

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	100
Number of Logic Elements/Cells	238
Total RAM Bits	3200
Number of I/O	77
Number of Gates	5000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcs05xl-4vq100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

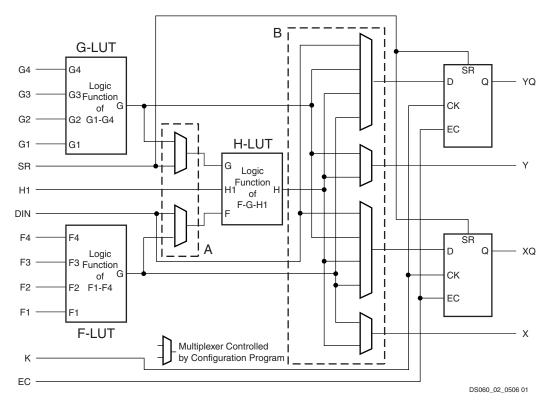


Figure 2: Spartan/XL Simplified CLB Logic Diagram (some features not shown)

A CLB can implement any of the following functions:

 Any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables

Note: When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB.

- Any single function of five variables
- Any function of four variables together with some functions of six variables
- · Some functions of up to nine variables.

Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage.

Flip-Flops

Each CLB contains two flip-flops that can be used to register (store) the function generator outputs. The flip-flops and function generators can also be used independently (see Figure 2). The CLB input DIN can be used as a direct input to either of the two flip-flops. H1 can also drive either flip-flop via the H-LUT with a slight additional delay.

The two flip-flops have common clock (CK), clock enable (EC) and set/reset (SR) inputs. Internally both flip-flops are also controlled by a global initialization signal (GSR) which is described in detail in **Global Signals: GSR and GTS**, page 20.

Latches (Spartan-XL Family Only)

The Spartan-XL family CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Functionality of the storage element is described in Table 2.

This high value makes them unsuitable as wired-AND pull-up resistors.

Table 7: Supported Destinations for Spartan/XL Outputs

	Spartan-XL Outputs		rtan puts
Destination	3.3V, CMOS	5V, TTL	5V, CMOS
Any device, V _{CC} = 3.3V, CMOS-threshold inputs	V	V	Some ⁽¹⁾
Any device, V _{CC} = 5V, TTL-threshold inputs	V	V	√
Any device, V _{CC} = 5V, CMOS-threshold inputs	Unreliable Data		1

Notes:

Only if destination device has 5V tolerant inputs.

After configuration, voltage levels of unused pads, bonded or unbonded, must be valid logic levels, to reduce noise sensitivity and avoid excess current. Therefore, by default, unused pads are configured with the internal pull-up resistor active. Alternatively, they can be individually configured with the pull-down resistor, or as a driven output, or to be driven by an external source. To activate the internal pull-up, attach the PULLUP library component to the net attached to the pad. To activate the internal pull-down, attach the PULL-DOWN library component to the net attached to the pad.

Set/Reset

As with the CLB registers, the GSR signal can be used to set or clear the input and output registers, depending on the value of the INIT attribute or property. The two flip-flops can be individually configured to set or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops (Figure 5). The choice of set or reset applies to both the initial state of the flip-flop and the response to the GSR pulse.

Independent Clocks

Separate clock signals are provided for the input (IK) and output (OK) flip-flops. The clock can be independently inverted for each flip-flop within the IOB, generating either

falling-edge or rising-edge triggered flip-flops. The clock inputs for each IOB are independent.

Common Clock Enables

The input and output flip-flops in each IOB have a common clock enable input (see EC signal in Figure 5), which through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC signal on the Spartan/XL FPGA CLB. It cannot be inverted within the IOB.

Routing Channel Description

All internal routing channels are composed of metal segments with programmable switching points and switching matrices to implement the desired routing. A structured, hierarchical matrix of routing channels is provided to achieve efficient automated routing.

This section describes the routing channels available in Spartan/XL devices. Figure 8 shows a general block diagram of the CLB routing channels. The implementation software automatically assigns the appropriate resources based on the density and timing requirements of the design. The following description of the routing channels is for information only and is simplified with some minor details omitted. For an exact interconnect description the designer should open a design in the FPGA Editor and review the actual connections in this tool.

The routing channels will be discussed as follows;

- CLB routing channels which run along each row and column of the CLB array.
- IOB routing channels which form a ring (called a VersaRing) around the outside of the CLB array. It connects the I/O with the CLB routing channels.
- Global routing consists of dedicated networks primarily designed to distribute clocks throughout the device with minimum delay and skew. Global routing can also be used for other high-fanout signals.

CLB Routing Channels

The routing channels around the CLB are derived from three types of interconnects; single-length, double-length, and longlines. At the intersection of each vertical and horizontal routing channel is a signal steering matrix called a Programmable Switch Matrix (PSM). Figure 8 shows the basic routing channel configuration showing single-length lines, double-length lines and longlines as well as the CLBs and PSMs. The CLB to routing channel interface is shown as well as how the PSMs interface at the channel intersections.

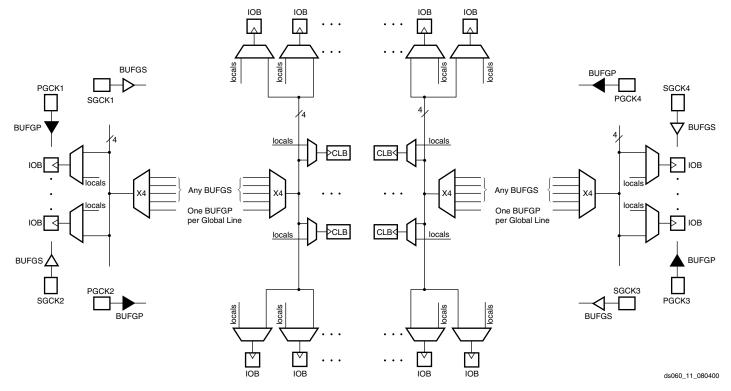


Figure 11: 5V Spartan Family Global Net Distribution

The four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The eight Global Low-Skew buffers in the Spartan-XL devices combine short delay, negligible skew, and flexibility.

The Primary Global buffers must be driven by the semi-dedicated pads (PGCK1-4). The Secondary Global buffers can be sourced by either semi-dedicated pads (SGCK1-4) or internal nets. Each corner of the device has one Primary buffer and one Secondary buffer. The Spartan-XL family has eight global low-skew buffers, two in each corner. All can be sourced by either semi-dedicated pads (GCK1-8) or internal nets.

