# E·XFL

# Altera - EP1AGX60DF780C6N Datasheet



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                        |
|--------------------------------|---------------------------------------------------------------|
| Number of LABs/CLBs            | 3005                                                          |
| Number of Logic Elements/Cells | 60100                                                         |
| Total RAM Bits                 | 2528640                                                       |
| Number of I/O                  | 350                                                           |
| Number of Gates                | -                                                             |
| Voltage - Supply               | 1.15V ~ 1.25V                                                 |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                               |
| Package / Case                 | 780-BBGA, FCBGA                                               |
| Supplier Device Package        | 780-FBGA (29x29)                                              |
| Purchase URL                   | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1agx60df780c6n |
|                                |                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 8B/10B Decoder

The 8B/10B decoder is used in all supported functional modes. The 8B/10B decoder takes in 10-bit data from the rate matcher and decodes it into 8-bit data + 1-bit control identifier, thereby restoring the original transmitted data at the receiver. The 8B/10B decoder indicates whether the received 10-bit character is a data or control code through the rx\_ctrldetect port. If the received 10-bit code group is a control character (Kx.y), the rx\_ctrldetect signal is driven high and if it is a data character (Dx.y), the rx\_ctrldetect signal is driven low.

Figure 2–17 shows a 10-bit code group decoded to an 8-bit data and a 1-bit control indicator.





If the received 10-bit code is not a part of valid Dx.y or Kx.y code groups, the 8B/10B decoder block asserts an error flag on the rx\_errdetect port. If the received 10-bit code is detected with incorrect running disparity, the 8B/10B decoder block asserts an error flag on the rx\_disperr and rx\_errdetect ports. The error flag signals (rx\_errdetect and rx\_disperr) have the same data path delay from the 8B/10B decoder to the PLD-transceiver interface as the bad code group.

## **Receiver State Machine**

The receiver state machine operates in Basic, GIGE, PCI Express (PIPE), and XAUI modes. In GIGE mode, the receiver state machine replaces invalid code groups with K30.7. In XAUI mode, the receiver state machine translates the XAUI PCS code group to the XAUI XGMII code group.



Figure 2–24. Regional Clock Resources in Arria GX Devices

For the RCLK or GCLK network to route into the transceiver, a local route input output (LRIO) channel is required. Each LRIO clock region has up to eight clock paths and each transceiver block has a maximum of eight clock paths for connecting with LRIO clocks. These resources are limited and determine the number of clocks that can be used between the PLD and transceiver blocks. Table 2–7 and Table 2–8 list the number of LRIO resources available for Arria GX devices with different numbers of transceiver blocks.

**Table 2–7.** Available Clocking Connections for Transceivers in EP1AGX35D, EP1AGX50D, and EP1AGX60D

|                      | Clock R      | esource        | Transceiver           |                       |  |  |
|----------------------|--------------|----------------|-----------------------|-----------------------|--|--|
| Source               | Global Clock | Regional Clock | Bank13<br>8 Clock I/O | Bank14<br>8 Clock I/O |  |  |
| Region0 8 LRIO clock | $\checkmark$ | RCLK 20-27     | $\checkmark$          | —                     |  |  |
| Region1 8 LRIO clock | $\checkmark$ | RCLK 12-19     |                       | $\checkmark$          |  |  |

| Table 2–8. | Available C | locking | Connections | for | Transceivers | in E | P1AGX60E | and F | EP1A | GX90 | E |
|------------|-------------|---------|-------------|-----|--------------|------|----------|-------|------|------|---|
|------------|-------------|---------|-------------|-----|--------------|------|----------|-------|------|------|---|

|                      | Clock R                     | lesource   | Transceiver           |                       |                       |  |  |
|----------------------|-----------------------------|------------|-----------------------|-----------------------|-----------------------|--|--|
| Source               | Global Clock Regional Clock |            | Bank13<br>8 Clock I/O | Bank14<br>8 Clock I/O | Bank15<br>8 Clock I/O |  |  |
| Region0 8 LRIO clock | $\checkmark$                | RCLK 20-27 | $\checkmark$          | —                     | _                     |  |  |
| Region1 8 LRIO clock | $\checkmark$                | RCLK 20-27 | $\checkmark$          | ~                     | _                     |  |  |
| Region2 8 LRIO clock | ~                           | RCLK 12-19 | _                     | ~                     | $\checkmark$          |  |  |
| Region3 8 LRIO clock | $\checkmark$                | RCLK 12-19 | _                     | _                     | $\checkmark$          |  |  |

In addition to the clear and load/preset ports, Arria GX devices provide a device-wide reset pin (DEV\_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This device-wide reset overrides all other control signals.

# MultiTrack Interconnect

In Arria GX architecture, the MultiTrack interconnect structure with DirectDrive technology provides connections between ALMs, TriMatrix memory, DSP blocks, and device I/O pins. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for interand intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement in the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when migrating through different device densities. Dedicated row interconnects route signals to and from LABs, DSP blocks, and TriMatrix memory in the same row.

These row resources include:

- Direct link interconnects between LABs and adjacent blocks
- R4 interconnects traversing four blocks to the right or left
- R24 row interconnects for high-speed access across the length of the device

The direct link interconnect allows a LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself, providing fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–39 shows R4 interconnect connections from a LAB.

R4 interconnects can drive and be driven by DSP blocks and RAM blocks and row IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive onto the interconnect. For R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive onto the interconnect. R4 interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects.

Figure 2–52 and Figure 2–53 show the DSP block interfaces to LAB rows.



Figure 2–52. DSP Block Interconnect Interface

| LAB Row at Interface | <b>Control Signals Generated</b>                                                                         | Data Inputs        | Data Outputs         |
|----------------------|----------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 0                    | <pre>clock0 aclr0 ena0 mult01_saturate addnsub1_round/ accum_round</pre>                                 | A1[170]            | OA [170]             |
|                      | addnsubl<br>signa<br>sourcea<br>sourceb                                                                  | BI[I70]            | OB[17.0]             |
| 1                    | <pre>clock1 aclr1 ena1 accum_saturate mult01_round accum_sload sourcea sourceb mode0</pre>               | A2[170]<br>B2[170] | OC [170]<br>OD [170] |
| 2                    | <pre>clock2 aclr2 ena2 mult23_saturate addnsub3_round/ accum_round addnsub3 sign_b sourcea sourceb</pre> | A3[170]<br>B3[170] | OE [170]<br>OF [170] |
| 3                    | clock3<br>aclr3<br>ena3<br>accum_saturate<br>mult23_round<br>accum_sload<br>sourcea<br>sourceb<br>mode1  | A4[170]<br>B4[170] | OG[170]<br>OH[170]   |

