

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	80MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	40
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	PG-LQFP-64-13
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xe162hm72f80laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Table of Contents

1 1.1 1.2	Summary of Features Basic Device Types Definition of Feature Variants	7 10 11
2 2.1 2.2	General Device Information	13 14 27
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	Functional Description Memory Subsystem and Organization Central Processing Unit (CPU) Memory Protection Unit (MPU) Memory Checker Module (MCHK) Interrupt System On-Chip Debug Support (OCDS) Capture/Compare Unit (CAPCOM2) Capture/Compare Units CCU6x General Purpose Timer (GPT12E) Unit Real Time Clock A/D Converters Universal Serial Interface Channel Modules (USIC) MultiCAN Module System Timer Clock Generation Parallel Ports Instruction Set Summary	$\begin{array}{c} 28\\ 29\\ 32\\ 34\\ 35\\ 36\\ 37\\ 40\\ 42\\ 46\\ 49\\ 51\\ 52\\ 53\\ 54\\ 55\\ 55\\ \end{array}$
4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3 4.4 4.5 4.6	Electrical Parameters General Parameters Absolut Maximum Rating Conditions Operating Conditions Pad Timing Definition Parameter Interpretation DC Parameters DC Parameters DC Parameters for Lower Voltage Area Power Consumption Analog/Digital Converter Parameters System Parameters Flash Memory Parameters AC Parameters	58 58 59 61 62 64 66 68 73 77 80 82

Summary of Features

- Capture/compare unit for flexible PWM signal generation (CCU60)
- Two Synchronizable A/D Converters with a total of up to 9 channels, 10-bit resolution, conversion time below 1 μ s, optional data preprocessing (data reduction, range check), broken wire detection
- Up to 6 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
- On-chip MultiCAN interface (Rev. 2.0B active) with up to 64 message objects (Full CAN/Basic CAN) on up to 2 CAN nodes and gateway functionality
- On-chip system timer and on-chip real time clock
- Single power supply from 3.0 V to 5.5 V
- Programmable watchdog timer and oscillator watchdog
- Up to 40 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via Device Access Port (DAP) or JTAG interface
- 64-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Summary of Features

1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

	-			r	
Derivative ¹⁾	Flash Memory ²⁾	PSRAM DSRAM ³⁾	Capt./Comp. Modules	ADC ⁴⁾ Chan.	Interfaces ⁴⁾
XE162FM- 72FxxL	576 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	2 CAN Nodes, 6 Serial Chan.
XE162FM- 48FxxL	384 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	2 CAN Nodes, 6 Serial Chan.
XE162FM- 24FxxL	192 Kbytes	10 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	2 CAN Nodes, 6 Serial Chan.
XE162HM- 72FxxL	576 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	No CAN Node, 6 Serial Chan.
XE162HM- 48FxxL	384 Kbytes	16 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	No CAN Node, 6 Serial Chan.
XE162HM- 24FxxL	192 Kbytes	10 Kbytes 16 Kbytes	CC2 CCU60	7 + 2	No CAN Node, 6 Serial Chan.

Table 1Synopsis of XE162xM Basic Device Types

1) xx is a placeholder for the available speed grade (in MHz).

2) Specific information about the on-chip Flash memory in Table 2.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

 Specific information about the available channels in Table 4. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

Summary of Features

The XE162xM types are offered with several SRAM memory sizes. **Figure 1** shows the allocation rules for PSRAM and DSRAM. Note that the rules differ:

- PSRAM allocation starts from the lower address
- DSRAM allocation starts from the higher address

For example 8 Kbytes of PSRAM will be allocated at E0'0000h-E0'1FFFh and 8 Kbytes of DSRAM will be at 00'C000h-00'DFFFh.

Figure 1 SRAM Allocation

General Device Information

2 General Device Information

The XE162xM series (16-Bit Single-Chip

Real Time Signal Controller) is a part of the Infineon XE166 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

Figure 2 XE162xM Logic Symbol

General Device Information

2.1 Pin Configuration and Definition

The pins of the XE162xM are described in detail in **Table 5**, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package.

Figure 3 XE162xM Pin Configuration (top view)

XE162FM, XE162HM XE166 Family / Base Line

General Device Information

Table	Table 5Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
28	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output			
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output			
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.			
	ESR2_0	I	St/B	ESR2 Trigger Input 0			
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input			
_	RxDC0A	Ι	St/B	CAN Node 0 Receive Data Input			
29	P2.4	00 / 1	St/B	Bit 4 of Port 2, General Purpose Input/Output			
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CC2_CC17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.			
	ESR1_0	I	St/B	ESR1 Trigger Input 0			
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input			
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input			
30	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output			
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output			
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output			
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.			
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input			
_	ESR1_10	I	St/B	ESR1 Trigger Input 10			
31	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output			
	U0C0_SELO 0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output			
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output			
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.			
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input			
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input			
	ESR2_6	I	St/B	ESR2 Trigger Input 6			

General Device Information

2.2 Identification Registers

The identification registers describe the current version of the XE162xM and of its modules.

Table 6 XE162xM Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3801 _H	00'F07C _H	
SCU_IDMEM	30D0 _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0017'E083 _H		marking EES-AA, ES-AA or AA

3 Functional Description

The architecture of the XE162xM combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 4**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XE162xM.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XE162xM.