Using the library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), BUFGLS (Spartan-XL family global low-skew buffer), or BUFG (any buffer type) element in a schematic or in HDL code.

Advanced Features Description

Distributed RAM

Optional modes for each CLB allow the function generators (F-LUT and G-LUT) to be used as Random Access Memory (RAM).

Read and write operations are significantly faster for this on-chip RAM than for off-chip implementations. This speed advantage is due to the relatively short signal propagation delays within the FPGA.

Memory Configuration Overview

There are two available memory configuration modes: single-port RAM and dual-port RAM. For both these modes, write operations are synchronous (edge-triggered), while read operations are asynchronous. In the single-port mode, a single CLB can be configured as either a 16 x 1, (16 x 1) x 2, or 32 x 1 RAM array. In the dual-port mode, a single CLB can be configured only as one 16 x 1 RAM array. The different CLB memory configurations are summarized in Table 8. Any of these possibilities can be individually programmed into a Spartan/XL FPGA CLB.

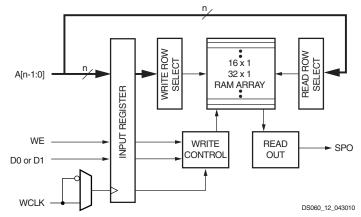
Table 8: CLB Memory Configurations

Mode	16 x 1	(16 x 1) x 2	32 x 1
Single-Port	√	√	V
Dual-Port	√	_	_

- The 16 x 1 single-port configuration contains a RAM array with 16 locations, each one-bit wide. One 4-bit address decoder determines the RAM location for write and read operations. There is one input for writing data and one output for reading data, all at the selected address.
- The (16 x 1) x 2 single-port configuration combines two 16 x 1 single-port configurations (each according to the preceding description). There is one data input, one data output and one address decoder for each array. These arrays can be addressed independently.
- The 32 x 1 single-port configuration contains a RAM array with 32 locations, each one-bit wide. There is one data input, one data output, and one 5-bit address decoder.
- The dual-port mode 16 x 1 configuration contains a RAM array with 16 locations, each one-bit wide. There are two 4-bit address decoders, one for each port. One port consists of an input for writing and an output for reading, all at a selected address. The other port consists of one output for reading from an independently selected address.

The appropriate choice of RAM configuration mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Selection criteria include the following: Whereas the 32 x 1 single-port, the (16 x 1) x 2 single-port, and the 16 x 1 dual-port configurations each use one entire CLB, the 16 x 1 single-port configuration uses only one half of a CLB. Due to its simultaneous read/write capability, the dual-port RAM can transfer twice as much data as the single-port RAM, which permits only one data operation at any given time.

CLB memory configuration options are selected by using the appropriate library symbol in the design entry.


Single-Port Mode

There are three CLB memory configurations for the single-port RAM: 16×1 , $(16 \times 1) \times 2$, and 32×1 , the functional organization of which is shown in Figure 12.

The single-port RAM signals and the CLB signals (Figure 2, page 4) from which they are originally derived are shown in Table 9.

Table 9: Single-Port RAM Signals

RAM Signal	Function	CLB Signal
D0 or D1	Data In	DIN or H1
A[3:0]	Address	F[4:1] or G[4:1]
A4 (32 x 1 only)	Address	H1
WE	Write Enable	SR
WCLK	Clock	К
SPO	Single Port Out (Data Out)	F _{OUT} or G _{OUT}

Notes:

- The (16 x 1) x 2 configuration combines two 16 x 1 single-port RAMs, each with its own independent address bus and data input. The same WE and WCLK signals are connected to both RAMs.
- 2. n = 4 for the 16 x 1 and (16 x 1) x 2 configurations. n = 5 for the 32 x 1 configuration.

Figure 12: Logic Diagram for the Single-Port RAM

Writing data to the single-port RAM is essentially the same as writing to a data register. It is an edge-triggered (synchronous) operation performed by applying an address to the A inputs and data to the D input during the active edge of WCLK while WE is High.

The timing relationships are shown in Figure 13. The High logic level on WE enables the input data register for writing. The active edge of WCLK latches the address, input data, and WE signals. Then, an internal write pulse is generated that loads the data into the memory cell.

CLB signals from which they are originally derived are shown in Table 10.

Table 10: Dual-Port RAM Signals

RAM Signal	Function	CLB Signal
D	Data In	DIN
A[3:0]	Read Address for Single-Port.	F[4:1]
	Write Address for Single-Port and Dual-Port.	
DPRA[3:0]	Read Address for Dual-Port	G[4:1]
WE	Write Enable	SR
WCLK	Clock	К
SPO	Single Port Out (addressed by A[3:0])	F _{OUT}
DPO	Dual Port Out (addressed by DPRA[3:0])	G _{OUT}

The RAM16X1D primitive used to instantiate the dual-port RAM consists of an upper and a lower 16 x 1 memory array. The address port labeled A[3:0] supplies both the read and write addresses for the lower memory array, which behaves the same as the 16 x 1 single-port RAM array described previously. Single Port Out (SPO) serves as the data output for the lower memory. Therefore, SPO reflects the data at address A[3:0].

The other address port, labeled DPRA[3:0] for Dual Port Read Address, supplies the read address for the upper memory. The write address for this memory, however, comes from the address A[3:0]. Dual Port Out (DPO) serves as the data output for the upper memory. Therefore, DPO reflects the data at address DPRA[3:0].

By using A[3:0] for the write address and DPRA[3:0] for the read address, and reading only the DPO output, a FIFO that can read and write simultaneously is easily generated. The simultaneous read/write capability possible with the dual-port RAM can provide twice the effective data throughput of a single-port RAM alternating read and write operations.

The timing relationships for the dual-port RAM mode are shown in Figure 13.

Note that write operations to RAM are synchronous (edge-triggered); however, data access is asynchronous.

Initializing RAM at FPGA Configuration

Both RAM and ROM implementations in the Spartan/XL families are initialized during device configuration. The initial contents are defined via an INIT attribute or property

attached to the RAM or ROM symbol, as described in the library guide. If not defined, all RAM contents are initialized to zeros, by default.

RAM initialization occurs only during device configuration. The RAM content is not affected by GSR.

More Information on Using RAM Inside CLBs

Three application notes are available from Xilinx that discuss synchronous (edge-triggered) RAM: "Xilinx Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in Xilinx RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both the Spartan and the Spartan-XL families.

Fast Carry Logic

Each CLB F-LUT and G-LUT contains dedicated arithmetic logic for the fast generation of carry and borrow signals. This extra output is passed on to the function generator in the adjacent CLB. The carry chain is independent of normal routing resources. (See Figure 15.)