Table 2–15. DSP Block Signal Sources and Destinations

|                                                           |              |              |              |              | -            | _            | ~            | ~ ~          |              | 10           | (0           |                      |
|-----------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------|
| Left Side Global & Regional<br>Clock Network Connectivity | CLKO         | CLK1         | CLK2         | CLK3         | RCLK(        | RCLK         | RCLK         | RCLK         | RCLK/        | RCLK         | RCLK         | RCLK                 |
| RCLKDRV7                                                  |              | —            | —            |              | —            | —            | —            | $\checkmark$ | —            | —            | —            | $\checkmark$         |
| PLL 1 Outputs                                             |              |              |              |              |              |              |              |              |              |              |              |                      |
| c0                                                        | $\checkmark$ | $\checkmark$ | _            | _            | $\checkmark$ | —            | $\checkmark$ | _            | $\checkmark$ | _            | $\checkmark$ | —                    |
| c1                                                        | $\checkmark$ | $\checkmark$ | _            | _            | _            | $\checkmark$ | _            | $\checkmark$ |              | $\checkmark$ | —            | $\checkmark$         |
| c2                                                        | _            | _            | $\checkmark$ | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ | _            | $\checkmark$ | _            | $\checkmark$ | —                    |
| с3                                                        |              | —            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | —            | $\checkmark$ | —            | $\checkmark$ | _            | <ul> <li></li> </ul> |
| PLL 2 Outputs                                             |              |              |              |              |              |              |              |              |              |              |              |                      |
| c0                                                        | $\checkmark$ | $\checkmark$ |              |              | —            | $\checkmark$ |              | $\checkmark$ | —            | $\checkmark$ | _            | <ul> <li></li> </ul> |
| c1                                                        | >            | $\checkmark$ | _            |              | $\checkmark$ | —            | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | —                    |
| c2                                                        | _            | _            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ | _            | ~            | —            | $\checkmark$ | —            | <ul> <li></li> </ul> |
| с3                                                        |              | —            | $\checkmark$ | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ | —                    |
| PLL 7 Outputs                                             |              |              |              |              |              |              |              |              |              |              |              |                      |
| c0                                                        |              | _            | $\checkmark$ | $\checkmark$ | —            | $\checkmark$ |              | $\checkmark$ | —            | _            | _            | —                    |
| c1                                                        |              | _            | $\checkmark$ | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ |              | —            |              | _            | —                    |
| c2                                                        | $\checkmark$ | ~            | _            | _            | _            | $\checkmark$ | _            | ~            | —            | _            | —            | —                    |
| c3                                                        | $\checkmark$ | ~            | _            | _            | ~            | _            | $\checkmark$ | _            | —            | _            | —            | —                    |
| PLL 8 Outputs                                             |              | -            | -            |              |              |              |              |              |              |              |              |                      |
| c0                                                        |              |              | $\checkmark$ | $\checkmark$ | _            | _            |              |              | $\checkmark$ |              | $\checkmark$ | —                    |
| c1                                                        | _            | —            | $\checkmark$ | $\checkmark$ | —            | —            | —            | —            | —            | $\checkmark$ | —            | ~                    |
| c2                                                        | $\checkmark$ | $\checkmark$ | _            | —            | —            | —            | _            | —            | $\checkmark$ | —            | $\checkmark$ | —                    |
| c3                                                        | $\checkmark$ | $\checkmark$ | _            | _            | —            | —            | _            | _            | —            | $\checkmark$ | —            | $\checkmark$         |

Table 2–19. Global and Regional Clock Connections from Left Side Clock Pins and Fast PLL Outputs (Part 2 of 2)

A path in which a pin directly drives a register can require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinational logic may not require the delay. Programmable delays exist for decreasing input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output and/or output enable registers. Programmable delays are no longer required to ensure zero hold times for logic array register-to-IOE register transfers. The Quartus II Compiler can programmable delays for Arria GX devices.

| Programmable Delays                   | Quartus II Logic Option                  |
|---------------------------------------|------------------------------------------|
| Input pin to logic array delay        | Input delay from pin to internal cells   |
| Input pin to input register delay     | Input delay from pin to input register   |
| Output pin delay                      | Delay from output register to output pin |
| Output enable register $t_{c0}$ delay | Delay to output enable pin               |

Table 2–22. Arria GX Devices Programmable Delay Chain

IOE registers in Arria GX devices share the same source for clear or preset. You can program preset or clear for each individual IOE. You can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power-up. If one register in an IOE uses a preset or clear signal, all registers in the IOE must use that same signal if they require preset or clear. Additionally, a synchronous reset signal is available for the IOE registers.

# **Double Data Rate I/O Pins**

Arria GX devices have six registers in the IOE, which support DDR interfacing by clocking data on both positive and negative clock edges. The IOEs in Arria GX devices support DDR inputs, DDR outputs, and bidirectional DDR modes. When using the IOE for DDR inputs, the two input registers clock double rate input data on alternating edges. An input latch is also used in the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times, allowing both bits of data to be synchronous with the same clock edge (either rising or falling). Figure 2–73 shows an IOE configured for DDR input. Figure 2–74 shows the DDR input timing diagram.

# **On-Chip Series Termination (Rs OCT)**

Arria GX devices support driver impedance matching to provide the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, reflections can be significantly reduced. Arria GX devices support  $R_s$  OCT for single-ended I/O standards with typical  $R_s$  values of 25 and 50  $\Omega$ . Once matching impedance is selected, current drive strength is no longer selectable. Table 2–26 shows the list of output standards that support  $R_s$  OCT.

•••

• For more information about R<sub>s</sub> OCT supported by Arria GX devices, refer to the *Selectable I/O Standards in Arria GX Devices* chapter.

• For more information about tolerance specifications for OCT without calibration, refer to the *DC* & *Switching Characteristics* chapter.

# **MultiVolt I/O Interface**

The Arria GX architecture supports the MultiVolt I/O interface feature that allows Arria GX devices in all packages to interface with systems of different supply voltages. Arria GX VCCINT pins must always be connected to a 1.2-V power supply. With a 1.2-V V<sub>CCINT</sub> level, input pins are 1.2-, 1.5-, 1.8-, 2.5-, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.2-, 1.5-, 1.8-, 2.5-, or 3.3-V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply (for example, when VCCIO pins are connected to a 1.5-V power supply, the output levels are compatible with 1.5-V systems). Arria GX VCCPD power pins must be connected to a 3.3-V power supply. These power pins are used to supply the pre-driver power to the output buffers, which increases the performance of the output pins. The VCCPD pins also power configuration input pins and JTAG input pins.

Table 2–27 lists Arria GX MultiVolt I/O support.

| V <sub>ccio</sub> (V) |     | Input Signal (V)      |              |              |                         | Output Signal (V) |              |              |              |              |              |
|-----------------------|-----|-----------------------|--------------|--------------|-------------------------|-------------------|--------------|--------------|--------------|--------------|--------------|
|                       | 1.2 | 1.5                   | 1.8          | 2.5          | 3.3                     | 1.2               | 1.5          | 1.8          | 2.5          | 3.3          | 5.0          |
| 1.2                   | (4) | ✓ (2)                 | ✓ (2)        | ✓ (2)        | ✓ (2)                   | ✓ (4)             |              | _            | _            | —            | _            |
| 1.5                   | (4) | $\checkmark$          | $\checkmark$ | ✓ (2)        | ✓ (2)                   | 🗸 (3)             | $\checkmark$ |              | _            |              |              |
| 1.8                   | (4) | <ul> <li>✓</li> </ul> | ~            | ✓ (2)        | <ul><li>✓ (2)</li></ul> | ✓ (3)             | 🗸 (3)        | $\checkmark$ |              | _            | _            |
| 2.5                   | (4) |                       |              | $\checkmark$ | $\checkmark$            | 🗸 (3)             | 🗸 (3)        | 🗸 (3)        | $\checkmark$ | —            | _            |
| 3.3                   | (4) |                       |              | $\checkmark$ | $\checkmark$            | ✓ (3)             | ✓ (3)        | ✓ (3)        | ✓ (3)        | $\checkmark$ | $\checkmark$ |

 Table 2–27.
 Arria GX MultiVolt I/O Support
 (Note 1)

Notes to Table 2-27:

(1) To drive inputs higher than  $V_{CCIO}$  but less than 4.0 V, disable the PCI clamping diode and select the Allow LVTTL and LVCMOS input levels to overdrive input buffer option in the Quartus II software.