Figure 4 Block Diagram

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XE162xM to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

3.11 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 7 + 2 multiplexed input channels and a sample and hold circuit have been integrated onchip. 2 inputs can be converted by both A/D converters. Conversions use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically. For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XE162xM support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features reduce the number of required CPU access operations allowing the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed. Result data can be reduced by limit checking or accumulation of results.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages. This can be selected for each pin separately with the Port x Digital Input Disable registers.

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

Broken wire detection for each channel and a multiplexer test mode provide information to verify the proper operation of the analog signal sources (e.g. a sensor system).

3.12 Universal Serial Interface Channel Modules (USIC)

The XE162xM features the USIC modules USIC0, USIC1, USIC2. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

3.15 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.42 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.16 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XE162xM from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

- 2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.
 - In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $3 + 0.6 \text{ x} f_{SYS}$.
- 3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XE162xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A ($V_{\rm DDPA}$) supplies the A/D converters and Port 6. Power domain B ($V_{\rm DDPB}$) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from $V_{\rm DDPA}$.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 0.6 \times f_{SYS})$ mA.

4.4 System Parameters

The following parameters specify several aspects which are important when integrating the XE162xM into an application system.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Short-term deviation of internal clock source frequency ¹⁾	∆f _{INT} CC	-1	-	1	%	⊿ <i>T</i> _J ≤ 10 °C
Internal clock source frequency	$f_{INT}CC$	4.8	5.0	5.2	MHz	
Wakeup clock source	$f_{\rm WU}{ m CC}$	400	-	700	kHz	FREQSEL= 00
frequency ²⁾		210	-	390	kHz	FREQSEL= 01
		140	-	260	kHz	FREQSEL= 10
		110	-	200	kHz	FREQSEL= 11
Startup time from power- on with code execution from Flash	t _{SPO} CC	1.8	2.2	2.7	ms	$f_{\rm WU}$ = 500 kHz
Startup time from stopover mode with code execution from PSRAM	t _{SSO} CC	11 / f _{WU} ³⁾	-	12 / f _{WU} ³⁾	μS	
Core voltage (PVC) supervision level	V _{PVC} CC	V _{LV} - 0.03	V _{LV}	V _{LV} + 0.07 ₄₎	V	5)
Supply watchdog (SWD) supervision level	V _{SWD} CC	V _{LV} - 0.10 ⁶⁾	$V_{\rm LV}$	V _{LV} + 0.15	V	Lower voltage range ⁵⁾
		V _{LV} - 0.15	V_{LV}	V _{LV} + 0.15	V	Upper voltage range ⁵⁾

Table 19 Various System Parameters

 The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization.

 This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization

Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

 Table 26 is valid under the following conditions:

 $V_{\text{DDP}} \ge 3.0 \text{ V}; V_{\text{DDPtyp}} = 3.3 \text{ V}; V_{\text{DDP}} \le 4.5 \text{ V}; C_{\text{L}} \ge 20 \text{ pF}; C_{\text{L}} \le 100 \text{ pF};$

Table 26	Standard	Pad Parameters	for Lower	Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver	I _{Omax}	-	-	10	mA	Strong driver
current (absolute value) ¹⁾	CC	-	-	2.5	mA	Medium driver
		-	-	0.5	mA	Weak driver
Nominal output driver	I _{Onom}	-	-	2.5	mA	Strong driver
current (absolute value)	CC	-	-	1.0	mA	Medium driver
		-	-	0.1	mA	Weak driver
Rise and Fall times (10% - 90%)	t _{RF} CC	-	-	6.2 + 0.24 x <i>C</i> L	ns	Strong driver; Sharp edge
		-	-	24 + 0.3 x <i>C</i> _L	ns	Strong driver; Medium edge
		-	-	34 + 0.3 x C _L	ns	Strong driver; Slow edge
		_	-	37 + 0.65 x C _L	ns	Medium driver
		-	-	500 + 2.5 x <i>C</i> L	ns	Weak driver

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

Parameter	Symbol		Value	5	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	_	ns		
DAP0 high time	t ₁₂ SR	8	-	-	ns		
DAP0 low time	t ₁₃ SR	8	-	_	ns		
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns		
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns		
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard	
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard	
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	pad_type= stan dard	

Table 32 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Figure 23 Test Clock Timing (DAP0)

Debug via JTAG

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; C_L = 20 pF.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁ SR	50 ¹⁾	_	_	ns	2)
TCK high time	t_2 SR	16	-	-	ns	
TCK low time	t ₃ SR	16	-	-	ns	
TCK clock rise time	t ₄ SR	-	-	8	ns	
TCK clock fall time	t ₅ SR	-	-	8	ns	
TDI/TMS setup to TCK rising edge	t ₆ SR	6	-	_	ns	
TDI/TMS hold after TCK rising edge	t ₇ SR	6	-	-	ns	
TDO valid from TCK falling edge (propagation delay) ³⁾	t ₈ CC	-	25	29	ns	
TDO high impedance to valid output from TCK falling edge ⁴⁾³⁾	t ₉ CC	-	25	29	ns	
TDO valid output to high impedance from TCK falling edge ³⁾	<i>t</i> ₁₀ CC	-	25	29	ns	
TDO hold after TCK falling edge ³⁾	<i>t</i> ₁₈ CC	5	-	-	ns	

Table 33JTAG Interface Timing for Upper Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_1 \ge t_{SYS}$.

2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz.

3) The falling edge on TCK is used to generate the TDO timing.

4) The setup time for TDO is given implicitly by the TCK cycle time.