Dedicated fast carry logic greatly increases the efficiency and performance of adders, subtractors, accumulators, comparators and counters. It also opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast enough or too inefficient. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications.

The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. This fast carry logic is one of the more significant features of the Spartan

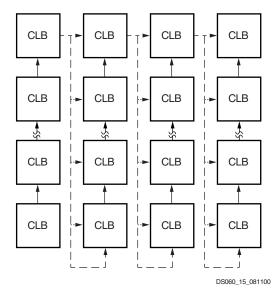


Figure 15: Available Spartan/XL Carry Propagation Paths

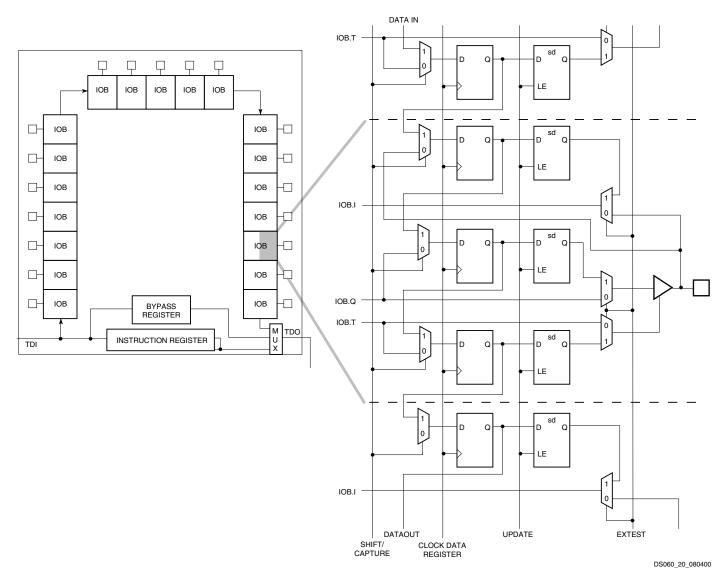


Figure 20: Spartan/XL Boundary Scan Logic

figuration are shown in Table 14 and Table 15.

Table 14: Pin Functions During Configuration (Spartan Family Only)

Configuration Mo	ode (MODE Pin)	
Slave Serial (High)	Master Serial (Low)	User Operation
MODE (I)	MODE (I)	MODE
HDC (High)	HDC (High)	I/O
LDC (Low)	LDC (Low)	I/O
ĪNIT	ĪNIT	I/O
DONE	DONE	DONE
PROGRAM (I)	PROGRAM (I)	PROGRAM
CCLK (I)	CCLK (O)	CCLK (I)
DIN (I)	DIN (I)	I/O
DOUT	DOUT	SGCK4-I/O
TDI	TDI	TDI-I/O
TCK	TCK	TCK-I/O
TMS	TMS	TMS-I/O
TDO	TDO	TDO-(O)
		ALL OTHERS

Notes:

- A shaded table cell represents the internal pull-up used before and during configuration.
- (I) represents an input; (O) represents an output.
- INIT is an open-drain output during configuration.

Table 15: Pin Functions During Configuration (Spartan-XL Family Only)

CONFIGU	JRATION MODE	<m1:m0></m1:m0>	
Slave Serial [1:1]	Master Serial [1:0]	Express [0:X]	User Operation
M1 (High) (I)	M1 (High) (I)	M1(Low) (I)	M1
M0 (High) (I)	M0 (Low) (I)	M0 (I)	MO
HDC (High)	HDC (High)	HDC (High)	I/O
LDC (Low)	LDC (Low)	LDC (Low)	I/O
ĪNIT	ĪNIT	ĪNIT	I/O
DONE	DONE	DONE	DONE
PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM
CCLK (I)	CCLK (O)	CCLK (I)	CCLK (I)
		DATA 7 (I)	I/O
		DATA 6 (I)	I/O
		DATA 5 (I)	I/O
		DATA 4 (I)	I/O
		DATA 3 (I)	I/O
		DATA 2 (I)	I/O
		DATA 1 (I)	I/O
DIN (I)	DIN (I)	DATA 0 (I)	I/O
DOUT	DOUT	DOUT	GCK6-I/O
TDI	TDI	TDI	TDI-I/O
TCK	TCK	TCK	TCK-I/O
TMS	TMS	TMS	TMS-I/O
TDO	TDO	TDO	TDO-(O)
		CS1	I/O
			ALL OTHERS

- A shaded table cell represents the internal pull-up used before and during configuration.
- (I) represents an input; (O) represents an output. INIT is an open-drain output during configuration.

Table 17: Spartan/XL Program Data

Device	XCS05		XCS10		XCS20		XCS30		XC	S40		
Max System Gates	5,	000	10	,000	20,000		20,000		30,000		40	,000
CLBs (Row x Col.)	100 (10 x 10)		_	96 x 14)	400 (20 x 20)		576 (24 x 24)		-	'84 x 28)		
IOBs		80	1	12	1	160		92	20)5 ⁽⁴⁾		
Part Number	XCS05	XCS05XL	XCS10	XCS10XL	XCS20	XCS20XL	XCS30	XCS30XL	XCS40	XCS40XL		
Supply Voltage	5V	3.3V	5V	3.3V	5V	3.3V	5V	3.3V	5V	3.3V		
Bits per Frame	126	127	166	167	226	227	266	267	306	307		
Frames	428	429	572	573	788	789	932	933	1,076	1,077		
Program Data	53,936	54,491	94,960	95,699	178,096	179,111	247,920	249,119	329,264	330,647		
PROM Size (bits)	53,984	54,544	95,008	95,752	178,144	179,160	247,968	249,168	329,312	330,696		
Express Mode PROM Size (bits)	-	79,072	-	128,488	-	221,056	-	298,696	-	387,856		

Notes:

- Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits (+1 for Spartan-XL device)
 Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 (+ 1 for Spartan-XL device)
 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
 PROM Size = Program Data + 40 (header) + 8, rounded up to the nearest byte
- 2. The user can add more "1" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header.
- 3. Express mode adds 57 (XCS05XL, XCS10XL), or 53 (XCS20XL, XCS30XL, XCS40XL) bits per frame, + additional start-up bits.
- 4. XCS40XL provided 224 max I/O in CS280 package discontinued by PDN2004-01.

During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 29. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback

data is independent of the current device state. CLB outputs should not be included (Readback Capture option not used), and if RAM is present, the RAM content must be unchanged.

Statistically, one error out of 2048 might go undetected.

Readback

The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device.

Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs.

Although readback can be performed while the device is operating, for best results and to freeze a known capture state, it is recommended that the clock inputs be stopped until readback is complete.