(2) The pin current may be slightly higher than the default value. You must verify that the driving device's V<sub>0L</sub> maximum and V<sub>0H</sub> minimum voltages do not violate the applicable Arria GX V<sub>1L</sub> maximum and V<sub>1H</sub> minimum voltage specifications.

(3) Although  $V_{CC10}$  specifies the voltage necessary for the Arria GX device to drive out, a receiving device powered at a different level can still interface with the Arria GX device if it has inputs that tolerate the  $V_{CC10}$  value.

(4) Arria GX devices support 1.2-V HSTL. They do not support 1.2-V LVTTL and 1.2-V LVCMOS.

Table 4–8 and Table 4–9 list the transmitter and receiver PCS latency for each mode, respectively.

**Table 4–8.** PCS Latency(Note 1)

|                 |                                    | Transmitter PCS Latency |                       |                    |                     |                   |                |  |  |  |
|-----------------|------------------------------------|-------------------------|-----------------------|--------------------|---------------------|-------------------|----------------|--|--|--|
| Functional Mode | Configuration                      | TX PIPE                 | TX Phase<br>Comp FIFO | Byte<br>Serializer | TX State<br>Machine | 8B/10B<br>Encoder | <b>Sum</b> (2) |  |  |  |
| XAUI            | —                                  |                         | 2–3                   | 1                  | 0.5                 | 0.5               | 4–5            |  |  |  |
| PIPE            | ×1, ×4, ×8<br>8-bit channel width  | 1                       | 3–4                   | 1                  |                     | 1                 | 6–7            |  |  |  |
|                 | ×1, ×4, ×8<br>16-bit channel width | 1                       | 3–4                   | 1                  |                     | 0.5               | 6–7            |  |  |  |
| GIGE            | _                                  | —                       | 2–3                   | 1                  | _                   | 1                 | 4–5            |  |  |  |
| Serial RapidIO  | 1.25 Gbps, 2.5 Gbps,<br>3.125 Gbps |                         | 2–3                   | 1                  |                     | 0.5               | 4–5            |  |  |  |
| נחפ             | HD10-bit channel width             | _                       | 2–3                   | 1                  |                     | 1                 | 4–5            |  |  |  |
|                 | HD, 3G 20-bit channel width        |                         | 2–3                   | 1                  |                     | 0.5               | 4–5            |  |  |  |
| BASIC Single    | 8-bit/10-bit channel width         | _                       | 2–3                   | 1                  | _                   | 1                 | 4–5            |  |  |  |
| Width           | 16-bit/20-bit channel width        |                         | 2–3                   | 1                  |                     | 0.5               | 4–5            |  |  |  |

#### Notes to Table 4-8:

(1) The latency numbers are with respect to the PLD-transceiver interface clock cycles.

(2) The total latency number is rounded off in the Sum column.

|                   |                                    |              | Receiver PCS Latency |                  |                |                        |                   |            |                          |               |         |  |
|-------------------|------------------------------------|--------------|----------------------|------------------|----------------|------------------------|-------------------|------------|--------------------------|---------------|---------|--|
| Functional Mode   | Configuration                      | Word Aligner | Deskew FIFO          | Rate Matcher (3) | 8B/10B Decoder | Receiver State Machine | Byte Deserializer | Byte Order | Receiver Phase Comp FIFO | Receiver PIPE | Sum (2) |  |
| XAUI              | _                                  | 2–2.5        | 2–2.5                | 5.5–6.5          | 0.5            | 1                      | 1                 | 1          | 1–2                      | —             | 14–17   |  |
| DIDE              | ×1, ×4<br>8-bit channel width      | 4–5          | _                    | 11–13            | 1              |                        | 1                 | 1          | 2–3                      | 1             | 21–25   |  |
|                   | ×1, ×4<br>16-bit channel width     | 2–2.5        | _                    | 5.5–6.5          | 0.5            | _                      | 1                 | 1          | 2–3                      | 1             | 13–16   |  |
| GIGE              | —                                  | 4–5          |                      | 11–13            | 1              | _                      | 1                 | 1          | 1–2                      | _             | 19–23   |  |
| Serial<br>RapidIO | 1.25 Gbps, 2.5 Gbps,<br>3.125 Gbps | 2–2.5        | _                    |                  | 0.5            |                        | 1                 | 1          | 1–2                      | _             | 6–7     |  |
|                   | HD 10-bit channel width            | 5            | _                    | _                | 1              | —                      | 1                 | 1          | 1–2                      | —             | 9–10    |  |
| SDI               | HD, 3G 20-bit channel width        | 2.5          | _                    |                  | 0.5            |                        | 1                 | 1          | 1–2                      |               | 6–7     |  |

 Table 4–9.
 PCS Latency (Part 1 of 2) (Part 1 of 2)

| Symbol        | Parameter                                                                                         | Conditions                                    | Device | Min | Тур | Max | Units |
|---------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|--------|-----|-----|-----|-------|
|               |                                                                                                   | $V_i = 0, V_{CCIO} = 3.3 V$                   |        | 10  | 25  | 50  | kΩ    |
|               | Value of I/O pin pull-up                                                                          | $V_i = 0, V_{CCIO} = 2.5 V$                   |        | 15  | 35  | 70  | kΩ    |
|               | resistor before and during configuration                                                          | V <sub>i</sub> = 0, V <sub>CCI0</sub> = 1.8 V |        | 30  | 50  | 100 | kΩ    |
|               |                                                                                                   | $V_i = 0, V_{CCIO} = 1.5 V$                   | —      | 40  | 75  | 150 | kΩ    |
| $R_{CONF}(4)$ |                                                                                                   | $V_i = 0, V_{CCIO} = 1.2 V$                   |        | 50  | 90  | 170 | kΩ    |
|               | Recommended value of<br>I/O pin external pull-down<br>resistor before and during<br>configuration | _                                             |        |     | 1   | 2   | kΩ    |

## Table 4–14. Arria GX Device DC Operating Conditions (Part 2 of 2) (Note 1)

## Notes to Table 4-14:

(1) Typical values are for  $T_A = 25$  °C,  $V_{CCINT} = 1.2$  V, and  $V_{CCIO} = 1.2$  V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.

(2) This value is specified for normal device operation. The value may vary during power-up. This applies for all V<sub>CCI0</sub> settings (3.3, 2.5, 1.8, 1.5, and 1.2 V).

