	Simple dual-port RAM 32K x 18 bit	0	1	0	292.0
	True dual-port RAM 32K x 18 bit	0	1	0	251.0
	Single port RAM 64K x 9 bit	0	1	0	254.0
	Simple dual-port RAM 64K x 9 bit	0	1	0	292.0
	True dual-port RAM 64K x 9 bit	0	1	0	251.0

I/O Standards	–6 Speed Grade	Units
SSTL-18 CLASS II	467	MHz
1.8-V HSTL CLASS I	467	MHz
1.8-V HSTL CLASS II	467	MHz
1.5-V HSTL CLASS I	467	MHz
1.5-V HSTL CLASS II	467	MHz
3.3-V PCI	420	MHz
3.3-V PCI-X	420	MHz

Table 4-102. Arria GX Maximum Input Toggle Rate for Column I/O Pins

Table 4–103 shows the maximum input clock toggle rates for Arria GX device row I/O pins.

I/O Standards	–6 Speed Grade	Units
3.3-V LVTTL	420	MHz
3.3-V LVCMOS	420	MHz
2.5 V	420	MHz
1.8 V	420	MHz
1.5 V	420	MHz
SSTL-2 CLASS I	467	MHz
SSTL-2 CLASS II	467	MHz
SSTL-18 CLASS I	467	MHz
SSTL-18 CLASS II	467	MHz
1.8-V HSTL CLASS I	467	MHz
1.8-V HSTL CLASS II	467	MHz
1.5-V HSTL CLASS I	467	MHz
1.5-V HSTL CLASS II	467	MHz
LVDS	392	MHz

 Table 4–103.
 Arria GX Maximum Input Toggle Rate for Row I/O Pins

Table 4–104 shows the maximum input clock toggle rates for Arria GX device dedicated clock pins.

•			
I/O Standards	–6 Speed Grade	Units	
3.3-V LVTTL	373	MHz	
3.3-V LVCMOS	373	MHz	
2.5 V	373	MHz	
1.8 V	373	MHz	
1.5 V	373	MHz	
SSTL-2 CLASS I	467	MHz	
SSTL-2 CLASS II	467	MHz	
3.3-V PCI	373	MHz	

 Table 4–104.
 Arria GX Maximum Input Clock Rate for Dedicated Clock Pins (Part 1 of 2)

I/O Standards	–6 Speed Grade	Units
3.3-V PCI-X	373	MHz
SSTL-18 CLASS I	467	MHz
SSTL-18 CLASS II	467	MHz
1.8-V HSTL CLASS I	467	MHz
1.8-V HSTL CLASS II	467	MHz
1.5-V HSTL CLASS I	467	MHz
1.5-V HSTL CLASS II	467	MHz
1.2-V HSTL	233	MHz
DIFFERENTAL SSTL-2	467	MHz
DIFFERENTIAL 2.5-V SSTL CLASS II	467	MHz
DIFFERENTIAL 1.8-V SSTL CLASS I	467	MHz
DIFFERENTIAL 1.8-V SSTL CLASS II	467	MHz
DIFFERENTIAL 1.8-V HSTL CLASS I	467	MHz
DIFFERENTIAL 1.8-V HSTL CLASS II	467	MHz
DIFFERENTIAL 1.5-V HSTL CLASS I	467	MHz
DIFFERENTIAL 1.5-V HSTL CLASS II	467	MHz
DIFFERENTIAL 1.2-V HSTL	233	MHz
LVDS	640	MHz
LVDS (1)	373	MHz

 Table 4–104.
 Arria GX Maximum Input Clock Rate for Dedicated Clock Pins (Part 2 of 2)

Note to Table 4-104:

(1) This set of numbers refers to the VIO dedicated input clock pins.

Table 4–105 shows the maximum output clock toggle rates for Arria GX device column I/O pins.

Table 4–105. Arria GX Maximum Output Toggle Rate for Column I/O Pins (Part 1 of 3)

I/O Standards	Drive Strength	–6 Speed Grade	Units
	4 mA	196	MHz
	8 mA	303	MHz
2 2-\/ I \/TTI	12 mA	393	MHz
	16 mA	486	MHz
	20 mA	570	MHz
	24 mA	626	MHz

Table 4–112. Maximum DCD for DDIO Output on Row I/O Pins With PLL in the Clock Path

Maximum DCD (ps) for Row DDIO Output I/O Standard	Arria GX Devices (PLL Output Feeding DDIO) –6 Speed Grade	Units
SSTL-18 Class I	65	ps
1.8-V HSTL Class I	70	ps
1.5-V HSTL Class I	70	ps
LVDS	180	ps

Table 4-113. Maximum DCD for DDIO Output on Column I/O Pins With PLL in the Clock Path

Maximum DCD (ps) for Column	Arria GX Devices (PLL Output Feeding DDIO)	Units
טועט טענאט טועע טועע טועע טועע טועע טועע	–6 Speed Grade	
3.3-V LVTTL	160	ps
3.3-V LVCMOS	110	ps
2.5V	95	ps
1.8V	100	ps
1.5-V LVCMOS	155	ps
SSTL-2 Class I	75	ps
SSTL-2 Class II	70	ps
SSTL-18 Class I	65	ps
SSTL-18 Class II	80	ps
1.8-V HSTL Class I	70	ps
1.8-V HSTL Class II	70	ps
1.5-V HSTL Class I	70	ps
1.5-V HSTL Class II	100	ps
1.2-V HSTL	155	ps
LVPECL	180	ps

High-Speed I/O Specifications

Table 4–114 lists high-speed timing specifications definitions.

Table 4-114. High-Speed Timing Specifications and Definitions (Part 1 of 2)

High-Speed Timing Specifications	Definitions
t _c	High-speed receiver/transmitter input and output clock period.
f _{hsclk}	High-speed receiver/transmitter input and output clock frequency.
J	Deserialization factor (width of parallel data bus).
W	PLL multiplication factor.
t _{rise}	Low-to-high transmission time.
t _{FALL}	High-to-low transmission time.