Readback of Spartan-XL family Express mode bitstreams results in data that does not resemble the original bitstream, because the bitstream format differs from other modes.

Spartan/XL FPGA Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, instantiate the READBACK library symbol and attach the appropriate pad symbols, as shown in Figure 32.

After Readback has been initiated by a Low-to-High transition on RDBK.TRIG, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low)

of the first frame. The first two data bits of the first frame are always High.

Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low.

Readback Options

Readback options are: Readback Capture, Readback Abort, and Clock Select. They are set with the bitstream generation software.

Readback Capture

When the Readback Capture option is selected, the data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. RDBK.TRIG is located in the lower-left corner of the device.

When the Readback Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in Readback, since they directly overwrite the F and G function-table configuration of the CLB.

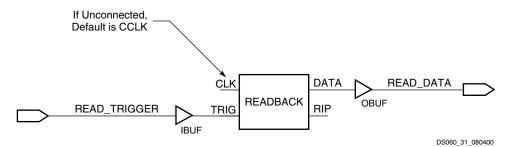


Figure 32: Readback Example

Readback Abort

When the Readback Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the Readback operation and prepares the logic to accept another trigger.

After an aborted Readback, additional clocks (up to one Readback clock per configuration frame) may be required to re-initialize the control logic. The status of Readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If Readback must be inhibited for security reasons, the Readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner.

Violating the Maximum High and Low Time Specification for the Readback Clock

The Readback clock has a maximum High and Low time specification. In some cases, this specification cannot be

met. For example, if a processor is controlling Readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification.

The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the Readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register.

The user must precisely calculate the location of the Readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 16 and Table 17.

Spartan Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan devices and are expressed in nanoseconds unless otherwise noted.

				Speed	l Grade		
				4	-	3	-
Symbol	Single Port RAM	Size ⁽¹⁾	Min	Max	Min	Max	Units
Write Ope	eration						
T _{WCS}	Address write cycle time (clock K period)	16x2	8.0	-	11.6	-	ns
T _{WCTS}	,	32x1	8.0	-	11.6	-	ns
T_{WPS}	Clock K pulse width (active edge)	16x2	4.0	-	5.8	-	ns
T_{WPTS}		32x1	4.0	-	5.8	-	ns
T _{ASS}	Address setup time before clock K	16x2	1.5	-	2.0	-	ns
T _{ASTS}		32x1	1.5	-	2.0	-	ns
T _{AHS}	Address hold time after clock K	16x2	0.0	-	0.0	-	ns
T _{AHTS}		32x1	0.0	-	0.0	-	ns
T _{DSS}	DIN setup time before clock K	16x2	1.5	-	2.7	-	ns
T _{DSTS}		32x1	1.5	-	1.7	-	ns
T _{DHS}	DIN hold time after clock K	16x2	0.0	-	0.0	-	ns
T _{DHTS}		32x1	0.0	-	0.0	-	ns
T _{WSS}	WE setup time before clock K	16x2	1.5	-	1.6	-	ns
T _{WSTS}		32x1	1.5	-	1.6	-	ns
T _{WHS}	WE hold time after clock K	16x2	0.0	-	0.0	-	ns
T _{WHTS}		32x1	0.0	-	0.0	-	ns
T _{WOS}	Data valid after clock K	16x2	-	6.5	-	7.9	ns
T _{WOTS}		32x1	-	7.0	-	9.3	ns
Read Ope	ration			i.			1
T _{RC}	Address read cycle time	16x2	2.6	-	2.6	-	ns
T _{RCT}		32x1	3.8	-	3.8	-	ns
T _{ILO}	Data valid after address change (no Write	16x2	-	1.2	-	1.6	ns
T _{IHO}	Enable)	32x1	-	2.0	-	2.7	ns
T _{ICK}	Address setup time before clock K	16x2	1.8	-	2.4	-	ns
T _{IHCK}		32x1	2.9	-	3.9	-	ns

^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.

Spartan-XL Family DC Characteristics Over Operating Conditions

Symbol	Description		Min	Тур.	Max	Units
V _{OH}	gh-level output voltage @ $I_{OH} = -4.0 \text{ mA}$, V_{CC} min (LVTTL)		2.4	-	-	V
	High-level output voltage @ $I_{OH} = -500 \mu A$, (LV	(CMOS)	90% V _{CC}	-	-	V
V _{OL}	Low-level output voltage @ I _{OL} = 12.0 mA, V _{CO}	tput voltage @ I _{OL} = 12.0 mA, V _{CC} min (LVTTL) ⁽¹⁾		-	0.4	V
	Low-level output voltage @ I _{OL} = 24.0 mA, V _{CO}	utput voltage @ I _{OL} = 24.0 mA, V _{CC} min (LVTTL) ⁽²⁾		-	0.4	V
	Low-level output voltage @ I _{OL} = 1500 μA, (LV	evel output voltage @ I _{OL} = 1500 μA, (LVCMOS)		-	10% V _{CC}	V
V _{DR}	Data retention supply voltage (below which cormay be lost)	supply voltage (below which configuration data		-	-	V
I _{cco}	Quiescent FPGA supply current ^(3,4)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
I _{CCPD}	Power Down FPGA supply current ^(3,5)	Commercial	-	0.1	2.5	mA
		Industrial	-	0.1	5	mA
Ι <u></u>	Input or output leakage current	1	-10	-	10	μΑ
C _{IN}	Input capacitance (sample tested)	out capacitance (sample tested)		-	10	pF
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V (samp	le tested)	0.02	-	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 3.3V (s	sample tested)	0.02	-	-	mA

Notes:

- With up to 64 pins simultaneously sinking 12 mA (default mode).
- 2. With up to 64 pins simultaneously sinking 24 mA (with 24 mA option selected).
- 3. With 5V tolerance not selected, no internal oscillators, and the FPGA configured with the Tie option.
- With no output current loads, no active input resistors, and all package pins at V_{CC} or GND.
- 5. With PWRDWN active.

Supply Current Requirements During Power-On

Spartan-XL FPGAs require that a minimum supply current I_{CCPO} be provided to the V_{CC} lines for a successful power on. If more current is available, the FPGA can consume more than I_{CCPO} min., though this cannot adversely affect reliability.

A maximum limit for I_{CCPO} is not specified. Be careful when using foldback/crowbar supplies and fuses. It is possible to control the magnitude of I_{CCPO} by limiting the supply current available to the FPGA. A current limit below the trip level will avoid inadvertently activating over-current protection circuits.