(3) Maximum values depend on the actual TJ and design utilization. For maximum values, refer to the Excel-based PowerPlay Early Power Estimator (available at PowerPlay Early Power Estimators (EPE) and Power Analyzer) or the Quartus<sup>®</sup> II PowerPlay Power Analyzer feature for maximum values. For more information, refer to "Power Consumption" on page 4–25.

(4) Pin pull-up resistance values will be lower if an external source drives the pin higher than V<sub>CCI0</sub>.

# I/O Standard Specifications

Table 4–15 through Table 4–38 show the Arria GX device family I/O standard specifications.

| Symbol                | Parameter                 | Conditions                        | Minimum | Maximum | Uni |
|-----------------------|---------------------------|-----------------------------------|---------|---------|-----|
| V <sub>CCI0</sub> (1) | Output supply voltage     | —                                 | 3.135   | 3.465   | V   |
| V <sub>IH</sub>       | High-level input voltage  | —                                 | 1.7     | 4.0     | V   |
| V <sub>IL</sub>       | Low-level input voltage   | —                                 | -0.3    | 0.8     | V   |
| V <sub>он</sub>       | High-level output voltage | I <sub>OH</sub> = -4 mA (2)       | 2.4     | _       | V   |
| V <sub>OL</sub>       | Low-level output voltage  | I <sub>oL</sub> = 4 mA <i>(2)</i> | _       | 0.45    | V   |

#### Table 4–15. LVTTL Specifications

Notes to Table 4-15:

(1) Arria GX devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B.

(2) This specification is supported across all the programmable drive strength settings available for this I/O standard.

| Symbol                | Parameter                 | Conditions                                     | Minimum          | Maximum | Units |
|-----------------------|---------------------------|------------------------------------------------|------------------|---------|-------|
| V <sub>CCIO</sub> (1) | Output supply voltage     | _                                              | 3.135            | 3.465   | V     |
| V <sub>IH</sub>       | High-level input voltage  | _                                              | 1.7              | 4.0     | V     |
| V <sub>IL</sub>       | Low-level input voltage   | _                                              | -0.3             | 0.8     | V     |
| V <sub>OH</sub>       | High-level output voltage | $V_{CCIO} = 3.0, I_{OH} = -0.1 \text{ mA}$ (2) | $V_{CC10} - 0.2$ |         | V     |
| V <sub>OL</sub>       | Low-level output voltage  | $V_{CCI0} = 3.0, I_{0L} = 0.1 \text{ mA}$ (2)  | —                | 0.2     | V     |

#### Table 4–16. LVCMOS Specifications

Notes to Table 4-16:

(1) Arria GX devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B.

(2) This specification is supported across all the programmable drive strength available for this I/O standard.

## Table 4-24. 3.3-V PCI Specifications

| Symbol            | Parameter                 | Conditions                  | Minimum                | Typical | Maximum                 | Units |
|-------------------|---------------------------|-----------------------------|------------------------|---------|-------------------------|-------|
| V <sub>CCIO</sub> | Output supply voltage     | —                           | 3.0                    | 3.3     | 3.6                     | V     |
| V <sub>IH</sub>   | High-level input voltage  | —                           | $0.5 V_{\text{CCIO}}$  | _       | V <sub>CCI0</sub> + 0.5 | V     |
| VIL               | Low-level input voltage   |                             | -0.3                   | _       | 0.3 V <sub>ccio</sub>   | V     |
| V <sub>OH</sub>   | High-level output voltage | I <sub>OUT</sub> = -500 μA  | $0.9  V_{\text{CCIO}}$ | _       | _                       | V     |
| V <sub>oL</sub>   | Low-level output voltage  | I <sub>0UT</sub> = 1,500 μA |                        | _       | $0.1 V_{ccio}$          | V     |

## Table 4-25. PCI-X Mode 1 Specifications

| Symbol            | Parameter                 | Conditions                  | Minimum               | Maximum                 | Units |
|-------------------|---------------------------|-----------------------------|-----------------------|-------------------------|-------|
| V <sub>CCIO</sub> | Output supply voltage     | —                           | 3.0                   | 3.6                     | V     |
| V <sub>IH</sub>   | High-level input voltage  | _                           | 0.5 V <sub>CC10</sub> | V <sub>CCI0</sub> + 0.5 | V     |
| V <sub>IL</sub>   | Low-level input voltage   | _                           | -0.3                  | $0.35 V_{ccio}$         | V     |
| V <sub>IPU</sub>  | Input pull-up voltage     | _                           | 0.7 V <sub>CC10</sub> | _                       | V     |
| V <sub>OH</sub>   | High-level output voltage | I <sub>0UT</sub> = -500 μA  | 0.9 V <sub>CC10</sub> |                         | V     |
| V <sub>OL</sub>   | Low-level output voltage  | I <sub>0UT</sub> = 1,500 μA |                       | 0.1 V <sub>CCIO</sub>   | V     |

## Table 4-26. SSTL-18 Class I Specifications

| Symbol               | Parameter                   | Conditions                          | Minimum                  | Typical          | Maximum                  | Units |
|----------------------|-----------------------------|-------------------------------------|--------------------------|------------------|--------------------------|-------|
| V <sub>CCIO</sub>    | Output supply voltage       | —                                   | 1.71                     | 1.8              | 1.89                     | V     |
| V <sub>REF</sub>     | Reference voltage           |                                     | 0.855                    | 0.9              | 0.945                    | V     |
| VTT                  | Termination voltage         |                                     | $V_{\text{REF}} - 0.04$  | V <sub>REF</sub> | V <sub>REF</sub> + 0.04  | V     |
| V <sub>⊮</sub> (DC)  | High-level DC input voltage |                                     | V <sub>REF</sub> + 0.125 | _                | —                        | V     |
| V <sub>IL</sub> (DC) | Low-level DC input voltage  |                                     | _                        | _                | V <sub>REF</sub> - 0.125 | V     |
| V <sub>⊮</sub> (AC)  | High-level AC input voltage |                                     | V <sub>REF</sub> + 0.25  | _                |                          | V     |
| V <sub>IL</sub> (AC) | Low-level AC input voltage  |                                     | _                        | _                | $V_{REF} - 0.25$         | V     |
| V <sub>OH</sub>      | High-level output voltage   | I <sub>0H</sub> = -6.7 mA (1)       | V <sub>TT</sub> + 0.475  | _                | —                        | V     |
| V <sub>OL</sub>      | Low-level output voltage    | I <sub>0L</sub> = 6.7 mA <i>(1)</i> | _                        | _                | $V_{\pi} - 0.475$        | V     |

Note to Table 4-26:

(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX Architecture chapter.

| Symbol               | Parameter                   | Conditions | Minimum                  | Typical          | Maximum                 | Units |
|----------------------|-----------------------------|------------|--------------------------|------------------|-------------------------|-------|
| V <sub>CCIO</sub>    | Output supply voltage       |            | 1.71                     | 1.8              | 1.89                    | V     |
| V <sub>REF</sub>     | Reference voltage           |            | 0.855                    | 0.9              | 0.945                   | V     |
| V <sub>TT</sub>      | Termination voltage         |            | $V_{\text{REF}} - 0.04$  | V <sub>REF</sub> | V <sub>REF</sub> + 0.04 | V     |
| V <sub>IH</sub> (DC) | High-level DC input voltage |            | V <sub>REF</sub> + 0.125 |                  | _                       | V     |
| V <sub>IL</sub> (DC) | Low-level DC input voltage  |            | —                        | _                | V <sub>REF</sub> -0.125 | V     |
| V <sub>IH</sub> (AC) | High-level AC input voltage |            | V <sub>REF</sub> + 0.25  | —                | —                       | V     |
| V <sub>IL</sub> (AC) | Low-level AC input voltage  |            | _                        | _                | V <sub>REF</sub> - 0.25 | V     |

Table 4-27. SSTL-18 Class II Specifications

|              | Drive       | 011-     | D               | Fast       | Corner     | –6 Speed | H. H. |
|--------------|-------------|----------|-----------------|------------|------------|----------|-------|
| I/U Standard | Strength    | CIOCK    | Parameter       | Industrial | Commercial | Grade    | Units |
| 1.0.1/       | C m A       | GCLK     | t <sub>co</sub> | 2.695      | 2.695      | 6.155    | ns    |
| 1.8 V        | 0 IIIA      | GCLK PLL | t <sub>co</sub> | 1.253      | 1.253      | 3.049    | ns    |
| 1.0.1/       | 1.9.1/ 0.m/ | GCLK     | t <sub>co</sub> | 2.697      | 2.697      | 6.064    | ns    |
| 1.0 V        | o IIIA      | GCLK PLL | t <sub>co</sub> | 1.255      | 1.255      | 2.958    | ns    |
| 1 0 \/       | 10 m/       | GCLK     | t <sub>co</sub> | 2.651      | 2.651      | 5.987    | ns    |
| 1.0 V        |             | GCLK PLL | t <sub>co</sub> | 1.209      | 1.209      | 2.881    | ns    |
| 1 0 \/       | 10 m/       | GCLK     | t <sub>co</sub> | 2.652      | 2.652      | 5.930    | ns    |
| 1.0 V        |             | GCLK PLL | t <sub>co</sub> | 1.210      | 1.210      | 2.824    | ns    |
| 151          | 2 m 1       | GCLK     | t <sub>co</sub> | 2.746      | 2.746      | 6.723    | ns    |
| 1.5 V        | 2 IIIA      | GCLK PLL | t <sub>co</sub> | 1.304      | 1.304      | 3.617    | ns    |
| 151          | 4 mA        | GCLK     | t <sub>co</sub> | 2.682      | 2.682      | 6.154    | ns    |
| 1.5 V        | 4 IIIA      | GCLK PLL | t <sub>co</sub> | 1.240      | 1.240      | 3.048    | ns    |
| 151          | 6 m 1       | GCLK     | t <sub>co</sub> | 2.685      | 2.685      | 6.036    | ns    |
| 1.5 V        | 0 IIIA      | GCLK PLL | t <sub>co</sub> | 1.243      | 1.243      | 2.930    | ns    |
| 151          | 8 m/        | GCLK     | t <sub>co</sub> | 2.644      | 2.644      | 5.983    | ns    |
| 1.5 V        | 0 IIIA      | GCLK PLL | t <sub>co</sub> | 1.202      | 1.202      | 2.877    | ns    |
| SSTL-2       | 8 m/        | GCLK     | t <sub>co</sub> | 2.629      | 2.629      | 5.762    | ns    |
| CLASS I      | 0 IIIA      | GCLK PLL | t <sub>co</sub> | 1.184      | 1.184      | 2.650    | ns    |
| SSTL-2       | 10 mA       | GCLK     | t <sub>co</sub> | 2.612      | 2.612      | 5.712    | ns    |
| CLASS I      | 12 1114     | GCLK PLL | t <sub>co</sub> | 1.167      | 1.167      | 2.600    | ns    |
| SSTL-2       | 16 m/       | GCLK     | t <sub>co</sub> | 2.590      | 2.590      | 5.639    | ns    |
| CLASS II     |             | GCLK PLL | t <sub>co</sub> | 1.145      | 1.145      | 2.527    | ns    |
| SSTL-2       | 20 mA       | GCLK     | t <sub>co</sub> | 2.591      | 2.591      | 5.626    | ns    |
| CLASS II     | 20 1114     | GCLK PLL | t <sub>co</sub> | 1.146      | 1.146      | 2.514    | ns    |
| SSTL-2       | 24 mA       | GCLK     | t <sub>co</sub> | 2.587      | 2.587      | 5.624    | ns    |
| CLASS II     | 24 11/4     | GCLK PLL | t <sub>co</sub> | 1.142      | 1.142      | 2.512    | ns    |
| SSTL-18      | 4 m∆        | GCLK     | t <sub>co</sub> | 2.626      | 2.626      | 5.733    | ns    |
| CLASS I      |             | GCLK PLL | t <sub>co</sub> | 1.184      | 1.184      | 2.627    | ns    |
| SSTL-18      | 6 m∆        | GCLK     | t <sub>co</sub> | 2.630      | 2.630      | 5.694    | ns    |
| CLASS I      | UIIA        | GCLK PLL | t <sub>co</sub> | 1.185      | 1.185      | 2.582    | ns    |
| SSTL-18      | 8 m 4       | GCLK     | t <sub>co</sub> | 2.609      | 2.609      | 5.675    | ns    |
| CLASS I      | UIIA        | GCLK PLL | t <sub>co</sub> | 1.164      | 1.164      | 2.563    | ns    |
| SSTL-18      | 10 mA       | GCLK     | t <sub>co</sub> | 2.614      | 2.614      | 5.673    | ns    |
| CLASS I      |             | GCLK PLL | t <sub>co</sub> | 1.169      | 1.169      | 2.561    | ns    |
| SSTL-18      | 12 m∆       | GCLK     | t <sub>co</sub> | 2.608      | 2.608      | 5.659    | ns    |
| CLASS I      | 12 11/4     | GCLK PLL | t <sub>co</sub> | 1.163      | 1.163      | 2.547    | ns    |
| SSTL-18      | 8 mA        | GCLK     | t <sub>co</sub> | 2.597      | 2.597      | 5.625    | ns    |
| CLASS II     |             | GCLK PLL | t <sub>co</sub> | 1.152      | 1.152      | 2.513    | ns    |