Symbol	Description	Min	Max	Units
I _{CCPO}	Total V _{CC} supply current required during power-on	100	-	mA
T _{CCPO}	V _{CC} ramp time ^(2,3)	-	50	ms

- 1. The I_{CCPO} requirement applies for a brief time (commonly only a few milliseconds) when V_{CC} ramps from 0 to 3.3V.
- 2. The ramp time is measured from GND to V_{CC} max on a fully loaded board.
- V_{CC} must not dip in the negative direction during power on.

Spartan-XL Family CLB Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and expressed in nanoseconds unless otherwise noted.

		Speed Grade				
		-	5	-	4	
Symbol	Description	Min	Max	Min	Max	Units
Clocks						
T _{CH}	Clock High time	2.0	-	2.3	-	ns
T _{CL}	Clock Low time	2.0	-	2.3	-	ns
Combinato	orial Delays		,	1	ı	
T _{ILO}	F/G inputs to X/Y outputs	-	1.0	-	1.1	ns
T _{IHO}	F/G inputs via H to X/Y outputs	-	1.7	-	2.0	ns
T _{ITO}	F/G inputs via transparent latch to Q outputs	-	1.5	-	1.8	ns
T _{HH1O}	C inputs via H1 via H to X/Y outputs	-	1.5	-	1.8	ns
Sequentia	l Delays	*			,	
T _{CKO}	Clock K to Flip-Flop or latch outputs Q	-	1.2	-	1.4	ns
Setup Tim	e before Clock K		,		ı	
T _{ICK}	F/G inputs	0.6	-	0.7	-	ns
T _{IHCK}	F/G inputs via H	1.3	-	1.6	-	ns
Hold Time	after Clock K	*			,	
	All Hold times, all devices	0.0	-	0.0	-	ns
Set/Reset	Direct					
T _{RPW}	Width (High)	2.5	-	2.8	-	ns
T _{RIO}	Delay from C inputs via S/R, going High to Q	-	2.3	-	2.7	ns
Global Set	Reset	*			,	
T_{MRW}	Minimum GSR Pulse Width	10.5	-	11.5	-	ns
T_{MRQ}	Delay from GSR input to any Q	See page 60 for T _{RRI} values per device.				
F _{TOG}	Toggle Frequency (MHz) (for export control purposes)	-	250	-	217	MHz

Spartan-XL Family CLB RAM Synchronous (Edge-Triggered) Write Operation Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation netlist. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Spartan-XL devices and are expressed in nanoseconds unless otherwise noted.

				Speed	l Grade		
				-5	-	-4	
Symbol	bol Single Port RAM		Min	Max	Min	Max	Units
Write Ope	ration						
T _{WCS}	Address write cycle time (clock K period)	16x2	7.7	-	8.4	-	ns
T _{WCTS}		32x1	7.7	-	8.4	-	ns
T _{WPS}	Clock K pulse width (active edge)	16x2	3.1	-	3.6	-	ns
T _{WPTS}		32x1	3.1	-	3.6	-	ns
T _{ASS}	Address setup time before clock K	16x2	1.3	-	1.5	-	ns
T _{ASTS}		32x1	1.5	-	1.7	-	ns
T _{DSS}	DIN setup time before clock K	16x2	1.5	-	1.7	-	ns
T _{DSTS}		32x1	1.8	-	2.1	-	ns
T _{WSS}	WE setup time before clock K	16x2	1.4	-	1.6	-	ns
T _{WSTS}		32x1	1.3	-	1.5	-	ns
	All hold times after clock K	16x2	0.0	-	0.0	-	ns
T _{WOS}	Data valid after clock K	32x1	-	4.5	-	5.3	ns
T _{WOTS}		16x2	-	5.4	-	6.3	ns
Read Ope	ration	•	11	1			11
T _{RC}	Address read cycle time	16x2	2.6	-	3.1	-	ns
T _{RCT}		32x1	3.8	-	5.5	-	ns
T _{ILO}	Data Valid after address change (no Write	16x2	-	1.0	-	1.1	ns
T _{IHO}	Enable)	32x1	-	1.7	-	2.0	ns
T _{ICK}	Address setup time before clock K	16x2	0.6	-	0.7	-	ns
T _{IHCK}		32x1	1.3	-	1.6	-	ns
Notes:							

Notes:

56

^{1.} Timing for 16 x 1 RAM option is identical to 16 x 2 RAM timing.

Spartan-XL Family IOB Output Switching Characteristic Guidelines

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to

the simulation netlist. These path delays, provided as a guideline, have been extracted from the static timing analyzer report. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values are expressed in nanoseconds unless otherwise noted.

				Speed	Grade		
			-5			4	
Symbol	Description	Device	Min	Max	Min	Max	Units
Propagation	Delays						
T _{OKPOF}	Clock (OK) to Pad, fast	All devices	-	3.2	-	3.7	ns
T _{OPF}	Output (O) to Pad, fast	All devices	-	2.5	-	2.9	ns
T _{TSHZ}	3-state to Pad High-Z (slew-rate independent)	All devices	-	2.8	-	3.3	ns
T _{TSONF}	3-state to Pad active and valid, fast	All devices	-	2.6	-	3.0	ns
T _{OFPF}	Output (O) to Pad via Output MUX, fast	All devices	-	3.7	-	4.4	ns
T _{OKFPF}	Select (OK) to Pad via Output MUX, fast	All devices	-	3.3	-	3.9	ns
T _{SLOW}	For Output SLOW option add	All devices	-	1.5	-	1.7	ns
Setup and H	old Times						
T _{OOK}	Output (O) to clock (OK) setup time	All devices	0.5	-	0.5	-	ns
T _{OKO}	Output (O) to clock (OK) hold time	All devices	0.0	-	0.0	-	ns
T _{ECOK}	Clock Enable (EC) to clock (OK) setup time	All devices	0.0	-	0.0	-	ns
T _{OKEC}	Clock Enable (EC) to clock (OK) hold time	All devices	0.1	-	0.2	-	ns
Global Set/R	eset						
T_{MRW}	Minimum GSR pulse width	All devices	10.5	-	11.5	-	ns
T _{RPO}	Delay from GSR input to any Pad	XCS05XL	-	11.9	-	14.0	ns
		XCS10XL	-	12.4	-	14.5	ns
		XCS20XL	-	12.9	-	15.0	ns
		XCS30XL	-	13.9	-	16.0	ns
		XCS40XL	-	14.9	-	17.0	ns

^{1.} Output timing is measured at \sim 50% V_{CC} threshold, with 50 pF external capacitive loads including test fixture. Slew-rate limited output rise/fall times are approximately two times longer than fast output rise/fall times.