 Table 4–51.
 EP1AGX20
 Column Pins
 Output Timing Parameters
 (Part 2 of 4)

| 1/0 Standard | Drive    | Oleek    | Deremeter       | Fast       | Corner     | –6 Speed | Unite |
|--------------|----------|----------|-----------------|------------|------------|----------|-------|
| i/U Standard | Strength | GIOCK    | Parameter       | Industrial | Commercial | Grade    | Units |
| SSTL-18      | 16 m/    | GCLK     | t <sub>co</sub> | 2.609      | 2.609      | 5.603    | ns    |
| CLASS II     | TO IIIA  | GCLK PLL | t <sub>co</sub> | 1.164      | 1.164      | 2.491    | ns    |
| SSTL-18      | 10 m/    | GCLK     | t <sub>co</sub> | 2.605      | 2.605      | 5.611    | ns    |
| CLASS II     | TO IIIA  | GCLK PLL | t <sub>co</sub> | 1.160      | 1.160      | 2.499    | ns    |
| SSTL-18      | 20 mA    | GCLK     | t <sub>co</sub> | 2.605      | 2.605      | 5.609    | ns    |
| CLASS II     | 20 MA    | GCLK PLL | t <sub>co</sub> | 1.160      | 1.160      | 2.497    | ns    |
| 1.8-V HSTL   | 1 m 1    | GCLK     | t <sub>co</sub> | 2.629      | 2.629      | 5.664    | ns    |
| CLASS I      | 4 IIIA   | GCLK PLL | t <sub>co</sub> | 1.187      | 1.187      | 2.558    | ns    |
| 1.8-V HSTL   | 6 m 1    | GCLK     | t <sub>co</sub> | 2.634      | 2.634      | 5.649    | ns    |
| CLASS I      | 0 IIIA   | GCLK PLL | t <sub>co</sub> | 1.189      | 1.189      | 2.537    | ns    |
| 1.8-V HSTL   | 0 m 1    | GCLK     | t <sub>co</sub> | 2.612      | 2.612      | 5.638    | ns    |
| CLASS I      | o IIIA   | GCLK PLL | t <sub>co</sub> | 1.167      | 1.167      | 2.526    | ns    |
| 1.8-V HSTL   | 10 m/    | GCLK     | t <sub>co</sub> | 2.616      | 2.616      | 5.644    | ns    |
| CLASS I      | TU IIIA  | GCLK PLL | t <sub>co</sub> | 1.171      | 1.171      | 2.532    | ns    |
| 1.8-V HSTL   | 10 m/    | GCLK     | t <sub>co</sub> | 2.608      | 2.608      | 5.637    | ns    |
| CLASS I      | IZ IIIA  | GCLK PLL | t <sub>co</sub> | 1.163      | 1.163      | 2.525    | ns    |
| 1.8-V HSTL   | 16 m/    | GCLK     | t <sub>co</sub> | 2.591      | 2.591      | 5.401    | ns    |
| CLASS II     | TO IIIA  | GCLK PLL | t <sub>co</sub> | 1.146      | 1.146      | 2.289    | ns    |
| 1.8-V HSTL   | 10 m/    | GCLK     | t <sub>co</sub> | 2.593      | 2.593      | 5.412    | ns    |
| CLASS II     | TO IIIA  | GCLK PLL | t <sub>co</sub> | 1.148      | 1.148      | 2.300    | ns    |
| 1.8-V HSTL   | 20 mA    | GCLK     | t <sub>co</sub> | 2.593      | 2.593      | 5.421    | ns    |
| CLASS II     | 20 MA    | GCLK PLL | t <sub>co</sub> | 1.148      | 1.148      | 2.309    | ns    |
| 1.5-V HSTL   | 1 m 1    | GCLK     | t <sub>co</sub> | 2.629      | 2.629      | 5.663    | ns    |
| CLASS I      | 4 IIIA   | GCLK PLL | t <sub>co</sub> | 1.187      | 1.187      | 2.557    | ns    |
| 1.5-V HSTL   | 6        | GCLK     | t <sub>co</sub> | 2.633      | 2.633      | 5.641    | ns    |
| CLASS I      | 0 IIIA   | GCLK PLL | t <sub>co</sub> | 1.188      | 1.188      | 2.529    | ns    |
| 1.5-V HSTL   | 8 m /    | GCLK     | t <sub>co</sub> | 2.615      | 2.615      | 5.643    | ns    |
| CLASS I      | 0 IIIA   | GCLK PLL | t <sub>co</sub> | 1.170      | 1.170      | 2.531    | ns    |
| 1.5-V HSTL   | 10 m/    | GCLK     | t <sub>co</sub> | 2.615      | 2.615      | 5.645    | ns    |
| CLASS I      | TU IIIA  | GCLK PLL | t <sub>co</sub> | 1.170      | 1.170      | 2.533    | ns    |
| 1.5-V HSTL   | 10 m/    | GCLK     | t <sub>co</sub> | 2.609      | 2.609      | 5.643    | ns    |
| CLASS I      | IZ IIIA  | GCLK PLL | t <sub>co</sub> | 1.164      | 1.164      | 2.531    | ns    |
| 1.5-V HSTL   | 16 m^    | GCLK     | t <sub>co</sub> | 2.596      | 2.596      | 5.455    | ns    |
| CLASS II     | TO IIIA  | GCLK PLL | t <sub>co</sub> | 1.151      | 1.151      | 2.343    | ns    |
| 1.5-V HSTL   | 10 ~^    | GCLK     | t <sub>co</sub> | 2.599      | 2.599      | 5.465    | ns    |
| CLASS II     | Ið MA    | GCLK PLL | t <sub>co</sub> | 1.154      | 1.154      | 2.353    | ns    |
| 1.5-V HSTL   | 00 ~ ^   | GCLK     | t <sub>co</sub> | 2.601      | 2.601      | 5.478    | ns    |
| CLASS II     | 20 mA    | GCLK PLL | t <sub>co</sub> | 1.156      | 1.156      | 2.366    | ns    |

| Table 4–51. | EP1AGX | 20 Colum | n Pins Output | Timing | Parameter | rs (Part 3 of 4) |
|-------------|--------|----------|---------------|--------|-----------|------------------|
|             |        |          |               |        |           |                  |

Table 4–61 lists I/O timing specifications.

 Table 4–61.
 EP1AGX50 Column Pins Input Timing Parameters (Part 1 of 2)

| 1/0 Standard | Oleek    | Devemeter       | Fast       | Corner     | –6 Speed | Unito |  |
|--------------|----------|-----------------|------------|------------|----------|-------|--|
| i/U Standard | LIOCK    | Parameter       | Industrial | Commercial | Grade    | Units |  |
|              | GCLK     | t <sub>su</sub> | 1.242      | 1.242      | 2.902    | ns    |  |
|              |          | t <sub>H</sub>  | -1.137     | -1.137     | -2.625   | ns    |  |
| 3.3-V LVIIL  | GCLK PLL | t <sub>su</sub> | 2.684      | 2.684      | 6.009    | ns    |  |
|              |          | t <sub>H</sub>  | -2.579     | -2.579     | -5.732   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.242      | 1.242      | 2.902    | ns    |  |
| 3.3-V        |          | t <sub>H</sub>  | -1.137     | -1.137     | -2.625   | ns    |  |
| LVCMOS       | GCLK PLL | t <sub>su</sub> | 2.684      | 2.684      | 6.009    | ns    |  |
|              |          | t <sub>H</sub>  | -2.579     | -2.579     | -5.732   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.252      | 1.252      | 2.884    | ns    |  |
| 25.1         |          | t <sub>H</sub>  | -1.147     | -1.147     | -2.607   | ns    |  |
| 2.5 V        | GCLK PLL | t <sub>su</sub> | 2.694      | 2.694      | 5.991    | ns    |  |
|              |          | t <sub>H</sub>  | -2.589     | -2.589     | -5.714   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.318      | 1.318      | 3.094    | ns    |  |
| 191/         |          | t <sub>H</sub>  | -1.213     | -1.213     | -2.817   | ns    |  |
| 1.0 V        | GCLK PLL | t <sub>su</sub> | 2.760      | 2.760      | 6.201    | ns    |  |
|              |          | t <sub>H</sub>  | -2.655     | -2.655     | -5.924   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.321      | 1.321      | 3.187    | ns    |  |
| 151          |          | t <sub>H</sub>  | -1.216     | -1.216     | -2.910   | ns    |  |
| 1.5 V        | GCLK PLL | t <sub>su</sub> | 2.763      | 2.763      | 6.294    | ns    |  |
|              |          | t <sub>H</sub>  | -2.658     | -2.658     | -6.017   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.034      | 1.034      | 2.314    | ns    |  |
| SSTL-2       |          | t <sub>H</sub>  | -0.929     | -0.929     | -2.037   | ns    |  |
| CLASS I      | GCLK PLL | t <sub>su</sub> | 2.500      | 2.500      | 5.457    | ns    |  |
|              |          | t <sub>H</sub>  | -2.395     | -2.395     | -5.180   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.034      | 1.034      | 2.314    | ns    |  |
| SSTL-2       |          | t <sub>H</sub>  | -0.929     | -0.929     | -2.037   | ns    |  |
| CLASS II     | GCLK PLL | t <sub>su</sub> | 2.500      | 2.500      | 5.457    | ns    |  |
|              |          | t <sub>H</sub>  | -2.395     | -2.395     | -5.180   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.104      | 1.104      | 2.466    | ns    |  |
| SSTL-18      |          | t <sub>H</sub>  | -0.999     | -0.999     | -2.189   | ns    |  |
| CLASS I      | GCLK PLL | t <sub>su</sub> | 2.546      | 2.546      | 5.573    | ns    |  |
|              |          | t <sub>H</sub>  | -2.441     | -2.441     | -5.296   | ns    |  |
|              | GCLK     | t <sub>su</sub> | 1.074      | 1.074      | 2.424    | ns    |  |
| SSTL-18      |          | t <sub>H</sub>  | -0.969     | -0.969     | -2.147   | ns    |  |
| CLASS II     | GCLK PLL | t <sub>su</sub> | 2.539      | 2.539      | 5.564    | ns    |  |
|              |          | t <sub>H</sub>  | -2.434     | -2.434     | -5.287   | ns    |  |

Table 4–64 lists row pin delay adders when using the regional clock in Arria GX devices.

| Deveneter             | Fast       | Corner     | C Croad Crada    | Unite  |  |
|-----------------------|------------|------------|------------------|--------|--|
| Parameter             | Industrial | Commercial | – –o speed Grade | UIIIIS |  |
| RCLK input adder      | 0.151      | 0.151      | 0.329            | ns     |  |
| RCLK PLL input adder  | 0.011      | 0.011      | 0.016            | ns     |  |
| RCLK output adder     | -0.151     | -0.151     | -0.329           | ns     |  |
| RCLK PLL output adder | -0.011     | -0.011     | -0.016           | ns     |  |

 Table 4–64.
 EP1AGX50 Row Pin Delay Adders for Regional Clock

Table 4–65 lists column pin delay adders when using the regional clock in Arria GX devices.

| Poromotor             | Fast       | Corner     | Unito          |        |  |
|-----------------------|------------|------------|----------------|--------|--|
| Falametei             | Industrial | Commercial | -o speeu uraue | UIIIIS |  |
| RCLK input adder      | 0.146      | 0.146      | 0.334          | ns     |  |
| RCLK PLL input adder  | -1.713     | -1.713     | -3.645         | ns     |  |
| RCLK output adder     | -0.146     | -0.146     | -0.336         | ns     |  |
| RCLK PLL output adder | 1.716      | 1.716      | 4.488          | ns     |  |

Table 4-65. EP1AGX50 Column Pin Delay Adders for Regional Clock

## **EP1AGX60 I/O Timing Parameters**

Table 4–66 through Table 4–69 list the maximum I/O timing parameters for EP1AGX60 devices for I/O standards which support general purpose I/O pins.

Table 4–66 lists I/O timing specifications.

**Table 4–66.** EP1AGX60 Row Pins Input Timing Parameters (Part 1 of 3)

| 1/0 Standard | Clock    | Doromotor       | Fast                  | Model  | –6 Speed | llnite |
|--------------|----------|-----------------|-----------------------|--------|----------|--------|
| iyo Stanuaru | GIUCK    | Parameter       | Industrial Commercial |        | Grade    | Units  |
|              | GCLK     | t <sub>su</sub> | 1.413                 | 1.413  | 3.113    | ns     |
|              |          | t <sub>H</sub>  | -1.308                | -1.308 | -2.836   | ns     |
|              | GCLK PLL | t <sub>su</sub> | 2.975                 | 2.975  | 6.536    | ns     |
|              |          | t <sub>H</sub>  | -2.870                | -2.870 | -6.259   | ns     |
|              | GCLK     | t <sub>su</sub> | 1.413                 | 1.413  | 3.113    | ns     |
|              |          | t <sub>H</sub>  | -1.308                | -1.308 | -2.836   | ns     |
|              | GCLK PLL | t <sub>su</sub> | 2.975                 | 2.975  | 6.536    | ns     |
|              |          | t <sub>H</sub>  | -2.870                | -2.870 | -6.259   | ns     |
|              | GCLK     | t <sub>su</sub> | 1.425                 | 1.425  | 3.094    | ns     |
| 251/         |          | t <sub>H</sub>  | -1.320                | -1.320 | -2.817   | ns     |
| 2.0 V        | GCLK PLL | t <sub>su</sub> | 2.987                 | 2.987  | 6.517    | ns     |
|              |          | t <sub>H</sub>  | -2.882                | -2.882 | -6.240   | ns     |

Table 4–77 lists column pin delay adders when using the regional clock in Arria GX devices.

| Doromotor             | Fast (     | Corner     | 6 Grood Grodo | Units |  |
|-----------------------|------------|------------|---------------|-------|--|
| rarameter             | Industrial | Commercial | o speeu uraue |       |  |
| RCLK input adder      | 0.138      | 0.138      | 0.354         | ns    |  |
| RCLK PLL input adder  | -1.697     | -1.697     | -3.607        | ns    |  |
| RCLK output adder     | -0.138     | -0.138     | -0.353        | ns    |  |
| RCLK PLL output adder | 1.966      | 1.966      | 5.188         | ns    |  |

 Table 4–77.
 EP1AGX90 Column Pin Delay Adders for Regional Clock

# **Dedicated Clock Pin Timing**

Table 4–79 through Table 4–98 list clock pin timing for Arria GX devices when the clock is driven by the global clock, regional clock, periphery clock, and a PLL.

Table 4–78 lists Arria GX clock timing parameters.

Table 4–78. Arria GX Clock Timing Parameters

| Symbol               | Parameter                                       |
|----------------------|-------------------------------------------------|
| t <sub>cin</sub>     | Delay from clock pad to I/O input register      |
| t <sub>COUT</sub>    | Delay from clock pad to I/O output register     |
| t <sub>PLLCIN</sub>  | Delay from PLL inclk pad to I/O input register  |
| t <sub>PLLCOUT</sub> | Delay from PLL inclk pad to I/O output register |

## **EP1AGX20 Clock Timing Parameters**

Table 4–79 through Table 4–80 list the GCLK clock timing parameters for EP1AGX20 devices.