^{2.} Voltage levels of unused pads, bonded or unbonded, must be valid logic levels. Each can be configured with the internal pull-up (default) or pull-down resistor, or configured as a driven output, or can be driven from an external source.

Pin Descriptions

There are three types of pins in the Spartan/XL devices:

- · Permanently dedicated pins
- User I/O pins that can have special functions
- Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the configuration process are 3-stated with the I/O pull-up resistor network activated. After configuration, if an IOB is unused it is configured as an input with the I/O pull-up resistor network remaining activated.

Any user I/O can be configured to drive the Global Set/Reset net GSR or the global three-state net GTS. See **Global Signals: GSR and GTS**, page 20 for more information.

Device pins for Spartan/XL devices are described in Table 18.

Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options.

Table 18: Pin Descriptions

Pin Name	I/O During Config.	I/O After Config.	Pin Description
Permanently D	Dedicated P	ins	
V _{CC}	Х	Х	Eight or more (depending on package) connections to the nominal +5V supply voltage (+3.3V for Spartan-XL devices). All must be connected, and each must be decoupled with a 0.01 –0.1 μ F capacitor to Ground.
GND	Х	Х	Eight or more (depending on package type) connections to Ground. All must be connected.
CCLK	I or O	I	During configuration, Configuration Clock (CCLK) is an output in Master mode and is an input in Slave mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on Spartan/XL devices, except during Readback. See Violating the Maximum High and Low Time Specification for the Readback Clock, page 39 for an explanation of this exception.
DONE	I/O	0	DONE is a bidirectional signal with an optional internal pull-up resistor. As an open-drain output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs.
			The optional pull-up resistor is selected as an option in the program that creates the configuration bitstream. The resistor is included by default.
PROGRAM	I	I	PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT.
			The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to VCC.
MODE (Spartan)	I	X	The Mode input(s) are sampled after INIT goes High to determine the configuration mode to be used.
M0, M1 (Spartan-XL)			During configuration, these pins have a weak pull-up resistor. For the most popular configuration mode, Slave Serial, the mode pins can be left unconnected. For Master Serial mode, connect the Mode/M0 pin directly to system ground.

Device-Specific Pinout Tables

Device-specific tables include all packages for each Spartan and Spartan-XL device. They follow the pad locations around the die, and include boundary scan register locations.

Some Spartan-XL devices are available in Pb-free package options. The Pb-free package options have the same pinouts as the standard package options.

XCS05 and XCS05XL Device Pinouts

XCS05/XL	(A)		Bndry
Pad Name	PC84 ⁽⁴⁾	VQ100	Scan
VCC	P2	P89	-
I/O	P3	P90	32
I/O	P4	P91	35
I/O	-	P92	38
I/O	-	P93	41
I/O	P5	P94	44
I/O	P6	P95	47
I/O	P7	P96	50
I/O	P8	P97	53
I/O	P9	P98	56
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P10	P99	59
VCC	P11	P100	-
GND	P12	P1	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P13	P2	62
I/O	P14	P3	65
I/O, TDI	P15	P4	68
I/O, TCK	P16	P5	71
I/O, TMS	P17	P6	74
I/O	P18	P7	77
I/O	-	P8	83
I/O	P19	P9	86
I/O	P20	P10	89
GND	P21	P11	-
VCC	P22	P12	-
I/O	P23	P13	92
I/O	P24	P14	95
I/O	-	P15	98
I/O	P25	P16	104
I/O	P26	P17	107
I/O	P27	P18	110
I/O	-	P19	113
I/O	P28	P20	116
I/O, SGCK2 ⁽¹⁾ , GCK2 ⁽²⁾	P29	P21	119
Not Connected ⁽¹⁾ , M1 ⁽²⁾	P30	P22	122
GND	P31	P23	-
MODE ⁽¹⁾ , M0 ⁽²⁾	P32	P24	125
VCC	P33	P25	-
1	1		I.

XCS05 and XCS05XL Device Pinouts

XCS05/XL Pad Name	PC84 ⁽⁴⁾	VQ100	Bndry Scan
Not Connected ⁽¹⁾ ,	P34	P26	126 ⁽¹⁾
PWRDWN ⁽²⁾		F20	
I/O, PGCK2 ⁽¹⁾ , GCK3 ⁽²⁾	P35	P27	127 ⁽³⁾
I/O (HDC)	P36	P28	130 ⁽³⁾
I/O	-	P29	133 ⁽³⁾
I/O (LDC)	P37	P30	136 ⁽³⁾
I/O	P38	P31	139 ⁽³⁾
I/O	P39	P32	142 ⁽³⁾
I/O	-	P33	145 ⁽³⁾
I/O	-	P34	148 ⁽³⁾
I/O	P40	P35	151 ⁽³⁾
I/O (INIT)	P41	P36	154 ⁽³⁾
VCC	P42	P37	-
GND	P43	P38	-
I/O	P44	P39	157 ⁽³⁾
I/O	P45	P40	160 ⁽³⁾
I/O	-	P41	163 ⁽³⁾
I/O	-	P42	166 ⁽³⁾
I/O	P46	P43	169 ⁽³⁾
I/O	P47	P44	172 ⁽³⁾
I/O	P48	P45	175 ⁽³⁾
I/O	P49	P46	178 ⁽³⁾
I/O	P50	P47	181 ⁽³⁾
I/O, SGCK3 ⁽¹⁾ , GCK4 ⁽²⁾	P51	P48	184 ⁽³⁾
GND	P52	P49	-
DONE	P53	P50	-
VCC	P54	P51	-
PROGRAM	P55	P52	- (2)
I/O (D7 ⁽²⁾)	P56	P53	187 ⁽³⁾
I/O, PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾	P57	P54	190 ⁽³⁾
I/O (D6 ⁽²⁾)	P58	P55	193 ⁽³⁾
1/0	-	P56	196 ⁽³⁾
I/O (D5 ⁽²⁾)	P59	P57	199 ⁽³⁾
I/O	P60	P58	202 ⁽³⁾
I/O	-	P59	205 ⁽³⁾
I/O	-	P60	208 ⁽³⁾
I/O (D4 ⁽²⁾)	P61	P61	211 ⁽³⁾
I/O	P62	P62	214 ⁽³⁾
VCC	P63	P63	-
GND	P64	P64	- (0)
I/O (D3 ⁽²⁾)	P65	P65	217 ⁽³⁾
I/O	P66	P66	220 ⁽³⁾
I/O	-	P67	223 ⁽³⁾
I/O (D2 ⁽²⁾)	P67	P68	229(3)
I/O	P68	P69	232 ⁽³⁾
I/O (D1 ⁽²⁾)	P69	P70	235 ⁽³⁾