Table 4–79 lists clock timing specifications.

Table 4–79. EP1AGX20 Row Pins Global Clock Timing Parameters

| Doromotor | Fast Model |             | 6 Speed Grede  | Unito  |  |
|-----------|------------|-------------|----------------|--------|--|
| Falametei | Industrial | Commercial  | -o speeu uraue | UIIIIS |  |
| tcin      | 1.394      | 1.394       | 3.161          | ns     |  |
| tcout     | 1.399      | 1.399 3.155 |                | ns     |  |
| tpllcin   | -0.027     | -0.027      | 0.091          | ns     |  |
| tpllcout  | -0.022     | -0.022      | 0.085          | ns     |  |

| I/O Standards      | Drive Strength | –6 Speed Grade | Units |
|--------------------|----------------|----------------|-------|
|                    | 4 mA           | 280            | MHz   |
|                    | 6 mA           | 420            | MHz   |
| 1.8-V HSTL CLASS I | 8 mA           | 561            | MHz   |
|                    | 10 mA          | 561            | MHz   |
|                    | 12 mA          | 607            | MHz   |
|                    | 4 mA           | 280            | MHz   |
| 1.5-V HSTL CLASS I | 6 mA           | 420            | MHz   |
|                    | 8 mA           | 561            | MHz   |
| LVDS               |                | 598            | MHz   |

Table 4-106. Arria GX Maximum Output Toggle Rate for Row I/O Pins

Table 4–107 lists maximum output clock rate for dedicated clock pins.

| I/O Standards    | Drive Strength | -6 Speed Grade | Units |
|------------------|----------------|----------------|-------|
|                  | 4 mA           | 196            | MHz   |
|                  | 8 mA           | 303            | MHz   |
|                  | 12 mA          | 393            | MHz   |
| 5.5-V LVIIL      | 16 mA          | 486            | MHz   |
|                  | 20 mA          | 570            | MHz   |
|                  | 24 mA          | 626            | MHz   |
|                  | 4 mA           | 215            | MHz   |
|                  | 8 mA           | 411            | MHz   |
| 2 2 1/11/0000    | 12 mA          | 626            | MHz   |
| 3.3-V LV GIVIO 3 | 16 mA          | 819            | MHz   |
|                  | 20 mA          | 874            | MHz   |
|                  | 24 mA          | 934            | MHz   |
|                  | 4 mA           | 168            | MHz   |
| 25.1             | 8 mA           | 355            | MHz   |
| 2.5 V            | 12 mA          | 514            | MHz   |
|                  | 16 mA          | 766            | MHz   |
|                  | 2 mA           | 97             | MHz   |
|                  | 4 mA           | 215            | MHz   |
| 1 0 \/           | 6 mA           | 336            | MHz   |
| 1.0 V            | 8 mA           | 486            | MHz   |
|                  | 10 mA          | 706            | MHz   |
|                  | 12 mA          | 925            | MHz   |
|                  | 2 mA           | 168            | MHz   |
| 151              | 4 mA           | 303            | MHz   |
| 1.J V            | 6 mA           | 350            | MHz   |
|                  | 8 mA           | 392            | MHz   |

**Table 4–107.** Arria GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 1 of 4)

### Table 4-116. Enhanced PLL Specifications (Part 2 of 2)

| Name                      | Description                                                                                 | Min | Тур | Max | Units |
|---------------------------|---------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| t <sub>reconfigwalt</sub> | The time required for the wait after the reconfiguration is done and the areset is applied. | _   | _   | 2   | us    |

## Notes to Table 4-116:

(1) This is limited by the I/O  $f_{MAX}$ .

(2) If the counter cascading feature of the PLL is used, there is no minimum output clock frequency.

| Name                   | Description                                                                                                      | Min    | Тур                     | Max | Units    |
|------------------------|------------------------------------------------------------------------------------------------------------------|--------|-------------------------|-----|----------|
| f <sub>IN</sub>        | Input clock frequency                                                                                            | 16.08  |                         | 640 | MHz      |
| f <sub>INPFD</sub>     | Input frequency to the PFD                                                                                       | 16.08  | _                       | 500 | MHz      |
| f <sub>INDUTY</sub>    | Input clock duty cycle                                                                                           | 40     |                         | 60  | %        |
|                        | Input clock jitter<br>tolerance in terms of<br>period jitter.<br>Bandwidth ≤ 2 MHz                               |        | 0.5                     | _   | ns (p-p) |
| <b>NJITTER</b>         | Input clock jitter<br>tolerance in terms of<br>period jitter.<br>Bandwidth > 0.2 MHz                             | _      | 1.0                     | _   | ns (p-p) |
| f                      | Upper VCO frequency<br>range                                                                                     | 300    | _                       | 840 | MHz      |
| VCO                    | Lower VCO frequency range                                                                                        | 150    | _                       | 420 | MHz      |
| f <sub>out</sub>       | PLL output frequency<br>to gclk of rclk                                                                          | 4.6875 | _                       | 550 | MHz      |
|                        | PLL output frequency to LVDS or DPA clock                                                                        | 150    | —                       | 840 | MHz      |
| f <sub>out_ext</sub>   | PLL clock output<br>frequency to regular<br>I/O                                                                  | 4.6875 | _                       | (1) | MHz      |
| t <sub>configpll</sub> | Time required to<br>reconfigure scan<br>chains for fast PLLs                                                     | _      | 75/f <sub>scanclk</sub> | _   | ns       |
| f <sub>clbw</sub>      | PLL closed-loop bandwidth                                                                                        | 1.16   | 5                       | 28  | MHz      |
| t <sub>lock</sub>      | Time required for the<br>PLL to lock from the<br>time it is enabled or<br>the end of the device<br>configuration | _      | 0.03                    | 1   | ms       |
| t <sub>PLL_PSERR</sub> | Accuracy of PLL phase shift                                                                                      |        | _                       | ±30 | ps       |
| t <sub>ARESET</sub>    | Minimum pulse width<br>on areset signal.                                                                         | 10     | _                       | _   | ns       |

# Table 4–117. Fast PLL Specifications (Part 1 of 2)

| Visual Cue                                | Meaning                                                                                                                                                                                |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Courier type                              | Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. Active-low signals are denoted by suffix n. For example, resetn.                |
|                                           | Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.                                                 |
|                                           | Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI). |
| 1., 2., 3., and<br>a., b., c., and so on. | Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.                                                          |
| 8.8                                       | Bullets indicate a list of items when the sequence of the items is not important.                                                                                                      |
| IP                                        | The hand points to information that requires special attention.                                                                                                                        |
| CAUTION                                   | A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.                                                                    |
|                                           | A warning calls attention to a condition or possible situation that can cause you injury.                                                                                              |
| 4                                         | The angled arrow instructs you to press Enter.                                                                                                                                         |
|                                           | The feet direct you to more information about a particular topic.                                                                                                                      |