XCS30 and XCS30XL Device Pinouts (Continued)

XCS30/XL Pad Name	VQ100 ⁽⁵⁾	TQ144	PQ208	PQ240	BG256 ⁽⁵⁾	CS280 ^(2,5)	Bndry Scan
I/O	-	-	-	P190	B16	A15	23
I/O	-	P117	P166	P191	A16	E14	26
I/O	-	-	P167	P192	C15	C14	29
I/O	-	-	P168	P193	B15	B14	32
I/O	-	-	P169	P194	A15	D14	35
GND	-	P118	P170	P196	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P119	P171	P197	B14	A14	38
I/O	-	P120	P172	P198	A14	C13	41
I/O	-	-	-	P199	C13	B13	44
I/O	-	-	-	P200	B13	A13	47
VCC	-	-	P173	P201	VCC ⁽⁴⁾	D13	-
I/O	P82	P121	P174	P202	C12	B12	50
I/O	P83	P122	P175	P203	B12	D12	53
I/O	-	-	P176	P205	A12	A11	56
I/O	-	-	P177	P206	B11	B11	59
I/O	P84	P123	P178	P207	C11	C11	62
I/O	P85	P124	P179	P208	A11	D11	65
I/O	P86	P125	P180	P209	A10	A10	68
I/O	P87	P126	P181	P210	B10	B10	71
GND	P88	P127	P182	P211	GND ⁽⁴⁾	GND ⁽⁴⁾	-

Notes:

- 1. 5V Spartan family only
- 2. 3V Spartan-XL family only
- 3. The "PWRDWN" on the XCS30XL is not part of the Boundary Scan chain. For the XCS30XL, subtract 1 from all Boundary Scan numbers from GCK3 on (295 and higher).
- 4. Pads labeled $\mathrm{GND^{(4)}}$ or $\mathrm{V_{CC}^{(4)}}$ are internally bonded to Ground or $\mathrm{V_{CC}}$ planes within the package.
- 5. CS280 package, and VQ100 and BG256 packages for XCS30 only, discontinued by PDN2004-01

Additional XCS30/XL Package Pins

PQ240

GND Pins								
P22	P37	P83	P98	P143	P158			
P204	P219	-	-	-	-			
Not Connected Pins								
P195	-	-	-	-	-			

2/1	2/98	

BG256

VCC Pins								
C14	D6	D7	D11	D14	D15			
E20	F1	F4	F17	G4	G17			
K4	L17	P4	P17	P19	R2			
R4	R17	U6	U7	U10	U14			
U15	V7	W20	-	-	-			

GND Pins								
A1	B7	D4	D8	D13	D17			
G20	H4	H17	N3	N4	N17			
U4	U8	U13	U17	W14	-			
	Not Connected Pins							
A7	A13	C8	D12	H20	J3			
J4	M4	M19	V9	W9	W13			
Y13	-	-	-	-	-			

6/4/97

CS280

VCC Pins								
A1	A7	C10	C17	D13	G1			
G1	G19	K2	K17	M4	N16			
T7	U3	U10	U17	W13	-			
	GND Pins							

CS280

	VCC Pins									
E5	E7	E8	E9	E11	E12					
E13	G5	G15	H5	H15	J5					
J15	L5	L15	M5	M15	N5					
N15	R7	R8	R9	R11	R12					
R13	-	-	-	-	-					
	Not Connected Pins									
A4	A12	C8	C12	C15	D1					
D2	D5	D8	D17	D18	E15					
H2	НЗ	H18	H19	L4	M1					
M16	M18	R2	R4	R5	R15					
R17	T8	T15	U5	V8	V12					
W12	W16	-	-	-	-					
	Not Connected Pins (VCC in XCS40XL)									
B5	B15	E3	E18	R3	R18					
V5	V15	-	-	-	-					

5/21/02

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
VCC	P183	P212	VCC ⁽⁴⁾	VCC ⁽⁴⁾	Juli
					-
I/O	P184	P213	C10	D10	86
I/O	P185	P214	D10	E10	89
I/O	P186	P215	A9	A9	92
I/O	P187	P216	B9	B9	95
I/O	P188	P217	C9	C9	98
I/O	P189	P218	D9	D9	101
I/O	P190	P220	A8	A8	104
I/O	P191	P221	B8	B8	107
I/O	-	-	C8	C8	110
I/O	-	-	A7	D8	113
VCC	P192	P222	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P223	A6	B7	116
I/O	-	P224	C7	C7	119
I/O	P193	P225	B6	D7	122
I/O	P194	P226	A5	A6	125
GND	P195	P227	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P196	P228	C6	B6	128
I/O	P197	P229	B5	C6	131
I/O	P198	P230	A4	D6	134
I/O	P199	P231	C5	E6	137

XCS40 and XCS40XL Device Pinouts

XCS40/XL	1 XOO+	ONL DO	741001		Bndry
Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Scan
I/O	P200	P232	B4	A5	140
I/O	P201	P233	A3	C5	143
I/O	-	1	-	D5	146
I/O	-	1	-	A4	149
I/O	P202	P234	D5	B4	152
I/O	P203	P235	C4	C4	155
I/O	P204	P236	В3	A3	158
I/O	P205	P237	B2	A2	161
I/O	P206	P238	A2	В3	164
I/O, SGCK1 ⁽¹⁾ , GCK8 ⁽²⁾	P207	P239	C3	B2	167
VCC	P208	P240	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P1	P1	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O, PGCK1 ⁽¹⁾ , GCK1 ⁽²⁾	P2	P2	B1	C3	170
I/O	P3	P3	C2	C2	173
I/O	P4	P4	D2	B1	176
I/O	P5	P5	D3	C1	179
I/O, TDI	P6	P6	E4	D4	182
I/O, TCK	P7	P7	C1	D3	185
I/O	-	-	-	D2	188
I/O	-	-	-	D1	191
I/O	P8	P8	D1	E2	194
I/O	P9	P9	E3	E4	197
I/O	P10	P10	E2	E1	200
I/O	P11	P11	E1	F5	203
I/O	P12	P12	F3	F3	206
I/O	-	P13	F2	F2	209
GND	P13	P14	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	P14	P15	G3	F4	212
I/O	P15	P16	G2	F1	215
I/O, TMS	P16	P17	G1	G3	218
I/O	P17	P18	НЗ	G2	221
VCC	P18	P19	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	-	P20	H2	G4	224
I/O	-	P21	H1	H1	227
I/O	-	-	J4	H3	230
I/O	-	-	J3	H2	233
I/O	P19	P23	J2	H4	236
I/O	P20	P24	J1	J1	239
I/O	P21	P25	K2	J2	242
I/O	P22	P26	K3	J3	245
I/O	P23	P27	K1	J4	248
I/O	P24	P28	L1	K1	251

XCS40 and XCS40XL Device Pinouts

XC540 and XC540XL Device Pinouts					
XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
I/O	P90	P105	Y16	W14	466 ⁽³⁾
GND	P91	P106	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P107	V15	V14	469 ⁽³⁾
I/O	P92	P108	W16	U14	472 ⁽³⁾
I/O	P93	P109	Y17	T14	475 ⁽³⁾
I/O	P94	P110	V16	R14	478 ⁽³⁾
I/O	P95	P111	W17	W15	481 ⁽³⁾
I/O	P96	P112	Y18	U15	484 (3)
I/O	-	-	-	T15	487 ⁽³⁾
I/O	-	-	-	W16	490 ⁽³⁾
I/O	P97	P113	U16	V16	493 (3)
I/O	P98	P114	V17	U16	496 ⁽³⁾
I/O	P99	P115	W18	W17	499 (3)
I/O	P100	P116	Y19	W18	502 ⁽³⁾
I/O	P101	P117	V18	V17	505 ⁽³⁾
I/O,	P102	P118	W19	V18	508 ⁽³⁾
SGCK3 ⁽¹⁾ ,	1 .02			1.0	
GCK4 ⁽²⁾					
GND	P103	P119	GND ⁽⁴⁾	GND ⁽⁴⁾	-
DONE	P104	P120	Y20	W19	-
VCC	P105	P121	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
PROGRAM	P106	P122	V19	U18	-
I/O (D7 ⁽²⁾)	P107	P123	U19	V19	511 ⁽³⁾
I/O,	P108	P124	U18	U19	514 ⁽³⁾
PGCK3 ⁽¹⁾ , GCK5 ⁽²⁾					
I/O	P109	P125	T17	T16	517 ⁽³⁾
I/O	P110	P126	V20	T17	520 ⁽³⁾
I/O	-	P127	U20	T18	523 ⁽³⁾
I/O	P111	P128	T18	T19	526 ⁽³⁾
I/O	_	-	-	R15	529 ⁽³⁾
I/O	-	-	-	R17	523 ⁽³⁾
I/O (D6 ⁽²⁾)	P112	P129	T19	R16	535 ⁽³⁾
I/O	P113	P130	T20	R19	538 ⁽³⁾
I/O	P114	P131	R18	P15	541 ⁽³⁾
I/O	P115	P132	R19	P17	544 (3)
I/O	P116	P133	R20	P18	547 ⁽³⁾
I/O	P117	P134	P18	P16	550 ⁽³⁾
GND	P118	P135	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O		P136	P20	P19	553 ⁽³⁾
I/O	_	P137	N18	N17	556 ⁽³⁾
I/O	P119	P138	N19	N18	559 ⁽³⁾
I/O	P120	P139	N20	N19	562 ⁽³⁾
VCC	P121	P140	VCC ⁽⁴⁾	VCC ⁽⁴⁾	502 ()
I/O (D5 ⁽²⁾)	P122	P140	M17	M19	565 ⁽³⁾
I/O (D3(=/)	P123	P141	M18	M17	568 ⁽³⁾
"0	1 123	1 142	IVI I O	IVI I /	JU0 (°)

XCS40 and XCS40XL Device Pinouts

XCS40/XL Pad Name	PQ208	PQ240	BG256	CS280 ^(2,5)	Bndry Scan
I/O	-	-	-	M18	571 ⁽³⁾
I/O	-	-	M19	M16	574 ⁽³⁾
I/O	P124	P144	M20	L19	577 ⁽³⁾
I/O	P125	P145	L19	L18	580 ⁽³⁾
I/O	P126	P146	L18	L17	583 ⁽³⁾
I/O	P127	P147	L20	L16	586 ⁽³⁾
I/O (D4 ⁽²⁾)	P128	P148	K20	K19	589 ⁽³⁾
I/O	P129	P149	K19	K18	592 ⁽³⁾
VCC	P130	P150	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
GND	P131	P151	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O (D3 ⁽²⁾)	P132	P152	K18	K16	595 ⁽³⁾
I/O	P133	P153	K17	K15	598 ⁽³⁾
I/O	P134	P154	J20	J19	601 ⁽³⁾
I/O	P135	P155	J19	J18	604 ⁽³⁾
I/O	P136	P156	J18	J17	607 ⁽³⁾
I/O	P137	P157	J17	J16	610 ⁽³⁾
I/O	-	-	H20	H19	613 ⁽³⁾
I/O	-	-	-	H18	616 ⁽³⁾
I/O (D2 ⁽²⁾)	P138	P159	H19	H17	619 ⁽³⁾
I/O	P139	P160	H18	H16	622 ⁽³⁾
VCC	P140	P161	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-
I/O	P141	P162	G19	G18	625 ⁽³⁾
I/O	P142	P163	F20	G17	628 ⁽³⁾
I/O	-	P164	G18	G16	631 ⁽³⁾
I/O	-	P165	F19	F19	634 ⁽³⁾
GND	P143	P166	GND ⁽⁴⁾	GND ⁽⁴⁾	-
I/O	-	P167	F18	F18	637 ⁽³⁾
I/O	P144	P168	E19	F17	640 ⁽³⁾
I/O	P145	P169	D20	F16	643 ⁽³⁾
I/O	P146	P170	E18	F15	646 ⁽³⁾
I/O	P147	P171	D19	E19	649 ⁽³⁾
I/O	P148	P172	C20	E17	652 ⁽³⁾
I/O (D1 ⁽²⁾)	P149	P173	E17	E16	655 ⁽³⁾
I/O	P150	P174	D18	D19	658 ⁽³⁾
I/O	-	-	-	D18	661 ⁽³⁾
I/O	-	-	-	D17	664 ⁽³⁾
I/O	P151	P175	C19	C19	667 ⁽³⁾
I/O	P152	P176	B20	B19	670 ⁽³⁾
I/O (D0 ⁽²⁾ , DIN)	P153	P177	C18	C18	673 ⁽³⁾
I/O, SGCK4 ⁽¹⁾ , GCK6 ⁽²⁾ (DOUT)	P154	P178	B19	B18	676 ⁽³⁾
CCLK	P155	P179	A20	A19	-
VCC	P156	P180	VCC ⁽⁴⁾	VCC ⁽⁴⁾	-